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Chapter 1

GIO Bus Overview

1.1 Introduction

The GIO Bus is a family of synchronous, multiplexed address-data busses for connecting high-speed devices to main
memory and CPU for entry-level SGI systems. The GIO Bus has three varieties: GIO32, GIO32-bis, and GIO64. Each
variety is described in a separate chapter: GIO32 is in Chapter 2, GIO32-bis is in Chapter 3, and GIO64 is in Chapter 4.

• The GIO32 is a 32-bit, synchronous, multiplexed address-data bus that runs at speeds from 25 to 33 MHz.

• The GIO32-bis is a 32-bit version of the non-pipelined GIO64 bus.

• The GIO64 bus is a 64-bit, synchronous, multiplexed address-data bus that can run at speeds up to 40 MHz. It
supports both 32- and 64-bit GIO64 devices. GIO64 has two slightly different varieties: non-pipelined for
internal system memory and GIO32-bis slot devices, and pipelined for graphics and pipelined GIO64 slot
devices.

The members of the GIO Bus Family are all very similar, however the GIO32 and GIO64 are not compatible. A GIO32
device does not work in a GIO64 slot. However, a GIO32-bis device can function in either a GIO32 or GIO64 option slot,
as long as the appropriate connector/socket is available.

Figure 1-1.

1.2 Conventions Used in this Document: Signal Names

Signal names that are overscored (EXAMPLE) denote signals that are active low signals. All other signals are active high.

Signals that are one-per-device are denoted by the letter ‘n’ in parentheses, following the signal name: SIGNAL(n).

GIO32 Slot GIO64 Slot

32-pin connector 32-pin connector 64-pin connector

Bus Protocol
supported:

GIO32
GIO32-bis

GIO64
GIO32-bis

GIO64
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Chapter 2

GIO32 Specification

2.1 Introduction

The GIO32 bus is a 32-bit, synchronous, multiplexed address-data bus that runs at speeds from 25 to 33 MHz. The bus
connects high speed devices to memory and to the CPU.

The GIO32 bus supports two types of devices: 1.the CPU and other long-burst devices that do long-burst transfers
between themselves and system memory, and 2. real-time I/O devices that require guaranteed maximum bus latency.

A bus arbiter, implemented by the Processor Interface Controller (PIC) in the Indigo system, arbitrates between
competing bus masters in the system. The PIC also acts as master in transactions between the Indigo CPU and other
GIO32 devices.

Maximum performance of the 33 MHz GIO32 bus is as follows:

long-burst read/write 132 MBytes/second

back-to-back 32-bit word writes 44 MBytes/second

back-to-back 32-bit word reads from memory 16 MBytes/second

back-to-back 32-bit word reads (theoretical) 26 MBytes/second1

2.2 Conventions Used in this Chapter

The GIO32 bus uses a 32-bit byte address. The byte numbering scheme is big endian; the bit numbering scheme is little
endian. (See Figure 2-1.) Thus, byte 0 is bits <31:24>, byte 1 is bits <23:16>, byte 2 is bits <15:8>, and byte 3 is bits
<7:0>.

The following figure shows the byte and bit numbering schemes.

Figure 2-1 . Traditional SGI: big endian byte numbering / little endian bit numbering

[Due to the Indigo’s ability to run either as a traditionally big-endian system or as a little-endian system, the GIO32 bus
supports both little- and big-endian byte numbering schemes. The endian selection is made at power-up time based on the
endianness of the software found on the hard disk. GIO32 option cards need to be capable of running in big- and little-
endian mode. How they detect the endianness of the system at power-up time is TBD.]

 1.  Due to the specific implementation on the Indigo, back-to-back 32-bit word reads from the Indigo CPU are about 8.8 MBytes/second.

0 1 2 3

31 1524 23 16 8 7 0
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Figure 2-2 . Little endian byte numbering / little endian bit numbering

2.3 GIO32 Transfer Size and Preemption

GIO32 bus transfers can be one byte to 4K bytes long. A byte count field specifies the length of a transaction. The transfer
cannot cross a 4K processor virtual page boundary; i.e., the data must originate from or be destined for a single page of
main memory. A bus request by a real-time I/O device preempts an ongoing long-burst transaction. The interrupted
transaction can be resumed as a new transaction when the bus is free.

2.4 GIO32 Bus Signals

The GIO32 bus has 32 address/data signals; control lines that include address strobe, read/write select, master delay, and
slave delay; arbitration signals that include bus request, bus grant, and bus preempt; and CPU interrupt and reset signals.
The table below lists the GIO32 signals.

TABLE  1 GIO Bus Signals.

AD<31:0>: The address/data signals are the multiplexed address and data lines. During a slave address cycle, they contain
the slave address for the bus transaction. The next cycle in a transaction, the byte count cycle, uses AD<12:0> to indicate
the number of bytes to transfer and AD<31:30> to indicate the master starting byte address. The master starting byte
address defines the byte where the data starts (byte 0, 1, 2, or 3) when placed on or taken off the bus. Master devices use
this field to define the bus alignment that slave devices must follow (i.e., obey). There is one major exception: option slot
devices exchanging data with CPU or memory. Master option slot devices cannot use the master starting byte field to
modify the alignment of data on the bus when interacting with CPU or memory, because CPU and memory require all bus

SIGNAL Description

AD<31:0> 32 address/data signals

AS address strobe

READ read/write select

MASDLY master delay

SLVDLY slave delay

BREQ(n) bus request, 1 per master

BGNT(n) bus grant, 1 per master

BPRE bus preempt

INT<2:0> interrupts

CLK clock

RESET reset

3 2 1 0

31 1524 23 16 8 7 0
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data to be aligned to the workstation’s main memory. Below is a summary for option slot device usage of the master
starting byte address:

• as slave, the master’s starting byte address (AD<31:30>) must be obeyed since all data must be aligned with
main memory or CPU, and

• as master, anything can be written to AD<31:30>, however it will not be interpreted by the CPU or memory. All
data on the bus will be and must be aligned to main memory or CPU.

AS: Address strobe signals the start of a new bus transaction. The device that is currently the bus master asserts address
strobe and places a slave address on the bus. All other devices on the bus should latch the address to determine if they are
the device being addressed. Address strobe is only asserted for one cycle. The byte count cycle follows the address cycle.

READ: The READ signal serves two purposes. During the slave address cycle the master asserts READ for a read (master
receives data) or deasserts READ for a write (master supplies data) transaction. After the slave address cycle, the bus
master drives READ low to indicate that a bus transaction is taking place. The master holds READ low until the bus
transaction ends naturally or through preemption.

MASDLY: The master asserts the master delay signal to throttle the data transfer rate. The signal has different meanings
for read and write transactions. For a read transaction, the master asserts MASDLY when it is not ready to receive data in
the current bus cycle. For a write, MASDLY indicates that the data currently on the bus is invalid. MASDLY is ignored
during address and byte count cycles.

SLVDLY: The slave device asserts SLVDLY to throttle the data transfer rate. Like MASDLY, this signal has different
meanings for read and write transactions. When the slave asserts SLVDLY during a bus read, the data on the bus is
invalid. During a bus write, SLVDLY indicates that the slave cannot accept data in the current bus cycle. SLVDLY is
pulled high on the CPU board so that it is asserted during the byte count cycle. The slave must drive SLVDLY high at the
end of a bus transaction before tristating it because the pullup on the CPU board is not strong enough to pull SLVDLY
high in one cycle.

BREQ(n): Every bus master in the system has its own bus request signal. To request the bus, a device asserts its bus
request signal. The device must hold itsBREQ(n) signal asserted until the bus arbiter grants it the bus, even if the device
decides it does not need the bus. The bus master holdsBREQ(n) asserted until the end of the bus transaction. When the
bus arbiter preempts the bus, the master device must deassert its bus request signal to indicate that it is off the bus. A
preempted device cannot reassert its bus request signal until the bus arbiter deasserts the preemption signal. In order to
avoid bus time-outs, a bus master must still accept requests from other bus masters even if it is requesting the bus.

BGNT(n): Every bus master in the system has its own bus grant signal, which indicates to a master device that it owns the
bus. The bus arbiter asserts a device’s matching bus grant signal for as long as the bus master asserts its bus request signal.
When the bus arbiter preempts a master device, the arbiter does not deassert the bus grant signal until the bus master
deasserts itsBREQ(n) signal.

BPRE: The GIO arbiter asserts the bus preempt signal to preempt the current bus transaction. The bus master must
respond toBPRE within {missing information: number of clock cycles is somewhere between four and nine} GIO32
clock cycles by deasserting itsBREQ(n) signal and asserting READ. Real-time devices are not preemptable and can
ignoreBPRE.

INT<2:0>: The GIO32 bus has three interrupt/status signals,INT<2:0>, which are shared by all devices: the two GIO32
bus option slots and the graphics board(s).INT<0> andINT<1> are low priority interrupts.INT<2> is a high priority
interrupt. These signals can generate CPU interrupts and be read by the CPU.

CLK: The GIO32 clock runs at 25, 30, or 33 MHz. Data is valid at the rising edge of CLK.

RESET: An asynchronous signal for resetting/restarting all devices on the bus.

2.5 GIO32 Bus Transfers

The GIO32 bus supports three kinds of cycles during a bus transaction. The first cycle of every transaction is a slave
address cycle. The second cycle is the byte count cycle. Subsequent cycles are one or more data cycles. After the final data
cycle of a transaction, AD<31:0>, READ,AS, MASDLY, and SLVDLY must be tristated.
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In the slave address cycle, the bus master sends the slave address out on AD<31:0> and assertsAS. For a read transaction,
the master asserts READ; for a write the master deasserts READ.

In the byte count cycle that follows, the master sends the transfer byte count on AD<12:0>. In this second cycle, the
meaning of the READ signal changes to mean that a bus transaction is taking place on the bus. To this end, the master
deasserts READ and holds it deasserted until the end of the bus transaction. The address strobe signal is not active in this
cycle. The master also writes the address (offset) for the master starting address onto AD<31:30> during this cycle. All
slave devices must obey these bits to place data onto or take data off of the bus so that the data on the bus is always
aligned for the master device. Devices talking to the CPU or memory (regardless of whether they are slave or master)
must always use the alignment described in Figure 2-1 or Figure 2-2 of this specification so that the data is properly
aligned for main memory. Note that option slot master devices cannot use the “master starting byte address” feature with
CPU and memory since the CPU and memory only support their own alignment.

The byte count and 32-bit slave address determine alignment (in slave memory) of the slave start and end addresses. The
master starting byte and the byte count determine the alignment in master memory. The master starting byte field consists
of the two least significant bits of the master’s byte address. For transfers where the slave and master addresses are
aligned, the least significant bits (AD<31:30>) match on the first and second cycle: the slave address sent in the first cycle
of the transaction and the master starting byte of the second. If the transfer is unaligned, the bits do not match. A slave
GIO device must deal with the data (either place data on the bus during a read or rearrange data taken from the bus on a
write) in the master’s alignment (according to these bits). Note that CPU and memory, as slave devices, do not support this
feature; they do not rearrange data. CPU and memory always place data on the bus as it is aligned in memory and they
assume that data taken from the bus is already aligned to main memory.

For example, for a read, if the slave address is 0x2, the byte count is 0x2, and
the master starting byte address is 0x1, the slave would read its own memory
from byte addresses 0x2-0x3 and drive that data on the bus with the byte
from slave address 0x2 placed at address 0x1 (i.e., onto AD<23:16>), pack-
ing the other byte in the same word. Figure 2-3 illustrates this case.

IMPLEMENTATION RESTRICTION:
Due to implementation details of the bus arbiter, the
maximum byte count for a master is 1023 for any single
transaction.

CAUTION:
Master option slot devices must not expect CPU or memory
to obey the settings of AD<31:30> during the byte count
cycle (i.e., the master starting byte address). CPU and
memory only deal with data that is aligned to main memory.
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Figure 2-3 . A Read Cycle: Slave’s Placement of Data on Bus
for Data Aligned in Slave Memory differently

than in Master Memory.

Following the slave address and byte count cycles are a variable number of data cycles. The number depends on the byte
count, bus preemption, and the flow control signals MASDLY and SLVDLY. The master drives MASDLY and the slave
drives SLVDLY. These signals throttle the data transfer rate.

2.5.1 GIO32 Write Transactions

GIO32 bus write transactions take a minimum of three bus clock cycles. The transaction begins with the slave address and
byte count cycles. In the slave address cycle, the master does the following:

• assertsAS

• drives a 32-bit slave address on AD<31:0>

• deasserts READ to indicate that this is a write cycle.

In the byte count cycle, the master does the following:

• deasserts READ and holds it low until the end of the transaction

• drives a byte count on AD<12:0>

• drives the master starting byte address on AD<31:30>.

After the byte count cycle, the master can begin data transfer. During a write, the bus master drives data out onto the AD
signals and deasserts MASDLY to indicate that valid data is on the bus. The master looks at SLVDLY at the end of the
clock cycle to determine whether the slave is ready to accept the data. If the slave deasserts SLVDLY by the end of the
cycle, the master knows that the slave will pick up the data at the rising clock edge, and that the master can put a new data
word on the bus in the next cycle. Otherwise, if the slave does not deassert SLVDLY by the end of the cycle, the master
must continue to drive the current word of data for additional bus clock cycles until it sees SLVDLY go low. The bus
master can transfer a word of new data during every bus cycle that the slave is deasserting SLVDLY. The master can
throttle the transfer rate by asserting MASDLY during a cycle when it is not ready to send a new word of data on the bus.

The bus master continues to transfer data until the byte count is satisfied or until the bus arbiter asserts theBPRE signal.
The bus slave also keeps track of the number of bytes that have been transferred so that it can handle the last data word
correctly if it is a partial word transfer.

At the end of the transaction, the master asserts MASDLY. The slave asserts SLVDLY within one cycle after the last data
word and then tristates the signal. The bus master, if it does not wish to start another transaction, asserts READ, then
tristatesAS, AD<31:0>, READ, and MASDLY. If the master has another transaction to do, it immediately begins the
transaction by executing a slave address cycle.

If the bus arbiter preempts a bus transaction, the byte count will not be zero when the bus master asserts READ in
response to the preemption. The slave needs to monitor READ so that it can detect a preemption and assert SLVDLY
within one cycle. The bus master must keep all of the information -- remaining byte count and updated slave address --
necessary to restart the transaction where it was interrupted.

0 1 2 3

31 1524 23 16 8 7 0

0 1 2 3

Data in Slave Memory

Data Aligned for Transfer

valid data invalidinvalid

on the GIO32 Bus

slave device rearranges
data so bus alignment
matches master’s
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Figure 2-4, Figure 2-5, and Figure 2-6 illustrate sample GIO32 write transactions:

Figure 2-4 . Back-to-Back Simple GIO32 Writes

Figure 2-5 . GIO32 Write, Slave Stalls

Figure 2-6 . GIO32 Write, Master Stalls
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2.5.2 GIO32 Read Transactions

GIO32 bus read transactions are very similar to write transactions except that the bus slave, not the bus master, drives the
data on the bus.

The GIO32 bus requires one dead cycle on the bus when the device driving the bus changes. Thus a read transaction has a
dead cycle between the master driving the byte count cycle and the slave driving the first data cycle, as well as between
the final data cycle of a transaction and a subsequent address strobe that starts a new transaction. This requirement makes
the minimum length of back-to-back read transactions four bus cycles.

The READ signal, asserted by the bus master during the slave address cycle to indicate a read transaction, is held
deasserted from the byte count cycle onward to indicate that a bus transaction is taking place. During data cycles, the slave
deasserts SLVDLY when it is driving valid data on the AD signals. The master deasserts MASDLY during cycles when is
ready to take data off the bus.

Examples of GIO32 bus read transactions are shown in Figure 2-7, Figure 2-8, and Figure 2-9.

Figure 2-7 . Simple GIO32 Reads

Figure 2-8 . GIO32 Read, Slave Delay
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Figure 2-9 . GIO32 Read, Master Delay

2.6 GIO32 Bus Arbitration

The GIO32 bus arbitration scheme supports three requirements:

• The CPU must run at a minimum, guaranteed rate in the most highly loaded system to allow for acceptable
interrupt response times.

• Long-burst DMAs for devices such as the graphics subsystem must be allowed to use the bus for long stretches
of time to move large amounts of data.

• Real-time I/O devices such as network connections (e.g., Ethernet, FDDI) and audio must be guaranteed access
to the bus within a predefined maximum delay.

These three requirements -- to support the CPU, long burst, and real-time I/O devices -- result in the following rules of bus
behavior.

• Long-burst devices have low priority as well as limits on the time they can be master of the bus. A long-burst
device can perform multiple transactions once it becomes bus master. The bus arbiter preempts a long-burst
device master to service a real-time I/O device or because the long-burst device has used up its time slot on the
bus.

• The CPU is a long-burst device, but differs in two ways from all other long-burst devices. First, the bus arbiter
will only preempt CPU bus mastership between bus transactions. Second, the CPU becomes bus master after
every grant to some other long-burst bus master.

• Real-time I/O devices have high priority. They can use the bus for no more than a fixed unit of time -- 5
microseconds -- per acquisition and can only request the bus at a predefined frequency.

The GIO32 bus arbiter has two time slot registers--DELAY and BURST--that limit the time a bus master can hold the bus.
The DELAY register limits the CPU’s time on the bus. The BURST register limits the time on the bus for all other long-
burst devices. The operating system chooses the time values to load into these registers when a device becomes bus
master. For example, the CPU time limit might be set to 2 microseconds, while the time limit for all other long-burst
devices might be 38 microseconds. If a bus master is still asserting itsBREQ(n) signal when its time limit expires, the bus
arbiter preempts the bus. If the CPU receives and services an interrupt during a bus transaction, the CPU resets the time
value in the BURST register to zero and the DELAY register to its maximum value so that the CPU can immediately
become bus master.

Real-time I/O devices preempt long-burst devices immediately. The Indigo Peripheral Controller chip (HPC), which
manages Ethernet and SCSI access, is the highest priority real-time I/O device in the system, followed by option slot 0 and
then option slot 1. A preempted long-burst device regains the GIO Bus after the preempting transaction completes. When
no other device requests the bus, the CPU becomes bus master.
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2.6.1 Arbitration Handshake

Connecting:
Each bus master on the GIO32 bus connects to the bus arbiter with a pair ofBREQ(n) andBGNT(n) signals. A device
requests the bus by asserting itsBREQ(n) signal. The arbiter grants the bus to the requesting device by asserting the
matchingBGNT(n) signal. Once a device asserts itsBREQ(n) signal, it must hold the signal asserted until the arbiter has
granted the bus.

Doing the transaction:
A bus master must keep itsBREQ(n) signal asserted until the bus transaction is complete.

Terminating:
When the bus transaction is complete, the bus master deasserts itsBREQ(n) signal and the arbiter then deasserts the
BGNT(n).2

2.6.2 GIO32 Bus Preemption

The GIO32 bus arbiter preempts a long-burst bus master when a real-time I/O device needs the bus or when the bus
master uses up its time slot on the bus. The arbiter assertsBPRE. In response, the current bus master asserts READ within
{missing information: four to nine} bus cycles to indicate end of transaction. If a write transaction was underway, the
master stops driving AD and MASDLY in the same cycle as the deassertion of READ. In the case of a preempted read
transaction, the slave may continue driving data as the master is deasserting READ; however, the data driven will not be
accepted by the bus master. The bus master must keep track of the slave address and remaining byte count in order to
resume the transfer later.

A bus master can preempt its own bus transaction before the byte count has been satisfied and never resume the
transaction. This type of preemption is useful for devices that may not know the byte count at the start of the transaction.
The master can drive a maximum byte count during the byte count cycle and then preempt the transaction by asserting the

 2.  Note the implementation restriction (on page 2-9) associated with deassertingBREQ(n).

IMPLEMENTATION RESTRICTION:
Due to implementation details of the bus arbiter, non-CPU, long
burst masters must not simply driveBREQ(n) inactive when they
wish to relinquish the bus. They must wait forBPRE to be asserted
and then deassertBREQ(n).

IMPLEMENTATION RESTRICTION:
Due to implementation details of the bus arbiter, it is possible that
the arbiter may assertBGNT(n) for one cycle and then deassert it,
without actually granting the bus. Therefore, bus masters must not
conclude that they have been granted the bus untilBGNT(n) has
been asserted for two consecutive cycles. Once asserted,BREQ(n)
must not be deasserted until the bus has been granted.
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READ signal when it has received the desired bytes. Note that this technique requires the last transfer to be aligned to the
bus because the byte count cannot indicate how many bytes to transfer on the last cycle.

Preemption examples are presented in Figure 2-10 to Figure 2-13.

Figure 2-10 . Preempted GIO32 Write, Slave Stall

Figure 2-11 . Preempted GIO32 Write, Master Stall

IMPLEMENTATION RESTRICTION:
Due to implementation details of the bus arbiter, the self-
preemption with unfinished transaction feature will not work and
must not be used. Bus mastersmust provide an accurate and exact
byte count.
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Figure 2-12 . Preempted GIO32 Read, Slave Stall

Figure 2-13 . Preempted GIO32 Read, Master Stall

2.7 GIO32 Bus Time-outs

A GIO32 bus transaction times out if a slave does not deassert SLVDLY in reply to an address strobe within 25
microseconds after the byte count cycle. This time-out prevents accesses to non-existent locations on the GIO32 bus from
hanging the bus. When a time-out occurs, the bus arbiter deasserts SLVDLY until the transaction completes. Then the
arbiter generates a bus error interrupt to the CPU. The device that was transferring data does not know that a time-out
occurred. Software can use this time-out mechanism to determine whether a device exists in a GIO32 slot. The guaranteed
bus acquisition time of five microseconds for real time devices may be violated when the GIO32 bus times out.

2.8 Issues for Slave-only GIO32 Devices

GIO32 devices that will not perform as master devices, can simplify their design in the following manner:

• preemption will never occur and so is not an issue,

• all transfers will include only one data cycle,

• AD<12:0> (the byte count) in the byte count cycle can be ignored, and

• three signals are not used:BREQ,BGNT, andBPRE.
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2.9 Interrupts

Each interrupt from a GIO device will cause every device driver associated with the interrupt line to be called. For
example, if two device drivers are associated withINT0, whenever an interrupt occurs on this line each driver is called in
turn, thus giving each the opportunity to process any interrupt generated by it’s device (at that level). Since interrupt levels
may be shared, each device (or the protocol between the device and the host) must provide a reliable mechanism for
allowing a device driver to determine whether a given interrupt call was caused by the associated device or not. All device
drivers must, at all times, be able to gracefully handle spurious interrupts.3

Note: Each device must provide a register

2.10 Identifying GIO Devices

2.10.1 Product Identification Word

During the configuration procedure, the CPU does a slave (host) word read of the Product Identification Word associated
with each potential GIO device. The read must be done as a word read. (This ensures endian independence.) These reads
establish the presence and identity of all the GIO devices that are present. (GIO devices do not use the “address probe”
scheme used in VME-based devices.) For slot devices, the Product Identification Word is read by accessing the first (base)
address within the slot’s address range. During the slave cycle following any read of the slot’s base address, the Product
Identification Word information is driven onto AD<31:0>.

The Product Identification Word contains five pieces of information as listed below and illustrated in Figure 2-14.

- Bits <7:0>: Product ID Code unique ID assigned by SGI (see section “Product ID Code” for
more detail)

- Bits <15:8>: Product Revision product revision value assigned by the manufacturer

- Bit <16>: GIO Interface size 0=32bits, 1=64bits
For GIO32 and GIO32-bis, must be zero. For GIO64, may be 0
or 1.

- Bit <17>: ROM Present 0=no ROM, 1=ROM present
When set to one, indicates that the next three words of the
device’s address space are dedicated to special registers, as
explained in the section “Special Registers”.
When set to zero, the device’s address space contains no
reserved areas except the base address.

- Bits <31:18>: Manufacturer’s Code value and purpose assigned by the manufacturer.

 3.  How to handle the linking of a device driver into one or more interrupt chains is TBD. One technique is a table of routine addresses with an entry per
slot per level. All entries would be initialized to a stub routine address before calling the boot-timeautoconfig whi ch would overwrite any used
entry with the actual driver entry point(s). In this way, the interrupt dispatch code would not need any conditional tests.

CAUTION:

GIO Interrupts 2 and 0 (INT2 andINT0) are reserved for use by graphics
boards only. Option slot devices must useINT1.
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Figure 2-14 . Product Identification Word

2.10.2 Product ID Code

The lowest byte of the Product Identification Word contains a unique, 8-bit Product ID Code that is hardwired into each
GIO device. During the slave cycle following any read of the slot’s base address, this 8-bit Product ID Code is driven onto
the lower bits (bits 7:0) of AD (at the same time as all the other Product Identification Word).

Product ID Codes are unique across all GIO devices and must be registered with Silicon Graphics.4

When the assigned Product ID Code has bit 7 equal to zero, the device does not provide meaningful (neither correct nor
repeatable) data on AD<31:8> during the slave cycle following a read of a slot’s base address. Such boards must be
recognized based on AD<7:0> and the other fields must be treated by software as if they contained the following values:

- Bits <7:0>: Product ID Code unique ID assigned by SGI where bit 7=0

- Bits <15:8>: Product Revision 0

- Bit <16>: GIO Interface size 0 (i.e., =32bits)

- Bit <17>: ROM present 0 (i.e., =no ROM)

- Bits <31:18>: Board Manufacturer not defined (i.e., manufacturer must be deduced from Product/
Board Identification code).

2.11 GIO32 Option Slot Issues

2.11.1 Address Ranges

Each option slot has a 2 MByte address range:

• slot 0 = 0x1f400000 to 0x1f5fffff,

• slot 1 = 0x1f600000 to 0x1f7fffff.

Note: addresses 0x1f800000 to 0x1f9fffff are reserved for future definition by Silicon Graphics.

2.11.2 Configuration Registers

GIO32 option cards configure themselves by writing into their Configuration Register. Each slot has its own register in the
format shown in Figure 2-15. Slot 0’s is located at 0x1FA20000. Slot 1’s is at 0x1FA20004.

 4.  The procedure and contact point for doing this are TBD. The numbers will be recorded in an appropriate header file in the kernel source tree.

Manufacturer’s Code:14 ProdIDCode:8

31 8 7 015

Rev:8

16

GIOSz:1

17

ROM:1

18

1=all bits of Word are valid
0=only bits <7:0> are valid
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The setting of bit 1 communicates the device type:1 indicates real-time I/O and 0 indicates long-burst. Bits <31:2> and bit
0 are not used.

Figure 2-15 . Slot Configuration Register Format

2.11.3 Special Registers within the Device Address Range

When an option slot device has ROM, it indicates the ROM’s presence to the CPU by setting to one the ROM Present bit
in the Product Identification Word. Whenever this bit is set, the three words following the base address of the device
address range are reserved as three special 32-bit registers, as explained below.

1. The word at base address + 0x4 is the optional Board Serial Number register. This serial number is assigned by
the manufacturer.

2. The word at base address + 0x8 is the ROM Index register. This register is written to zero by the CPU to initiate
reading of the ROM. Subsequent reads of the ROM Read register cause this register to automatically increment
by 4, indicating the currently available word in the ROM Read register.

3. The word at base address + 0xc is the ROM Read register. This register contains the contents of one word from
the ROM. It always contains the word from the address indicated in the ROM Index register.

2.11.4 Device Interface and Configuration

GIO32 option slot device drivers configure themselves by callingsetgiovector , setgioconfig , and the apporpriate
splgio #. These calls and their parameters are listed below:

• setgiovector(INT_LEVEL, GIO_SLOT, GIO_FUNC, GIO_ARG);

• setgioconfig(GIO_SLOT, GIO_ARB);

• splgio0();

• splgio1();

• splgio2();

setgiovector(INT_LEVEL, GIO_SLOT, GIO_FUNC, GIO_ARG)

A device driver registers its interrupt service function with the kernel’s interrupt dispatcher by calling
setgiovecotor . The call requires four parameters explained below.

1. Thelevel parameter is an integer specifying which one of the three possible GIO bus interrupts is
used by the device. This parameter must be one of the following:

- 0 =GIO_INTERRUPT_0 ,

- 1 =GIO_INTERRUPT_1 , or

- 2 =GIO_INTERRUPT_2 .

30 unused bits DevType

31 2 1 0

unused

1=real time
0=long-burst

CAUTION:

Due to limitations in the graphics subsystem, GIO Interrupts 2 and 0 (INT2
andINT0) are reserved for use by graphics boards only. Option slot devices
must useINT1.
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2. Theslot parameter is an integer and specifies the physical slot occupied by the GIO bus board.
This parameter must be one of the following:

- 0 =GIO_SLOT_0 ,

- 1 =GIO_SLOT_1 , or

- 2 =GIO_SLOT_GFX .

3. Thefunction parameter is a pointer to the interrupt service routine that will be called when the
associated interrupt occurs.

Note that because interrupts are shared among devices,func  [i.e., void (*func)(int); ] may be
called when there is no pending interrupt from the particular slot specified, in which casefunc

should simply return. The interrupt handler therefore needs to be able to determine when its device
is actually interrupting, and when it is not, in a non-destructive manner.

4. Theargument paramenter is an integer that is passed to the interrupt service routine whenever the
interrupt routine is called;arg may contain any value. The interrupt service routine will be called
with the processor interrupt mask set to disable further interrupts from the device.

setgioconfig(GIO_SLOT, GIO_ARB)

Device drivers callsetgioconfig  to set up the GIO bus arbitration mode for the GIO slot specified by
theslot parameter. The call requires two parameters explained below.

1. Theslot parameter is an integer and specifies the physical slot occupied by the GIO bus board.
This parameter must be one of the following:

- 0 =GIO_SLOT_0 ,

- 1 =GIO_SLOT_1 , or

- 2 =GIO_SLOT_GFX .

2. Thearbitration mode is specified as a bit-wise OR of the following two flags:

- GIO_CONFIG_LONG
where 0=real-time device and 1=long-burst device,

- GIO_CONFIG_SLAVE
where 0=device is both master and slave, and 1=device is slave only.

splgio0() , splgio1() , or splgio2()

Thesplgio0() , splgio1() , andsplgio2()  functions set the processor interrupt mask to block GIO bus
interrupts.splgio0  sets the mask forINT0, splgio1  sets the mask forINT1, etc..

2.12 INDIGO-specific Information

2.12.1 Indigo GIO32 Bus Arbiter

The Processor Interface Controller chip (PIC) is the GIO32 arbiter in the Indigo system. The PIC acts as master device for
transactions between the CPU and GIO32 devices. These transactions are one to four bytes in length. PIC timing and
synchronization with the CPU, which runs at a different speed than the GIO32 bus, requires about fifteen bus clock cycles
to complete a single-word GIO32 bus read transaction.
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2.12.2 Indigo Memory Timing

When a GIO32 bus device initiates a long-burst read transfer from main memory, the Indigo memory subsystem requires
seven cycles for RAS and CAS before it drives the first data word on the GIO32 bus. Subsequent data words are driven at
the full bus speed of one 32-bit word per bus cycle unless throttled by the bus master device or by the memory controller.

2.13 GIO32 Option Card Requirements

2.13.1 Mechanical Details

The Indigo CPU board has two 96-pin, high density, GIO32 bus connectors on its top side. The connector is a Fujitsu 230-
series straight header with post. An option card plugs into a GIO32 bus connector, pops onto stabilizing card standoffs on
the CPU board, and presents its I/O connections (if any) out an I/O panel on the back of the Indigo system box. Each
option card has its own I/O connector area, which is 2.84 inches long and 0.80 inches wide.

Option cards are 6.44 inches long by 3.375 inches wide. Components may be placed on both sides of the card, with a top
side component height limit of 0.65 inches and a bottom side limit of 0.10 inches.

Figure 2-16 shows two option cards mounted on the Indigo CPU board:

Figure 2-16 . Option Slots for Indigo.
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2.13.2 GIO32 Electrical Details

A GIO32 option card must meet the following electrical specifications:

• 13.6 watts maximum power consumption

• +5 volts @ 2 amps

• +12 volts @ 0.15 amps

• -12 volts @ 0.15 amps

• TTL-compatible signals with CMOS compatible input currents

• 50 pF AC loading for clock and reset signals

• 15 pF AC loading for all other bus signals

• 74FCT652AT or similar bus transceivers for AD<31:0>

• FCC Class B with 6 dB margin
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2.14 GIO32 Slot Pinout

TABLE  2 GIO32 Pinout.

SIGNAL PIN# SLAVE MASTER

RESERVED N/C 01 - -

RESERVED N/C 02 - -

RESERVED N/C 03 - -

RESERVED N/C 04 - -

GND 05 - -

RESERVED N/C 06 - -

RESERVED N/C 07 - -

RESERVED N/C 08 - -

RESERVED N/C 09 - -

GND 10 - -

RESERVED N/C 11 - -

GIO.RESET 12 I I

+12V 13 - -

GIO.INT0 14 O O

GIO.BREQ(n) 15 - O

GND 16 - -

GIO.READ 17 I O

GIO.AS 18 I O

VCC 19 - -

GIO.MASDLY 20 I O

GND 21 - -

GIO.AD00 22 I/O I/O

GIO.AD02 23 I/O I/O

GND 24 - -

GIO.AD04 25 I/O I/O

GIO.AD06 26 I/O I/O

GND 27 - -

GIO.AD08 28 I/O I/O

GIO.AD10 29 I/O I/O

GND 30 - -

GIO.AD12 31 I/O I/O
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GIO.AD14 32 I/O I/O

SLOTID 33 - -

GND 34 - -

GIO.AD16 35 I/O I/O

VCC 36 - -

GIO.AD18 37 I/O I/O

GND 38 - -

GIO.AD20 39 I/O I/O

GIO.AD22 40 I/O I/O

GND 41 - -

GIO.AD24 42 I/O I/O

GND 43 - -

GIO.AD26 44 I/O I/O

GND 45 - -

GIO.AD28 46 I/O I/O

GIO.AD30 47 I/O I/O

-12V 48 - -

RESERVED N/C 49 - -

GND 50 - -

RESERVED N/C 51 - -

RESERVED N/C 52 - -

RESERVED N/C 53 - -

GND 54 - -

RESERVED N/C 55 - -

RESERVED N/C 56 - -

RESERVED N/C 57 - -

RESERVED N/C 58 - -

GNDa 59 - -

GIO.BGNT(n) 60 - I

GIO.BPRE 61 - I

GND 62 - -

GIO.INT01 63 O O

GIO.INT02 64 O O

GND 65 - -

GIO.SLVDLY 66 O I

GND 67 - -

SIGNAL PIN# SLAVE MASTER
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a. This pin is used for differentiating btween GIO32 and GIO32-bis boards.

GIO.CLK 68 I I

GND 69 - -

GIO.AD01 70 I/O I/O

VCC 71 - -

GIO.AD03 72 I/O I/O

GND 73 - -

GIO.AD05 74 I/O I/O

GIO.AD07 75 I/O I/O

GND 76 - -

GIO.AD09 77 I/O I/O

GND 78 - -

GIO.AD11 79 I/O I/O

VCC 80 - -

GIO.AD13 81 I/O I/O

GND 82 - -

GIO.AD15 83 I/O I/O

GND 84 - -

GIO.AD17 85 I/O I/O

GIO.AD19 86 I/O I/O

GND 87 - -

GIO.AD21 88 I/O I/O

GND 89 - -

GIO.AD23 90 I/O I/O

GIO.AD25 91 I/O I/O

VCC 92 - -

GIO.AD27 93 I/O I/O

GND 94 - -

GIO.AD29 95 I/O I/O

GIO.AD31 96 I/O I/O

SIGNAL PIN# SLAVE MASTER
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Chapter 3

GIO32-bis Specification

3.1 Introduction

The GIO32-bis bus is a 32-bit version of the GIO64 Bus. It obeys the timing specifications of the GIO64 with the GIO32
pinout. In general, GIO32-bis is correctly described by Chapter 2 except for those items specified below. Two items
differentiate GIO32 from GIO32-bis:

• one of the GIO32 pins is redefined for differentiating GIO32 and GIO32-bis devices, and

• the timing protocols for master and slave delay signals.

3.2 Pin for Differentiating GIO32 from GIO32-bis

The grounded pin labeled GND #59 in the GIO32 Specification, is tied high on GIO32-bis slots. This makes it possible for
GIO devices to tell whether they are plugged into a GIO32 or a GIO32-bis slot.

3.3 GIO32-bis Bus Transfers

This timing described in this section is identical to that in the GIO64 section “Nonpipelined GIO64 Bus Transfers.” The
use of MASDLY and SLVDLY is slightly different from (and incompatible with) the section “GIO32 Bus Transfers” in
the GIO32 Specification. The devicedriving data onto the bus asserts its delay signal (MASDLY for memory writes or
SLVDLY for memory reads) synchronously with the data, as in GIO32. However, in GIO32-bis, the devicereceiving data
from the bus must assert its delay line (MASDLY for memory reads, SLVDLY for memory writes) one clock earlier than
in GIO32.

3.3.1 GIO32-bis Bus Writes

GIO32-bis bus writes start with a slave address and byte count cycle. The READ signal will be deasserted in the slave
address cycle to indicate that this is a write cycle. After the slave address cycle, the READ signal is used to indicate that a
bus cycle is in progress and will remain low for the rest of the transfer.

After the third cycle, data can be transferred. During a write, the bus master will drive data out onto the bus and drive
MASDLY low to indicate that valid data is on the bus. The master looks at the SLVDLY signal that was sent the cycle
before to determine if the slave can accept the data. If the SLVDLY signal was not low in the previous cycle, the master
must continue driving the current data until SLVDLY is low in the previous cycle. This is a change from the GIO32 bus in
that the SLVDLY signal is flopped and used in the next cycles instead of being used in the cycle it is on the bus. This
change is necessary so that the SLVDLY signal can be directly registered before any gating takes place. This provides one
whole cycle for the signal propagation between chips and one whole cycle for on-chip gating. The GIO32 bus scheme
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works at 33 MHz, but at higher speeds it becomes very difficult to get the timing to work. The bus master can continue to
transfer new data every cycle that SLVDLY from the previous cycle is low. If SLVDLY was not low then the current data
must be driven until SLVDLY is deasserted in the previous cycle. The master can throttle the transfer by driving
MASDLY high during a cycle that it does not have new data to transfer. Note that this remains the same as GIO32 and is
not sent one cycle early like SLVDLY.

Since SLVDLY is being sent for the next cycle, it will take an extra cycle for all complete transfers, (not one cycle per
word). A one word write will take at least four cycles. This is one more cycle then it took with the GIO32 bus.

The bus master continues to transfer data until the byte count is satisfied. The bus slave also keeps track of the number of
bytes that have been transferred so that the last write will be handled correctly if it is a partial word transfer. At the end of
the transfer the master drives READ high. Two cycles after the slave receives the last piece of data it drives SLVDLY high
and in the following cycle tristates the SLVDLY signal. The bus master will tristate the AD, READ,AS, and MASDLY
signals two cycles after the last piece of data is transferred if it does not have another transfer to execute. The master does
not have to drive the MASDLY and READ signals high before tristating them. If it does have another transfer it can drive
the address in the cycle immediately following the last piece of data.

If a transfer is preempted, the byte count will not be zero when the READ signal is driven high by the bus master. The
slave needs to monitor the READ signal and not just the remaining byte count, so that it can tell if a transfer has been
preempted. The bus master must keep all of the information that is necessary to restart the transfer where it left off. This
includes the slave data address. Below are some examples of GIO32-bis writes.

Figure 3-1 . Back-to-Back Simple GIO32-bis Writes

Figure 3-2 . GIO32-bis Write, Slave Stall

ADR BC D0ad

as_n

read

masdly

slvdly
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ADR BC D0 D1 D2 D3ad

as_n

read
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Figure 3-3 . GIO32-bis Write, Master Stalls

3.3.2 GIO32-bis Bus Reads

GIO32-bis bus reads are a lot like GIO32-bis bus writes except that the slave is sending the data over the bus instead of the
master. Notice that the READ signal is used to indicate that a bus cycle is in progress after the slave address cycle, by
being deasserted for the rest of the transfer. Since the slave is sending the data, the SLVDLY signal is used to indicate that
there is valid data on the bus and the MASDLY signal is used to indicate to the slave that the master can accept data in the
next cycle. Note that this is different from the GIO32 bus in that MASDLY is sent one cycle earlier. The slave must tristate
the AD bus signals in the cycle after the last piece of data is transferred. The slave must drive the SLVDLY signal high in
the cycle after the last piece of data is transferred and then tristate it in the following cycle. The master will tristate theAS,
READ, and MASDLY signals three cycles after the last piece of data has been transferred if it does not have another
transfer to execute. If it does have another transfer to do it can drive the address two cycles after the last piece of data has
been transferred. Some examples of GIO64 reads are shown below.

It is important that the slave does not wait for MASDLY to be deasserted before it drives the read data and deasserts
SLVDLY, or that once the slave has deasserted SLVDLY and driven the read data, that it does not stop driving it, even if it
asserted SLVDLY until the cycle after the master deasserts MASDLY. Figure 3-6 shows this condition.

Figure 3-4 . Simple GIO32-bis Read
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read
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X X X

ADR BC D0 D1 ADR BC D0ad
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Figure 3-5 . GIO32-bis Read, Slave Delay

Figure 3-6 . GIO32-bis Read, Master Delay

3.3.3 GIO32-bis Preemption

When a GIO32-bis device gets preempted, the master drives the READ signal high to indicate an end of the transfer. For
GIO32-bis writes, the bus master also stops driving data and MASDLY in the same cycle as it stops driving READ.
GIO32-bis reads are preempted in basically the same way, except that the slave may continue driving data in the cycle that
the master drives the READ and MASDLY signals high. The data that the slave sends in the cycle that READ is driven
high is not accepted. The bus master must tristate all of the signals it is driving in the cycle after READ is driven high. The
slave must drive SLVDLY high in the cycle after READ is driven high and tristate it in the following cycle. Different
preemption cases are shown below.

Figure 3-7 . Preempted GIO32-bis Write, Slave Stall
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Figure 3-8 . Preempted GIO32-bis Write, Master Stall

Figure 3-9 . Preempted GIO32-bis Reads, Slave Stall

Figure 3-10 . Preempted GIO32-bis Reads, Mater Stall
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Chapter 4

GIO Bus 64

4.1 Introduction

The GIO64 bus is a 64-bit, synchronous, multiplexed address-data bus that can run at speeds up to 40 MHz. The bus
supports both 32- and 64-bit GIO64 devices. This bus is used to connect high speed devices to main memory. It is also
possible for the CPU to issue reads and writes to GIO64 devices.

The maximum bandwidth of this bus is 320 MBytes/second for burst transfers running at 40 MHz.

There are two different forms of the GIO64 bus. The first form is the bus that is local to system memory. This form will
just be referred to as the GIO64 bus or the nonpipelined GIO64 bus. The second form of the bus is a pipelined version of
the GIO64 bus. This form of the bus is used by devices that plug into GIO64 slots, like graphics. There is a bidirectional
pipeline register between the GIO64 bus that connects to main memory and the devices in the GIO64 slots. This second
form of GIO64 will always be referred to as pipelined GIO64 bus. The two forms of the bus are basically the same except
that the handshaking signals are different on the two different forms of the bus.

4.2 Conventions Used in this Chapter

4.2.1  Byte Addressing

The GIO64 bus uses a 32 bit byte address. This can be a big or little endian address. One of the control bits indicates the
endianess of the bus. The bus itself does not do anything different for big or little endian transfers, but the devices that are
on the bus need to know if the data is big or little endian data so that they can interpret the address and byte count
correctly.

For devices that cannot switch between big and little endian mode the software will be responsible for fixing the data if it
is necessary. Transfers that are not word aligned between 32 bit devices will not work if the two devices are running in a
different endian modes. The same is true for 64 bit devices that are transferring data that is not double word aligned. In
both cases the wrong data is written since the address of the bytes are different.

For a big endian 32 bit transfer, byte 0 is bits (31:24), byte 1 is bits (23:16), byte 2 is bits (15:8), and byte 3 is bits (7:0).
For a big endian 64 bit transfer, byte 0 is bits (63:56), byte 1 is bits (55:48), byte 2 is bits (47:40), byte 3 is bits (39:32),
byte 4 is bits (31:24), byte 5 is bits (23:16), byte 6 is bits (15:8), and byte 7 is bits (7:0). Little-endian is just the opposite
so for a 32 bit transfer, byte 0 is bits (7:0), byte 1 is bits (15:8), byte 2 is bits (23:16), and byte 3 is bits (31:24). For a 64 bit
little endian transfer, byte 0 is bits (7:0), byte 1 is bits (15:8), byte 2 is bits (23:16), byte 3 is bits (31:24), byte 4 is bits
(39:32), byte 5 is bits (47:40), byte 6 is bits(55:48), and byte 7 is bits (63:56).

The bit numbering scheme is always little-endian, so that bit zero is always the least significant bit and bit 63 is the most
significant bit.

The following tables show byte addressing for the big and little endian modes.
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TABLE  3 Big Endian Words: addresses of bytes.

TABLE  4 Big Endian Double Words: addresses of bytes.

TABLE  5 Little Endian Words: addresses of bytes.

TABLE  6 Little Endian Double Words: addresses of bytes.

BITS
______________
Word Address

31..........24 23..........16 15..........8 7..........0

8 8 9 10 11

4 4 5 6 7

0 0 1 2 3

BITS
_____________
Word Address

63...56 55...48 47...40 39...32 31...24 23...16 15...8 7...0

16 16 17 18 19 20 21 22 23

8 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7

BITS
______________
Word Address

31..........24 23..........16 15..........8 7..........0

8 11 10 9 8

4 7 6 5 4

0 3 2 1 0

BITS
_____________
Word Address

63...56 55...48 47...40 39...32 31...24 23...16 15...8 7...0

18 23 22 21 20 19 18 17 16

8 15 14 13 12 11 10 9 8

0 7 6 5 4 3 2 1 0
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4.2.2 Waveform Conventions

There are many waveform diagrams in this document so it is important to interpret them correctly. The dotted lines
represent a signal that has been tristated. A box with “ADR” in it is an address, “BC” is byte count, “D0”, “D1” ..., is a
data element, and “X” represents invalid data, but not tristate.

4.3 GIO64 Bus Signals

4.3.1 Non-pipelined Bus Signals

The GIO64 bus has 64 address/data signals AD<63:0>, 8 byte parity signals ADP<7:0>, a valid parity signal
VLD_PARITY, and four basic control lines. These control lines include address strobeAS, read READ, master delay
MASDLY, and slave delay SLVDLY. In addition to the above, there are bus requestBREQ(n) and bus grantBGNT(n)
signals for each bus master. For long burst devices there is a preempt signal calledBPRE. Sixty-four bit bus slaves also
need to get a signal called GSIZE64, which indicates the size of the current bus master.

AD<63:0>: These signals are the multiplexed slave address and data lines. During slave address cycles AD(31:0) will
contain the slave address for the bus transaction. The next cycle in a transaction, the byte count cycle, uses AD(31:0) to
indicate the number of bytes to transfer, the endian mode of the transfer, the device id of the device being accessed, DMA
count direction (for decrementing DMA), subblock ordering (CPU cache misses), and the starting byte address. During
slave address and byte count cycles parity should be checked across AD(31:0) ifVLD_PARITY is asserted. The top 32
bits of the address/data bus are never used during slave address and byte count cycles so parity should not be checked
across these bits even ifVLD_PARITY is asserted. During data cycles parity should be checked across AD(31:0) for 32
bit transfers and AD(63:0) for 64 bit transfers ifVLD_PARITY is asserted. For a 32 bit device all 4 bytes of the bus
should be driven with correct parity ifVLD_PARITY is asserted even for single byte transfers. Likewise, for 64 bit
transfers, all 8 bytes should be driven with correct parity ifVLD_PARITY is asserted.

ADP(7:0): Even byte parity is used across the address/data bus. Parity should be checked ifVLD_PARITY is asserted
with the data on the bus. ADP(0) is the parity bit for AD(7:0), ADP(1) covers AD(15:8), etc. These signals can be driven
by the bus master during slave address, byte count, and write data cycles. They can be driven by the addressed bus slave
during read cycles. During slave address cycles, byte count cycles and 32 bit transfers, ADP(7:4) are unused. If
VLD_PARITY is not asserted then ADP(7:0) are undefined.

VLD_PARITY: This signal indicates that valid parity is being driven on the bus. This signal will be asserted in the same
cycle as there is data on the bus. Devices that are receiving addresses or data should check parity ifVLD_PARITY is
asserted. This signal is pulled up on the board so if a device does not generate parity it does not have to drive the
VLD_PARITY signal. This signal is driven by the bus master during slave address, byte count, and write data cycles. It is
driven by the addressed bus slave during read cycles. It is strongly encouraged that all GIO64 devices should generate and
check parity. Parity should not be checked on data from bus cycles where no data was transferred, as determined by the
state of MASDLY or SLVDLY. The slave or master that is driving this signal must drive it high before they tristate it in the
cycle after they are finished driving the AD signals.

AS: The address strobe is asserted whenever there is a slave address cycle on the bus. All devices on the bus should flop
the address that is being driven on the bus to determine if they are the device that is being addressed. The byte count cycle
is always the next cycle after the slave address cycle. The address strobe is only asserted during the slave address cycle.
This signal should only be driven by a bus master that owns the GIO64 bus.

READ: The READ signal serves two purposes. During the slave address cycle the READ signal is used as its name
implies to indicate that this is a read transaction, (the bus master will be receiving data). After the slave address cycle, the
READ signal is driven low to indicate that a active bus cycle is taking place. When a transaction is preempted the READ
signal is driven high to indicate to the slave that the transaction has been preempted. This signal should only be driven by
a bus master that owns the GIO64 bus.

MASDLY: The master delay signal, MASDLY, is used by the bus master to throttle the data transfer rate. The state of the
MASDLY signal does not affect the slave address or byte count cycles. This signal has two different meanings for read
and write transactions. For a read transaction, when MASDLY is asserted it indicates that the bus master cannot receive
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data in the next cycle. During write transactions, when the MASDLY signal is asserted it indicates that the data currently
on the bus is invalid. Only a bus master that owns the GIO64 bus should drive the MASDLY signal.

SLVDLY: The slave delay signal, SLVDLY, is used by the addressed bus slave to throttle the data transfer rate. This signal
has no effect on the address or byte count cycles. Like MASDLY, this signal has different meanings for reads and writes.
When SLVDLY is asserted during a bus reads, it indicates that the data on the bus is invalid. For bus writes, this signal is
asserted when the slave cannot accept data in the next cycle. This signal is pulled high on the board so that during the byte
count cycle it will be asserted, but it must be driven high by the slave when a transfer is finished, before the slave can
tristates this signal. Only the addressed slave device should drive this signal.

BREQ(n): There is a unique bus request for every bus master in the system. To request the bus the bus master asserts its
bus request signal. The bus master must keeps its bus request signal asserted until it is finished using the bus. Once a bus
master has asserted its bus request signal it is not allowed to take it away until it has been granted the bus, even it the
device decides it does not need the bus. When a devices that owns the bus has been preempted, it must deassert its bus
request signal to indicate that it is off the bus. A preempted device cannot assert its bus request signal until the preemption
signal has been deasserted. A bus master must still accept requests from other bus masters even if it is requesting the bus.
If it does not do this, transfers to the device that is requesting the bus will time-out and will not be completed.

BGNT(n): There is a unique bus grant signal for each bus master on the GIO64 bus. The bus grant signal is used to
indicate to a GIO64 master that it owns the bus. The grant signal will be asserted as long as the device asserts its bus
request signal,BREQ(n), indicating that it owns the GIO64 bus. When a device is preempted the bus grant signal will not
be deasserted until the device deasserts its bus request signal. This signal is driven by the GIO64 arbiter.

BPRE: The bus preempt signal is asserted by the GIO64 arbiter to preempt the current bus transaction. Once the preempt
signal is asserted, a device must get off the bus within 4 GIO64 clock cycles, and deassert itsBREQ(n) signal. This signal
is driven by the GIO64 arbiter.

GSIZE64: The GSIZE64 signal is driven by the GIO64 arbiter to indicate to 64 bit GIO64 slaves the size of the bus
master. A 64 bit GIO64 slave must be able to accept transactions from 32 or 64 bit bus masters. It is the responsibility of
64 bit GIO64 bus masters to know if the slave they are addressing is a 32 or 64 bit slave. If it is a 32 bit slave then
obviously a 32 bit transfer will take place. This should not be a problem since most bus masters will only have to know if
the memory interface is 32 or 64 bits.

4.3.2 Pipelined GIO64 Bus Signals

Pipelined GIO64 devices, like graphics devices, have the same basic signals as the nonpipelined GIO64 bus, but are
advanced or delayed by one cycle. There is a 64 bit address/data bus P_AD(63:0), 8 byte parity signals P_ADP(7:0), a
valid parity signalP_VLD_PARITY, and 4 basic control signals: address strobeP_AS, READ or write P_READ, a slot
specific GIO64 slot device to memory/CPU handshake signal GRXDLY(n), and a memory/CPU to GIO64 slot handshake
signal MEMDLY, which is flopped MASDLY, although the meaning of the signal is different. Unlike the nonpipelined
GIO64 bus the MEMDLY signal is always used by the CPU or memory to throttle data to and from the pipelined GIO64
device. The GRXDLY(n) signal is always used by the pipelined GIO64 device to throttle transfers when it is a bus master
or bus slave. In addition to the above basic control signals there are bus requestBREQ(n) and bus grantBGNT(n) signals
for each GIO64 slot. For long burst devices there is a preempt signal calledP_BPRE. Sixty-four bit bus slaves also need to
get a signal called P_GSIZE64, which indicates the size of the master.

P_AD(63:0): These signals are the multiplexed address and data lines. Their function is the same as AD(63:0) signals.
The only difference between AD(63:0) and P_AD(63:0) is that there is a bidirectional registered transceiver between these
signals. When a pipelined GIO64 device is driving the bus the AD(63:0) signals will be delayed by one clock from the
P_AD(63:0). When a nonpipelined GIO64 device is driving the bus, P_AD(63:0) will be delayed by one clock cycle.

P_ADP(7:0): Even byte parity is used for the P_AD(63:0) signals. TheP_VLD_PARITY signal indicates if valid parity is
being driven. These signal function just like P_ADP(7:0) on the nonpipelined form of the bus.

P_VLD_PARITY: This signal indicates that valid parity is being driven on the bus. It has the same function as the
VLD_PARITY signal on the nonpipelined GIO64 bus.

P_AS: The pipelined GIO64 address strobe is asserted whenever there is an slave address cycle on the bus. All devices on
the bus should flop the address that is being driven on the bus to determine if they are the device that is being addressed.
The byte count cycle is always the next cycle after the slave address cycle. The address strobe is only asserted during the
slave address cycle. This signal should only be driven by a bus master that owns the GIO64 bus.
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P_READ: The P_READ signal serves the same function as the READ signal on the nonpipelined GIO64 bus.

GRXDLY(n): The graphics delay signal is a unique signal for each GIO64 slot that is used by pipelined GIO64 devices to
throttle the data transfer. Unlike the nonpipelined GIO64 bus, the GRXDLY(n) is always driven by the pipelined GIO64
device for reads and writes, and when the device is the bus master or slave. Since this is a slot specific pin the device can
always drive it. To make transfers faster to a GIO64 device the device can deassert GRXDLY(n) all of the time except
when it is not capable of accepting another transfer. This makes it possible for the memory or the CPU to issue the
following sequence of GIO64 bus cycles: slave address, byte count, data, slave address, byte count, data, etc. If the
GRXDLY(n) signal is only deasserted after a device has decoded the address then the bus sequence would be: slave
address, byte count, stall, stall, data, slave address, byte count, stall, stall, data, etc. There is some very important
differences between the meaning of nonpipelined GIO64 flow control signals (MASDLY and SLVDLY) and their
pipelined GIO64 counterparts. When a pipelined GIO64 device is driving the bus, the GRXDLY(n) signal is used to
indicate that valid data is on the bus. When a nonpipelined device issues a read to a pipelined GIO64 device, there is one
dead cycle after the byte count, on the pipelined side, when data will not be returned and GRXDLY(n) will not be
asserted. After that, either GRXDLY(n) will be asserted or valid data will be driven on the bus. For writes to a pipelined
GIO64 device, the GRXDLY(n) signal will be asserted when the device cannot accept data in two clocks. Therefore the
device must accept the data that is on the bus in the current cycle and in the next cycle.

MEMDLY: This is a flopped version of the MASDLY signal except that its meaning is different when a transaction with a
pipelined GIO64 device is taking place. This signal is used by the CPU or memory to throttle a pipelined GIO64 device, in
master or slave mode. When data is being sent to a pipelined GIO64 device this signal is deasserted in the same cycle as
the data to indicate that the current data is valid. When data is being sent by the pipelined GIO64 device this signal
indicates that data cannot be accepted in the next cycle.

BREQ(n): There is unique a bus request for every bus master in the system. The bus requests function the same on the
nonpipelined or pipelined side of the GIO64 bus.

BGNT(n): There is unique a bus grant signal for each bus master on the GIO64 bus. These function the same on the
pipelined or nonpipelined side of the GIO64 bus.

P_BPRE: TheP_BPRE signal is a theBPRE signal flopped once.

P_GSIZE64: The P_GSIZE64 signal is a flopped version of GSIZE64 signal.

RESET: This is a synchronous RESET signal for GIO64 devices.

DMASYNC(n): This signal is used by the DMA master to synchronize a DMA transfer to a device. This is useful for
graphics devices where a DMA may have to be synchronized with vertical retrace.

GIO64_CLK(n): The positive GIO64 bus clock. All bus signals are clocked on the rising edge of this clock signal. This is
an ECL signal.

GIO64_CLK(n): The negative GIO64 bus clock. All bus signals are clocked on the falling edge of this clock signal. This
is an ECL signal.

GIO64_CLK2(n): The positive, ECL, double frequency GIO64 bus clock.

GIO64_CLK2(n): The positive, ECL, double frequency GIO64 bus clock.

INTERRUPT(n)(2:0): There are three interrupt lines per slot that can be used to interrupt the CPU or the CPU can read the
status of these lines.

STATUS(n): There is one status line per slot that the CPU can read.

GIO64_SPEED(1:0): The speed of the GIO64_CLK(n) is indicated/determined by these bits. These are bidirectional
signals that are driven by each GIO64 device. The signals are pulled high with a resister on the system board. Each GIO64
device should pull the lines to indicate the fastest speed the card can run. The GIO64 devices should not pull the lines
high. The GIO64 devices can use these signals as inputs to determine at what speed the bus is running. These bits are
encoded as follows:

00 25 MHz GIO64_CLK, 50 MHz GIO64_CLK2

01 33 MHz GIO64_CLK, 66 MHz GIO64_CLK2

10 Reserved
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11 40 MHz GIO64_CLK, 80 MHz GIO64_CLK2

SLOT_NUMBER(3:0): The slot number is used by a GIO64 board to determine its board address. A GIO64 board address
is constructed as follows:

board_address(31:26) = “000111”

board_address(25:22) =  SLOT_NUMBER

board_address(21:0) = offset from base address

Each slot is four megabytes and a GIO64 card can occupy more than one slot if the slots it uses are not used on that
machine. A machine does not have to implement all 16 slots and may scatter the slots out in the address space so that each
physical slot can use more than four Mbytes of address space.

GIO64 cards that do not use the slot number to determine the base address of the card must be installed in the same slot as
its base address(25:22). For example if a card’s address space is 0x1f000000 to 0x1f7ffffff this card must be plugged into
slot 0xc and also uses the address space of slot 0xd. Nonpipelined GIO64 device may also use some of the slots.

4.4 GIO64 Bus Transfers

There are three different kinds of cycles on the GIO64 bus. The first cycle of every transaction is a slave address cycle.
The second cycle is the byte count cycle. The byte count is followed by one or more data cycles.

In the slave address cycle, the bus master sends the slave address out on AD(31:0) or P_AD(31:0), and the address strobe
AS orP_AS is asserted. If this is a read operation then the READ or P_READ signal is asserted and, for a write it is
deasserted. If the bus master is driving parity it is sent on ADP(3:0) or P_ADP(3:0) andVLD_PARITY or
P_VLD_PARITY is asserted.

In the following cycle, the byte count, the DMA direction, (up or down), device identification, subblock ordering, endian
mode, and the starting byte address are sent over AD(31:0). The format for this second cycle is as follows:

TABLE  7 Format for AD Signal during Second Cycle

The byte count is the number of bytes to transfer. The byte count and slave address determine alignment of the beginning
and end of the transfer. This allows any byte alignment for the beginning and end of the transfer. A transaction must not
cross a processor virtual page boundary or a DRAM page boundary. A page is 4K bytes for the R3000 and 4K bytes to

Bit Field

15:0 Byte Count

19:15 Reserved

25:20 Device Identification

26 DMA Count Direction Down

27 CPU Subblock Ordering

28 Little Endian Transfer

29 Starting Byte(2)

31:30 Starting Byte(1:0)

63:32 Unused
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16M bytes for the R4000. The size of a DRAM page depends on the memory system of the machine and the smallest size
DRAMs that it supports.

The DMA count direction down bit is asserted if the DMA slave should use decrementing addresses. This means the
address that was sent to the slave during the slave address cycle should be decremented instead of incremented at the end
of each data cycle. The direction bit is also used to determine which bytes get read or written in an unaligned transfer. If
the DMA direction is down then bytes less than and equal to the slave address are being transferred, otherwise bytes
greater than and equal to the slave address are being transferred.

The starting byte address is the three least significant bits of the master byte address. This address is in the same endian
mode as the slave address, which is indicated by the endian bit in the byte count cycle. For transfers that are aligned
starting byte address bits match the slave address bits (2:0). If the transfer is unaligned then it is up to the device
transferring data to or from memory to align the data correctly using these bits. Thirty-two bit devices only use starting
byte bits zero and one. The starting byte address bits only have to be driven by the main memory system DMA master, but
they must be received by all DMA slaves that support unaligned transfers. All DMA masters, except for the main memory
DMA master, do not have to drive the starting byte address since the data on the bus must be aligned to main memory.

For example, an unaligned little endian DMA read from a 32 bit devices to main memory, when the slave address is 0x2,
the byte count is 0x3, the DMA direction is up, and the main memory address, master address, is 0x1 so the starting byte
bits are 0x1, then the slave would have to read from byte addresses 0x2-0x4 and drive that data on the bus with the byte
from slave address 0x2 on AD(15:8) or P_AD(15:8) and the rest of the bytes are packed in the same word. This example
is shown below:

Not all devices have to support unaligned transfers. There is a software restriction on devices that do not support
unaligned transfers however since data that is to be read from memory or written into memory must be aligned to memory
on the GIO64 bus.

The little endian bit in the byte count is used to indicate if the slave address and starting byte address should be interpreted
as a big or little endian address. This signal is asserted, high, for a little endian transfer.

The subblock ordering bit will be set if the transfer is for servicing a CPU cache miss. If a device does not support this
mode then data from that device cannot be directly cached. This is really for caching the boot ROM. The address that is
sent for a subblock order request will be the address of the first piece of data that is to be returned not the starting address
of the block of data. The byte count will indicate the size of the block of data. The address sequence can be generated by
XORing a count of the bytes transferred with the starting slave address. For example a read from a 32 bit device with the
slave address 0x14 and a byte count of 64, the data that would be transferred is as follows:

Cycle Start Address Count Address of
Word Trans-
ferred

1 0x14 0x0 0x14

2 0x14 0x4 0x10

3 0x14 0x8 0x1c

4 0x14 0xc 0x18

5 0x14 0x10 0x04

6 0x14 0x14 0x00

7 0x14 0x18 0x0c

8 0x14 0x1c 0x08

9 0x14 0x20 0x34

10 0x14 0x24 0x30

11 0x14 0x28 0x3c
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For a read from a 64 bit device with the slave address of 0x14 and a byte count of 64, the data that would be transferred is
as follows:

The last field in the byte count cycle is the device identification field. This can be used by multiprocessor systems to
maintain cache coherency. Each device on the bus will have a unique device identification so the cache coherency
hardware will know the destination or source of the data on the GIO64 bus. Each new GIO64 device will need a new
device id. The current list of device identifiers is as follows:

12 0x14 0x2c 0x38

13 0x14 0x30 0x24

14 0x14 0x34 0x20

15 0x14 0x38 0x2c

16 0x14 0x3c 0x28

Cycle Start Address Count Address of
Double Word
Transferred

1 0x14 0x0 0x10

2 0x14 0x8 0x18

3 0x14 0x10 0x0

4 0x14 0x18 0x8

5 0x14 0x20 0x30

6 0x14 0x28 0x38

7 0x14 0x30 0x20

8 0x14 0x38 0x28

ID Device

0 CPU R/W

15-1 I/O Devices (HPC)

16 Graphics Head 0

17 Graphics Head 1

18 Token Ring Card

19 FDDI Card

20 Professional Audio

31-21 Reserved

47-32 EISA Bus 0

Cycle Start Address Count Address of
Word Trans-
ferred
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Even though the GIO64 bus is a 64 bit bus, the slave address and byte count cycles will always take two cycles instead of
one 64 bit cycle. This part of the transfer is the same for 32 and 64 bit devices. The address strobe signal is not active in
the byte count cycle. The meaning of the READ and P_READ changes to indicate an active bus cycle after the slave
address cycle. During the slave address cycle the READ or P_READ signal indicates the direction of the data transfer. At
all other times when the READ and P_READ signals are deasserted, low, they indicate that the bus is busy. This signal is
used to indicate a bus preemption or end of the data transfer when it is driven high.

During the slave address and byte count cycles and 32 bit data transfer cycles, the high bits of the address/data bus,
AD(63:32) and P_AD(63:32) are undefined, and so parity should not be checked on these bits. Parity on AD(31:0) and
P_AD(31:0) should be generated and checked during the slave address and byte count cycles. The parity for AD(7:0) is
ADP(0), AD(15:8) is ADP(1) etc., likewise for the pipelined address/data bus and parity bits.

The slave address and byte count cycles are followed by some number of data cycles. The number of data cycles depends
on the byte count, size of the transfer (32 or 64 bits), preemption, and flow control signals. The slave address and byte
count cycles are the same for the nonpipelined and pipelined GIO64 bus. Data cycles are different for the nonpipelined
and pipelined GIO64 bus. To avoid confusion the following sections will describe transfers between devices on the
nonpipelined GIO64 bus, and then transfers between the CPU or main memory and a pipelined GIO64 device. Note that
the only transfers that are supported for pipelined GIO64 devices is between the device and main memory or the CPU.
Pipelined GIO64 devices cannot communicate via the GIO64 bus due to the nature of the pipelined GIO64 flow control
signals.

4.4.1 Nonpipelined GIO64 Bus Transfers

There are two signals, MASDLY and SLVDLY that are used to throttle the data transfer rate on the nonpipelined GIO64
bus. The bus master drives MASDLY and the slave drives SLVDLY. These signals are used to indicate that valid data is on
the bus by the device that is driving data. These signals are also used to throttle the data by the receiving device. Pipelined
GIO64 devices, like graphics, use a different set of lines called GRXDLY(n) and MEMDLY.

4.4.1.1 Non-pipelined GIO64 Bus Writes

GIO64 bus writes start with a slave address and byte count cycle. The READ signal will be deasserted in the slave address
cycle to indicate that this is a write cycle. After the slave address cycle, the READ signal is used to indicate that a bus
cycle is in progress and will remain low for the rest of the transfer.

After the third cycle, data can be transferred. During a write, the bus master will drive data out onto the bus and drive
MASDLY low to indicate that valid data is on the bus. The master looks at the SLVDLY signal that was sent the cycle
before to determine if the slave can accept the data. If the SLVDLY signal was not low in the previous cycle, the master
must redrive the current data until SLVDLY is low in the previous cycle. This is a change from the GIO32 bus in that the
SLVDLY signal is flopped and used in the next cycles instead of being used in the cycle it is on the bus. This change is
necessary so that the SLVDLY signal can be directly registered before any gating takes place. This provides one whole
cycle for the signal propagation between chips and one whole cycle for on-chip gating. The GIO32 bus scheme works at
33 MHz, but at higher speeds it becomes very difficult to get the timing to work. The bus master can continue to transfer
new data every cycle that SLVDLY from the previous cycle is low. If SLVDLY was not low then the current data must be
driven until SLVDLY is deasserted in the previous cycle. The master can throttle the transfer by driving MASDLY high
during a cycle that it does not have new data to transfer. Note that this remains the same as GIO32 and is not sent one
cycle early like SLVDLY.

Since SLVDLY is being sent for the next cycle, it will take an extra cycle for all complete transfers, (not one cycle per
word). A one word write will take at least four cycles. This is one more cycle then it took with the GIO32 bus.

The position of bytes on the bus varies with the size of the transfer and if the machine is running in big or little endian
mode. Figure 4-1 shows the position of bytes for different size transfers (32 or 64 bits wide) and for big and little endian
mode transfers.

63-48 EISA Bus 1

ID Device
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Figure 4-1 . Byte Order for Big and Little Endian Transfers

The bus master continues to transfer data until the byte count is satisfied. The bus slave also keeps track of the number of
bytes that have been transferred so that the last write will be handled correctly if it is a partial word or partial double word
transfer. At the end of the transfer the master drives READ high. Two cycles after the slave receives the last piece of data
it drives SLVDLY high and in the following cycle tristates the SLVDLY signal. The bus master will tristate the AD,
READ, AS, and MASDLY signals two cycles after the last piece of data is transferred if it does not have another transfer
to execute. The master does not have to drive the MASDLY and READ signals high before tristating them. If it does have
another transfer it can drive the address in the cycle immediately following the last piece of data.

If a transfer is preempted, the byte count will not be zero when the READ signal is driven high by the bus master. The
slave needs to monitor the READ signal and not just the remaining byte count, so that it can tell if a transfer has been
preempted. The bus master must keep all of the information that is necessary to restart the transfer where it left off. This
includes the slave data address. Below are some examples of nonpipelined GIO64 writes.

Figure 4-2 . Back-to-Back Simple GIO64 Writes

Figure 4-3 . GIO64 Write, Slave Stall

64-bit Transfers32-bit Transfers

LIttle Endian

Big Endian

7 6 5 4 3 2 1 0

063

76543210

063

undefined 3210

063

undefined 3 2 1 0

063

31

31
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as_n
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slvdly

ADR BC D0 D1

ADR BC D0 D1 D2 D3ad

as_n

read

masdly

slvdly
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Figure 4-4 . GIO64 Write, Master Stalls

4.4.1.2 Non-pipelined GIO64 Bus Reads

GIO64 bus reads are a lot like GIO64 bus writes except that the slave is sending the data over the bus instead of the
master. Notice that the READ signal is used to indicate that a bus cycle is in progress after the slave address cycle, by
being deasserted for the rest of the transfer. Since the slave is sending the data, the SLVDLY signal is used to indicate that
there is valid data on the bus and the MASDLY signal is used to indicate to the slave that the master can accept data in the
next cycle. Note that this is different from the GIO32 bus in that MASDLY is sent one cycle earlier. The slave must tristate
the AD bus signals in the cycle after the last piece of data is transferred. The slave must drive the SLVDLY signal high in
the cycle after the last piece of data is transferred and then tristate in the following cycle. The master will tristate theAS,
READ, and MASDLY signals three cycles after the last piece of data has been transferred if it does not have another
transfer to execute. If it does have another transfer to do it can drive the address two cycles after the last piece of data has
been transferred. Some examples of GIO64 reads are shown below.

It is important that the slave does not wait for MASDLY to be deasserted before it drives the read data and deasserts
SLVDLY, or that once the slave has deasserted SLVDLY and driven the read data, that it does not stop driving it, even if it
asserted SLVDLY until the cycle after the master deasserts MASDLY. Figure 4-7 shows this condition.

Figure 4-5 . Simple GIO64 Read

ADR BC D0 D1 D2 D3ad

as_n

read

masdly

slvdly

X X X

ADR BC D0 D1 ADR BC D0ad

as_n

read

masdly

slvdly



GIO64 Bus Transfers SGI CONFIDENTIAL

4-12 6 May 1992 GIO Bus 64

Figure 4-6 . GIO64 Read, Slave Delay

Figure 4-7 . GIO64 Read, Master Delay

4.4.1.3 Non-pipelined GIO64 Preemption

When a GIO64 device gets preempted, the master drives the READ signal high to indicate an end of the transfer. For
GIO64 writes, the bus master also stops driving data and MASDLY in the same cycle as it stops driving READ. GIO64
reads are preempted in basically the same way, except that the slave may continue driving data in the cycle that the master
drives the READ and MASDLY signals high. The data that the slave sends in the cycle that READ is driven high is not
accepted. The bus master must tristate all of the signals it is driving in the cycle after READ is driven high. The slave must
drive SLVDLY high in the cycle after READ is driven high and tristate it in the following cycle. Different preemption
cases are shown below.

Figure 4-8 . Preempted GIO64 Write, Slave Stall
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Figure 4-9 . Preempted GIO64 Write, Master Stall

Figure 4-10 . Preempted GIO64 Reads, Slave Stall

Figure 4-11 . Preempted GIO64 Reads, Mater Stall

4.4.2 Pipelined GIO64 Transfers

Pipelined transfers are structured just like the nonpipelined transfers in that there is 3 different kinds of cycles: slave
address, byte count, and data. The slave address and byte count cycles are identical to the nonpipelined slave address and
byte count cycles. The data cycles use different flow control signals, but otherwise are the same as the nonpipelined data
cycles. There are two flow control signals on the pipelined bus, MEMDLY and a slot specific GRXDLY(n) signal. Unlike
the nonpipelined bus, GRXDLY(n) is always driven by the pipelined GIO64 device and MEMDLY is always driven by
the memory system or the CPU.

The flow control signals will change meaning for reads and writes depending on whether memory or the pipelined GIO64
device is the bus master. It may appear that there are 4 different combinations and 4 meanings to the control signals, but
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really there are only 2 different meanings to the control signals depending on what device is driving data, the memory or
pipelined GIO64 device.

The MASDLY signal gets flopped and becomes MEMDLY on the pipelined side of the bus. The memory master always
uses MASDLY as its flow control signal even when it is a slave to a pipelined device.

4.4.2.1 Pipelined GIO64 Writes

Pipelined GIO64 writes begin just like the nonpipelined GIO64 writes with a slave address cycle and a byte count cycle.
The P_READ signal is deasserted during the slave address cycle to indicate a write and then remains deasserted for the
remainder of the transfer to indicate a bus transfer is in progress.

When the CPU or memory is the bus master, the MEMDLY signal is used to indicate that there is valid data on the bus. It
will be deasserted in the same cycle that the data is valid. The GRXDLY(n) signal is used to indicate that the GIO64
device cannot accept data two cycles from now. The GRXDLY(n) signals becomes F_GRXDLY(n) on the nonpipelined
side of the GIO64 bus. On the nonpipelined side of the GIO64 bus, the F_GRXDLY(n) signal indicates that the data
currently on the bus cannot be accepted in this cycle and should be redriven in the next cycle.

When the pipelined GIO64 device is the bus master, the GRXDLY(n) signal is deasserted in cycles that the device puts
valid data on the bus. The MEMDLY signal is used to indicate that the memory system cannot accept data in the next
cycle. The memory system must accept data for three cycles from the time it asserts MASDLY. The memory system may
deassert MEMDLY when a pipelined GIO64 device has the bus so that the pipelined device does not have to wait for the
memory system to decode the address before deasserting MEMDLY.

Unlike the nonpipelined side of the GIO64 bus the pipelined GIO64 device always drives the GRXDLY(n) signal and
never tristates it. The master will tristateAS orP_AS, READ or P_READ, and AD or P_AD signals in the cycle after the
last piece of data is transferred.

Some examples of pipelined GIO64 writes are show below.

Figure 4-12 . Pipelined GIO64 Writes, Memory Master
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Figure 4-13 . Pipelined GIO64 Writes, Pipelined Device Master

4.4.2.2 Pipelined GIO64 Reads

Pipelined GIO64 reads are a lot like the nonpipelined GIO64 reads, as they both start with a slave address cycle followed
by a byte count cycle and then a number of data cycles. There are two cases of reads that need to be examined. The first is
when the CPU or memory is the bus master. The GRXDLY(n) signal is used to indicate that there is valid data on the bus.
There is one dead cycle after the byte count on the pipelined side of the bus, (three dead cycles on the nonpipelined side of
the bus), when data will not be transferred. The state of GRXDLY(n) during these cycles does not matter. Therefore, if the
pipelined device can return data in the fourth cycle after the byte count GRXDLY(n) does not have to be asserted before
the data is returned. This is an artifact of pipelined GIO64 write, since the pipelined GIO64 device can hold GRXDLY(n)
low when there is not a transfer in progress. This is necessary to support three cycles word/double word writes to a
pipelined GIO64 device from the CPU or memory. The MEMDLY signal is used to indicate that the master cannot accept
data from the GIO64 pipelined device in the next cycle. The GRXDLY(n) and MEMDLY signals function the same,
except for the single dead cycle after the byte count, in this case as in a write when a GIO64 devices is the bus master.

When a pipelined GIO64 device is the bus master, the GRXDLY(n) signal indicates that the device cannot accept data in
two cycles. The MEMDLY signal is used to indicate that the data on the bus is invalid during this cycle. There are three
dead cycles, on the pipelined side of the bus, after the byte count cycle when no data will be transferred even though
MEMDLY may be deasserted during that time. The GRXDLY(n) and MEMDLY signals function the same, except for the
three dead cycles after the byte count, in this case as in a write when the CPU or memory is the bus master. The master
must tristate the AD or P_AD signals after the byte count cycle. The slave must tristate the AD or P_AD signals in the
cycle after the last piece of data has been transferred. Some examples of pipelined GIO64 reads are show below.
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Figure 4-14 . Pipelined GIO64 Reads, Memory Master

Figure 4-15 . Pipelined GIO64 Reads, Memory Master
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Figure 4-16 . Pipelined GIO64 Reads, Pipelined Device Master

4.4.2.3 Pipelined GIO64 Preemption

Pipelined GIO64 devices can be preempted just like nonpipelined GIO64 devices. The preemption is indicated in the same
way by the bus master asserting the READ or P_READ signal. The MEMDLY and GRXDLY(n) signals may or may not
be asserted during a preemption. The major difference between pipelined and nonpipelined preemption is the bus cycle in
which transfers complete and which cycles have to be retransferred when the device gets the bus again.

There are four different preemption cases that must be handled: reads to memory from a GIO64 pipelined device, writes to
memory from a GIO64 pipelined device, reads to a pipelined device from memory or the CPU, and writes to a pipelined
device from memory or the CPU.

When a write from memory to a pipelined device is preempted, the P_READ and MEMDLY signals will be asserted in
the same cycle and no new data is sent to the pipelined device in that cycle. An example of a preempted pipelined GIO64
write, with memory as the bus master is shown below.
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Figure 4-17 . Preempted, Pipelined GIO64 Write, Memory Master

When a read from a pipelined GIO64 device to memory or CPU is preempted the P_READ and MEMDLY signals are
asserted in the same cycle, and data is transferred in that cycle. An example is shown below.

Figure 4-18 . Preempted, Pipelined GIO64 Read, Memory Master
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Figure 4-19 . Preempted, Pipelined GIO64 Read, Memory Master

When a pipelined device is the bus master and a write to memory gets preempted P_READ will be asserted and no new
data will be transferred. An example of a preempted write is shown below.

Figure 4-20 . Preempted GIO64 Write, Pipelined Device Master

The last preemption case is when a pipelined GIO64 device is the bus master doing a read from memory and gets
preempted. The three cycles after the P_READ signal is deasserted will not be preempted, after the third cycle data will
not be transferred. An example is given below.

ADR BC D2 D3

ADR BC D0 D1

D0 D1

D2

D2 is transferred, D3 is not.

D3

ad

as_n

read

masdly

f_grxdly

memdly

grxdly

p_ad

p_as_n

p_read

X

X

D4 is not transferred.

D4

D4

D3D2BCADR

D3D2BCADR

p_read

p_as_n

p_ad

grxdly

memdly

f_grxdly

masdly

read

as_n

ad

D1 is transferred.

D1D0

D1D0BCADR

BCADR



GIO64 Bus Transfers SGI CONFIDENTIAL

4-20 6 May 1992 GIO Bus 64

Figure 4-21 . Preempted GIO64 Read, Pipelined Device Master

4.4.3 GIO64 Transfer Size

It is the responsibility of GIO64 bus masters to determine if the slave they are communicating with is a 32 bit or 64 bit
device. This information is not provided on the bus. Thirty-two bit slaves require that the master transfer data in 32 bit
mode. Sixty-four bit slaves should transfer 64 bits of data with 64 bit masters and 32 bits of data with 32 bit masters. The
GIO64 arbiter drives the signals GSIZE64 and P_GSIZE64 that indicates the data width of the current bus master. Sixty-
four bit bus masters and slaves must receive this signal to determine the width of the data being transferred.

Thirty-two bit bus masters and slaves do not need to receive the GSIZE64 or P_GSIZE64 signal since they can only send
or receive 32 bits of data. Sixty-four bit bus masters do not need the GSIZE64 or P_GSIZE64 signal when they are the bus
master, but these devices are also bus slaves when the CPU reads or writes to them so they need this signal if they need to
work with different size memory/CPU masters. The 32 bit slaves can only receive 32 bit data so this signal does not
provide any information for them either. It is the responsibility of the 64 bit master to know the size of slaves it is
communicating with.

4.4.4  GIO64 Bus Time-outs

GIO64 bus cycles will time-out if SLVDLY, MEMDLY, or GRXDLY(n) are not asserted in reply to an address strobe
within 25 microseconds after the byte count cycle. This time-out will prevent accesses to non-existent locations on the
GIO64 bus from hanging the bus. When a time-out occurs, the GIO64 arbiter will respond with SLVDLY, MEMDLY, or
GRXDLY(n) until the transfer is complete and generate a bus error interrupt to the CPU. The device that was transferring
data will not be notified that a time-out has occurred. The only time software should use this time-out mechanism is to
check to see if a device exists in one of the GIO64 slots. The guaranteed bus acquisition time for real time devices may be
violated when the GIO64 bus times out.

4.4.5 GIO64 Bus Tristate Turnover Cycles

There needs to be one dead cycle on the bus when the device driving the AD and P_AD bus signals is changed. Therefore
during a read cycle there needs to be a dead cycle between the byte count cycle and the first data cycle. This is necessary
to prevent tristate overlap of the two bus drivers.

When a transfer to a nonpipelined bus slave is complete or preempted the bus slave must drive SLVDLY high before
tristating SLVDLY. Devices that drive valid parity must driveVLD_PARITY or P_VLD_PARITY high the cycle after the
transfer is complete or preempted before tristating this signal.
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4.4.6 GIO64 Bus Request And Preemption

An example of a nonpipelined GIO64 long burst device requesting the bus and then getting preempted is shown below.
The dashed line represents a tristated signal.

Figure 4-22 . Preempted GIO64 32-bit Write

Figure 4-23 . Preempted GIO64 32-bit Read
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4.5 GIO64 Bus Arbitration

The GIO64 bus arbitration scheme has a number of requirements to meet. The requirements are:

• The CPU must run at a minimum guaranteed rate in the most highly loaded system to allow for an acceptable
interrupt response time.

• Burst DMAs such as graphics DMA must be allowed to use the bus for long stretches of time for better bus
utilization.

• Real-time devices such as audio must be guaranteed access to the bus within a predefined maximum delay.

• The EISA bus needs frequent access to memory, every 4 microseconds.

4.5.1 Three Kinds of Bus Requests

With the above requirement in mind there are three basic types of devices: real-time devices, short burst devices, and long
burst devices. Audio is a good example of a real-time device. The EISA bus is a short burst device. The graphics system is
a long burst devices. Long burst devices are preemptable whereas the real-time and short burst devices are not. Real-time
devices, however, must not use the bus for more then 5 microseconds per acquisition and not request the bus more often
then every 20 microseconds. A short burst device has the highest priority, but can only keep the bus for 1 microsecond and
will only get the bus every 4 microseconds if other devices want the bus. If a real-time device requests the bus when it is
being used by a long burst device, the long burst device will be preempted immediately. The bus will be given back to the
long burst device that was preempted once the real-time device is finished. A long burst device can also be preempted by
a short burst device if it has been 4 microseconds since the last time the short burst device had the bus. If no other devices
want the bus when a short burst device requests the bus then it will be given the bus immediately. A long burst device will
keep the bus until it is finished with its transfer or its time period is up and gets preempted. If a long burst device gets
preempted then the time period counter will stop counting while the real time device owns the bus and will restart once the
long burst device has been given back the bus. When no other devices want the bus, control of the bus is given to the CPU.
The exact implementation of the arbiter depends on the machine and the number of real time and long burst device that are
being supported.

4.5.2 Arbitration Handshake

Each bus master on the GIO64 bus has bus request,BREQ(n), and bus grant,BGNT(n), signals that go to the GIO64
arbiter. When a GIO64 device wants to request the bus, it asserts its bus request line. When the arbiter grants the bus to the
requester, it asserts the bus grant signal to that device. Once the transfer is complete the bus master deasserts the bus
request and the arbiter will deassert the bus grant. It is important that the bus master does not deassert the bus request
before the transfer is complete since the arbiter does not monitor any of the bus control signals except the bus requests and
grants. If the transfer is not complete and a bus master deassertsBREQ(n), a bus collision could occur. Once a device has
requested the bus it must hold its request signal active until it has been granted the bus even if the device no longer needs
the bus after it has requested it.

4.5.3 GIO64 Preemption

A long burst GIO64 device can be preempted by theBPRE orP_BPRE signals from the GIO64 arbiter. The bus master
must terminate the transfer within 4 clocks of when the preempt signal is asserted. The bus master is responsible for
keeping track of the address and remaining byte count so that the transfer can be resumed later. This includes the slave
address.

A bus master is allowed to preempt a transfer before the byte count has been satisfied and never restart the transfer. This is
useful for devices that may not know the byte count when they start the transfer. The bus master can drive a maximum
byte count during the byte count cycle and then preempt the transfer when they have transferred as much as the bus master
wants to as long as it is less than or equal to the byte count. Note that this requires the last transfer to be aligned to the bus
since the byte count cannot indicate how many bytes to transfer on the last cycle.
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4.6 GIO Compatibility Issues

The goal of the GIO64 bus is to be as close to the original GIO bus compatible as possible, but still allow for a higher
bandwidth bus in the future. The one change that was made that is not GIO compatible is the MASDLY and SLVDLY
signals for nonpipelined transfers are different. The device that is receiving data indicates that it can receive data in the
next cycle with its flow control signal instead of indicating that it can receive data in the current cycle, as described in the
section detailing nonpipelined transfers.

Parity has been added to the bus, but it has been added in such a way that devices that do not generate or check parity will
still work, as parity does not necessarily have to be generated.

4.7 Clocking

The bus is designed to run anywhere from 25 to 40 MHz and all GIO64 devices should be capable of running at any speed
between 25 and 40 MHz. There are two clocks provided to each GIO64 device, one clock is the bus clock which will run
at 25 to 40 MHz. The second clock will be twice the frequency of the bus clock. Both of these clocks are differential ECL
signals.

The worst case clock skew from any flop on the GIO64 but to any other flop on the GIO64 bus is 3.3ns.

4.8 GIO64 Interrupts

There are three interrupt/status lines,INTERRUPT(n)(2:0), for each GIO64 slot. These signals can generate CPU
interrupts or their state can be read by the CPU. There is also one status signal, STATUS(n). The CPU can read the state of
the STATUS signal, but it cannot generate an interrupt.

4.9 Pipelined GIO64 Slot Pinout

The following list of signals are available to a pipelined GIO64 device. All devices on the bus must be CMOS, although
TTL thresholds are used. The bus will not support bipolar input buffer loading. The exact pinout of the connector and type
of connector has not been determined at this time. The power limits and voltages also have not been determined.

TABLE  8 GIO64 Signals.

 Signal Device Direction Pin Number

P_AD(63:0) i/o

P_ADP(7:0) i/o

P_VLD_PARITY i/o

P_AS i/o

P_READ i/o

GRXDLY(n) o

MEMDLY i
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4.10 GIO64 Timing: Nonpipelined and Pipelined

In calculating the worst case path on the GIO64 bus, there is a basic assumption that the clock is distributed in such a way
that the clock arrives at every GIO64 device flip-flop at the same point in time. Therefore, the clock to a gate array that is
connected to the GIO64 bus will get an early clock as seen at the gate array pin compared to a discrete flip-flop on the
GIO64 bus. Since it is not possible to get the clock to every flip-flop on the GIO64 bus at the exact same time there is a
clock skew budget of 3.3 nanoseconds to get the clock distributed to every device on the GIO64 bus.

There are four basic parts to the GIO64 cycle timing: clock to output time of the output flip-flop, the bus wire delay, setup
time to the input flip-flops, and the clock skew. There are also some hold time requirements.

The 3.3 nanoseconds of clock skew can be divided into three components: clock driver skew, net length skew, and clock
distribution skew on the GIO64 device. The GIO64 device could be a gate array or a board. The clock distribution scheme
is as follows:

BREQ(n) o

BGNT(n) i

P_BPRE(n) i

INTERRUPT(2:0) o

STATUS(n) o

GIO64_CLK i

GIO64_CLK i

GIO64_CLK2 i

GIO64_CLK2 i

P_GSIZE64 i

DMASYNC(n) i

gio64_40mhz i

RESET i

GIO64_SPEED(1:0) i/o

 Signal Device Direction Pin Number
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Figure 4-24 . GIO64 Clock Distribution.

All of the clock divider flops, MC10E151, are in the same package so that the output to output skew will be minimized.
Since the temperature, voltage and process of that part is the same, the worst case maximum clock to output time, 800 ps,
minus the best case minimum clock to output time, 450 ps, can be derated. To be conservative, this will be derated to a
300 ps output to output skew. The outputs of the MC10E151 then go to a clock fanout buffer, MC10H641. This is an ECL
to TTL, 1 to 9 output fanout buffer. The output to output skew is 500 ps for the same package and 1 ns for different
packages. This configuration should minimize clock skew associated with the clock drivers.

The next contributor to clock skew is the net delays. All net lengths will be matched to within 1 inch on each board so that
the worst case difference between clocks due to different length etch will be 0.4 ns, (0.2 ns/inch). This includes matching
the delay for the clock to a discrete part to the delay of the clock fanout tree in a gate array by changing the net length from
the clock buffer to the different parts. Another factor is impedance mismatches between boards, through connectors, and
different loading of the net, due to a different number of MC10H641 parts. For these differences, 0.6 ns will be allotted. In
order to make this work the clock at the GIO64 connector will be early by some amount. The exact amount has not been
determined, but it will be on the order of 8.0 ns.

The last contributor to skew is from the device that is being clocked. There is a delay from when the clock changes at the
pin of a gate array to when it changes at the flip-flop inside the gate array. There are two numbers to examine: the first is
the delay from the pin to the flip-flops. This can be very large and therefore the skew over process, temperature, and
voltage can be very large. The second number that is important is the skew from any flip-flop to any flip-flop in an array. It
may require a PLL on the gate array to reduce the skew caused by these factors. The total skew budget for a gate array is
1.0 ns. It is important to realize that the delay can be more than 1.0 ns, but it is the skew which is important. The delay is
compensated by different length etch to each of the chips that have a different clock fanout delay.

The total skew budget for the CPU board to a GIO64 device is:

10E151 Clock Divider Flip-Flop 0.3 ns

Different Length Etch 0.4 ns

Different Impedance of Nets 0.6 ns

MC10H641 Fanout Buffer 1.0 ns

Gate Array Fanout Skew 1.0 ns

Total: 3.3 ns

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

132−160 MHz

33 MHz GIO Slot 0

33 MHz GIO Slot 1

33 MHz CPU Board

66 MHz GIO Slot 0

66 MHz GIO Slot 1

MC10E151

MC10H641
1 to 9 Fanout

ECL to TTL

Gate Array
or

Discrete Logic

Connectors



GIO64 Timing: Nonpipelined and Pipelined SGI CONFIDENTIAL

4-26 6 May 1992 GIO Bus 64

The resultant skew from different parts on the CPU board is somewhat less. Since none of the clocks are double
frequency, the skew associated with the 10E151 can be eliminated. Also the skew between 10H641 is just the output to
output skew for outputs in the same part instead of different parts so this is only 0.5 ns. The rest of the skew factors are the
same. On the CPU board the GIO64 clock skew is:

Different Length Etch 0.4 ns

Different Impedance of Nets 0.6 ns

MC10H641 Fanout Buffer 0.5 ns

Gate Array Fanout Skew 1.0 ns

Total: 2.5 ns

Another factor in determining the longest GIO64 path is the worst case setup time for a device, which will be to a gate
array. Keep in mind the clock edge is defined to take place at all of the flip-flops on the GIO64 bus at the exact same time
so the delays associated with getting a clock from the gate array pin to the flop are not incorporated in the setup time
calculation. The setup time to a FCT part, 74FCT652A, is 2.0 ns. These parts are used to implement the bidirectional
registered transceiver between the nonpipelined and pipelined GIO64 bus. The worst case setup time for a gate array, LSI
LCA100K can be calculated as follows:

TTL threshold input buffer, TLCHT 1.66 ns

Mux to hold the data, MUX21L 1.04 ns

Setup to scan flop, FD1S 1.88 ns

Total: 4.58 ns

These numbers are for a moderate load to account for net delays. To allow some extra margin the worst case setup time for
any GIO64 input should be 5.0 ns or less.

The next factor in calculating the longest GIO64 path is the clock to output path. Since the delay for the gate array output
buffers are given for different loading conditions, the output buffer delay will be incorporated by the net delay value. The
worst case clock to output delay of a LSI LCA100K flip-flop, FD1S, is 3.0 ns with a moderate load to take care of net
delays. The delay of a 2:1 mux will also be included for boundary scan. The delay of a MUX21L is 1.0 ns. Since a gate
array driving the bus will be slower than discrete parts because the gate array has limited drive, this case will be examined.
Twelve mA output buffers with slew rate control will be used for the GIO64 gate array outputs. The bus loading on the
nonpipelined side of the GIO64 bus should be less than 130 pF. The worst case delay for driving 130 pF is 12.3 ns. The
worst case bus loading is calculated as follows:

MC chip, 304 MQUAD 7.0 pF

MUX chip, 208 pqfp 7.0 pF

HPC3, 304 MQUAD 7.0 pF

Pipelined GIO64 Transceivers, 2 sets 24.0 pF

EISA chips, 4 chips, 208 pqfp 28.0 pF

Wire, 4 pF/inch, 12 inches  48.0 pF

Total: 121.0 pF

On the pipelined side of the bus the load should be about the same:

Pipelined GIO64 Transceivers, 1 set 12.0 pF

GIO64 Slot Connectors, 2 at 8 pF 16.0 pF
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Wire, 4 pF/inch, 18 inches 72.0 pF

Gate array load/slot, 2 slots 30.0 pF

Total: 130.0 pF

Adding up the total bus delay:

Flop clock to output and mux 4.0 ns

Output buffer, including wire 12.3 ns

Setup time 5.0 ns

Clock skew 3.3 ns

Total: 24.6 ns

This leaves 0.4 ns of margin when the bus is running at 40 MHz. It may be possible to build a system with reduced loading
that would be able to run at 40 MHz, although it will be hard. To achieve the numbers given above requires attention to the
placement of the flops in gate arrays to achieve 5 ns of setup and 14.3 ns clock to output delay. It is also very important to
be careful with the length of the bus and the number of loads on the bus. On the pipelined side of the bus, it is important to
be careful with the stub length of the GIO64 signals. Also the capacitive loading needs to be less than 23 pF per slot
counting the connector.

The hold time requirements can be calculated by adding the hold time of the device with the worst case hold time, which
will be a discrete part. The hold time for a 74FCT652A is 1.5 ns. This time needs to be added to the clock skew of 3.3 ns
to get the bus hold time requirement which is 4.8 ns. The minimum clock to output time for a discrete part is 2.0 ns and for
a gate array is 1.5 ns. Since it will be very hard to achieve the 3.3 ns of hold time required from the capacitive loading of
the bus the clock to the discrete flops can be made 0.5 ns early to trade off setup time for hold time. The setup time to the
discrete flop is only 2.0 ns so adding 0.5 ns to it is still much better then the gate array setup time of 5.0 ns. The minimum
clock to output time from the real GIO64 clock will be 1.5 ns for both the flop and the gate array. The maximum hold time
from the real GIO64 clock is 1.0 ns for the discrete part and most likely negative for the gate array. Therefore the bus hold
time for the pipelined side of the bus is:

Clock Skew 3.3 ns

Worst Case Hold Time 1.0 ns

Minimum Clock to Output Delay -1.5 ns

Total Bus Hold Time 2.8 ns

The bus hold time on the nonpipelined side of the bus is less since the clock skew is only 2.5 ns.

Clock Skew 2.5 ns

Worst Case Hold Time 1.0 ns

Minimum Clock to Output Delay -1.5 ns

Total Nonpipelined Hold Time 2.0 ns

The capacitive loading and etch delays will prevent the bus from changing within this 2.5 ns window.

Timing Work TBD:

• gio64 slot stub lengths on signals

• bus termination

• connectors

• spice results of fully loaded system to check signals and hold time
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4.11 Pipelined GIO64 Mechanicals

The GIO64 slot connector and card mechanical are TBD.

4.12 Device Identification, Serial Number and ROM Registers

Every GIO64 device should have a set of special registers that can be used by the software to identify the devices that are
installed. If a device has ROM, then it should, in addition, have a set of ROM registers that allow the software to easily
read the ROM. These special registers should be located at the beginning of the devices address space. The base address
of a device is determined by the GIO64 SLOT_NUMBER signals.

These registers need to be accessed in a special way since reading them is the only way to determine information about the
size of a device (32 or 64 bits). The first requirement is that 64-bit devices must always return this register read data on
AD(31:0). These special registers are aligned on double word addresses and the device must also respond to either of the
two word addresses with the same register data. This allows the CPU to run in big or little endian mode and easily
interpret the data the device returns.

There are four special registers:

1. The first is the Product Identification Word register. This register is located at the base address and the base
address + 0x4. A read from either the base address or the base address + 0x4 should return the value of this
register on AD(31:0). A unique, 8-bit Product ID Code is contained in the lower byte of the Product
Identification Word. Refer to Chapter 2 for complete details about this Product Identification Word.

Note: The ROM Present bit of this register must be a 1 if the option card has ROM
that can be read with the ROM Index/ROM Read registers (described be-
low).

2. The second special register, the Board Serial Number, is located at the base address + 0x8 and the base address +
0xc. This register contains a 32-bit board serial number. This register is optional.

3. The third register is the 32-bit ROM Index register located at the base address + 0x10 and the base address +
0x14. This register is present when the ROM Present bit in the Product Identification Word register is set to one.
The CPU writes 0 to this register to initiate reading the ROM. Each subsequent read of the ROM Read register
causes this Index to increment by 4.

4. The fourth register is the 32-bit ROM Read register located at the base address + 0x18 and the base address +
0x1c. This register is present when the ROM Present bit in the Product Identification Word register is set to one.
This register always contains the contents of the ROM word identified by the address in the ROM Index register.
Each read of this register causes the ROM Index to increment by 4 and a new word to be retrieved from ROM.

4.13 Miscellaneous Timing Diagrams

The following pages illustrate the GIO64 timing protocol for a variety of situations.
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Figure 4-25 . Two Writes, a single Read, followed by a Write for Pipelined GIO64
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Figure 4-26 . GRXDLY Asserted During a long Write to a Pipelined GIO64 Device
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Figure 4-27 . Single Write to a Pipelined GIO64 Device and GRXDLY
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Figure 4-28 . A Pipelined GIO64 Write and MEMDLY
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Figure 4-29 . Read from a Pipelined GIO64 Device and MEMDLY
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Figure 4-30 . Read from a Pipelined GIO64 Device and GRXDLY
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