
Silicon Graphics
Computer Systems

Virtual DMA Specification
FastForward Project

Draft 1.5

February 13, 1992

Karim Abdalla

James Tornes

Silicon Graphics. Inc.

SGI Confidential

Do Not Copy

Contents

1 Introduction 1

2 Key Issues 1

2.1 Cache Coherency . 1
2.2 Synchronization . 2
2.3 Virtual Address Translation . 2

2.3.1 Why Virtual DMA in Hardware 3
2.3.2 Required Help from OS 3

2.4 Short Transfers (or the v3f() Problem) 4

3 Proposed Solution 4

3.1 System Call Only on R4000PC, R4000SC 4
3.2 User and System Calls on R4000MP and R3000 4
3.3 Page Table Look-Up with PTEBase µTLB 5
3.4 Protected Physical GIO Address 5
3.5 Directly Written Single Descriptor 7
3.6 Programmed I/O for Very Short Transfers 7
3.7 User Virtual DMA for Relatively Short Transfers 7
3.8 System Call for Long Transfers 8

4 Performance Estimates 8

4.1 Programmed I/O v3f() Calls on R4000 8
4.2 User-Initiated DMA v3f() on R4000MP 9
4.3 GIO Bus Rates for Small User-Initiated DMA on R4000MP . . 10
4.4 Three-Way Transfer v3f() in Magnum 10

5 Software Interface 10
5.1 Main Features . 11
5.2 Descriptor Registers . 11
5.3 Control Registers . 16

5.3.1 Protected Registers . 16
5.3.2 Unprotected Registers . 18

5.4 µTLB . 19

i

List of Figures

1 Address Translation and µTLB 6

List of Tables

1 DMA Descriptor Register Summary 12
2 Default Descriptor . 13
3 Kernel DMA Control Register Summary 16
4 User DMA Control Register Summary 18
5 µTLB Entry Format . 19

ii

1 Introduction

This document describes the GIO DMA master within the FastForward memory
controller (MC). The primary goal is to provide an efficient mechanism for
transferring variable-sized blocks of data to and from user space in main memory
to the graphics subsystem.

In past architectures, the underlying mechanism relied on purely physical
addresses1, even for the user-space memory region. This mechanism placed
some serious requirements that had to be satisfied by the kernel software, much
to the degradation system throughput.

The most important novel feature of new DMA engine is the support of
virtual addressing of the user-space memory region to be transferred. The design
is optimized so that the most frequent translations will be done on the fly by
the DMA engine.

Unfortunately, due to the complexity of the virtual memory system, in par-
ticular, the current operating system structures involved in translating user
virtual addresses, some help will still be required from the operating system
executing on the CPU. However, this does not imply that the user must make
a system call to set up a DMA.

The following section outlines the main obstacles that must be overcome
in order to implement an efficient virtual DMA scheme. Various trade-offs
can be made that affect the ease of implementation, system throughput and
programming model.

Much of this document draws from the MC specifications by James Tonnes
and the ”Fast Forward Graphics DMA Specification” outlined by Robert Liston.
The specification is significantly defined by the requirements of the graphics sub-
system hardware and software architects. Great ideas and valuable information
as always from James Tonnes and Wiltse Carpenter.

2 Key Issues

There are several issues that must be resolved in order to support efficient virtual
DMA. The goal is to minimize the latency involved in the user setting up the
DMA (via a system call or not), and the subsequent DMA transfer.

2.1 Cache Coherency

The first hard problem that must be overcome in order to implement any DMA
scheme is that the data in memory to be DMA’d may not be up to date with
respect to the cache. This was never an issue in the R3000 which had a write-
through cache, as opposed to the write-back policy used in the R4000. The

1Except, of course, in the three-way transfer mechanism

1

converse problem entails the possibility that cached data may become stale if a
DMA updates main memory.

There are two mechanisms for ensuring data coherency between cache and
memory. The first method is to flush the cache, and the second method is for
the DMA engine to snoop the cache. Cache snooping is only supported by the
R4000MP which comes in the large package.

The R4000 does support a cache flushing instruction, but unfortunately, it
is a privileged instruction. If the cache-flushing mechanism is to be used, it
must be part of a system call. Given that we must take the latency penalty
of making a system call through the general exception mechanism, it would be
more efficient for the software (see section 2.2 below) and possibly simpler for
the hardware (see section 2.3 below) to do the entire DMA setup and transfer
process via a system call.

The cache-snooping approach would be more costly in hardware in terms of
requiring an R4000MP as well as extra gates in MC, but it does lend itself to the
possibility of a much faster implementation. This is also the only mechanism
that would allow the user to set up and start the DMA process.

2.2 Synchronization

This is an issue that the software must deal with. The basic problem is that
the user program that just kicked off a DMA process needs to know when the
DMA is complete. For example, if the program initiated a DMA from graphics
to memory, it has to know when it can read memory and get the new data.
Another example is when the program can initiate another DMA process.

Polling a status bit in the DMA engine wastes CPU cycles, that could oth-
erwise be doing some useful work. Waiting on an interrupt to a user routine is
not really an option under IRIX.

If the DMA was set up and initiated by the operating system, the system
could immediately swap in another process and only give control back to the
DMA requesting process after the DMA transfer is complete. The processor
can do useful work until it receives a DMA complete interrupt.

2.3 Virtual Address Translation

Since the DMA is a feature that should be available to a user application,
and that application must be running in a virtual address space, all memory
addresses that the user specifies must be translated before they can be used to
address physical memory or hardware. For GIO (graphics) addresses, the user
can specify the physical address since the device map is hard wired.

2

2.3.1 Why Virtual DMA in Hardware

Irrespective of whether the DMA is set up through a system call, the DMA hard-
ware will translate the host memory addresses on a page-by-page basis. This
requirement will greatly improve system performance since it removes a huge
burden from the operating system, and also enable stride DMA and negative
increments to work across page boundaries.

In past systems, when a user process made a system call for a DMA, the
operating system had to translate every single page within the required virtual
address range, set up a long descriptor list to the physical pages which could be
scattered all over memory, and finally lock down all the pages in memory until
the transfer was over.

By having the hardware translate the addresses, the DMA engine could use
the virtual address to look into the user page table, and obtain the physical
address if the page were resident, otherwise signal a page fault to the processor
via an interrupt. This process can be repeated on a per-page basis.

2.3.2 Required Help from OS

The above scheme implies that the DMA hardware has physical pointers (PTE-
Bases) to the user’s page tables. Each PTEBase allows the hardware to trans-
late (via one memory indirection, the actual page table look-up) a single two
megabyte2 aligned block in the user virtual address space. Since the user has
a virtual address space of the order of gigabytes3 , a single page table may be
insufficient to translate the desired block.

The PTEBases can be supplied by a number of mechanisms. If the DMA is
set up by the system on behalf of the user, the system software can calculate
the address of the page table specified by the starting virtual address and write
it into a special PTEBase register inside the DMA engine.

If the DMA is set up directly by the user, or a system-initiated DMA runs
over a 2 Byte boundary, the DMA engine must obtain a new PTEBase. There
are two actions that the DMA hardware can take to rectify the missingPTEBase
problem: either interrupt the processor for the new PTEBase, or look it up
directly through the system structures in memory. This problem is deferred
momentarily until the next section.

The operating system could also, on context switching, initialize a moder-
atesized PTEBase µTLB to point to a set of most likely to be used user page
tables. By having a µTLB of more than one entry, multiple page tables could
be accessed without PTEBase look-ups.

If we implement a µTLB of PTEBases, and devise some scheme for servicing
PTEBase misses, then a single descriptor can describe the entire user space. The

2In the current virtual memory system, which is subject to change
3precise number depends on MIPS I, II or III architecture

3

single effective descriptor could just be written directly (using programmed I/O)
to the DMA engine’s appropriate register’s.

2.4 Short Transfers (or the v3f() Problem)

There are very frequent situation when the user needs to transfer a small num-
ber of bytes from memory to a virtually mapped uncached device such as the
graphics subsystem. This happens, for example, in the graphics library func-
tion v3f() which sends a 3D vertex (three consecutive floating point numbers
i.e. twelve bytes) to the graphics pipeline.

In past R3000-based machines, these very short virtual DMA’s were ac-
complished via three way transfers. The latter is a trick to do virtual DMA
that crossed at most one page boundary. Three way transfers rely on the R3000
translating the virtual address and making it available to PIC by way of a store.

Unfortunately this approach does not lend itself to the R4000 due to it’s
write-back cache policy. It would be an impractical solution to place a software
restriction that makes the programmer declare all areas of data likely to be
written by way of a three way transfer as uncached, not to mention the lash of
efficiency due to not cacheing the data.

The R4000 presents two alternatives for short transfers; programmed I/O or
DMA.

3 Proposed Solution

The following subsections list the proposed choices for the above trade-offs and
the arguments by which these decisions were reached.

3.1 System Call Only on R4000PC, R4000SC

Since the user must make a system call to ensure cache coherency in all but the
R4000MP and the R3000, for all other machines, the entire DMA process until
the end of the transfer should be managed by the operating system. This also
simplifies the synchronization issues.

3.2 User and System Calls on R4000MP and R3000

For the R4000MP supporting cache-snooping, it is desirable to allow user DMAs
without a making a system call, in addition to providing a system call. This
mechanism is also possible for the R5000 due to it’s write-through cache.

If the user page table(s) and user data pages are all resident, it is likely that
a DMA could be set up and executed entirely in user mode without interrupt-
ing the processor at all. Any interrupt would effectively incur a system call
overhead, nullifying the main benefit of user-initiated DMA.

4

The synchronization issue for user-initiated DMAs will be resolved by having
the processor poll a special MC register. In actuality, MC would stall the read
response until either a snoop occurs or the DMA completes. This has the benefit
of not slowing down MC by continually responding to the poll.

3.3 Page Table Look-Up with PTEBase µTLB

In order to make relatively short (see section 3.7 below) user DMA transfers
efficient, the hardware must have the PTLBase(s) of a users most frequently
used page tables.

This will be implemented using a 4-entry µTLB of PTEBases that is writ-
ten by the CPU during a context switch by the operating system. When the
user later does a virtual DMA, the user virtual address high bits (VPNhi) will
associatively lookup the PTEBase in the µTLB. The page table pointed to
in memory by the PTEBase is indexed by the users low virtual address bits
(VPNlo) to yield a page table entry (PTE).

If the PTE indicates a resident page, then the transfer can proceed using the
page frame number (PFN) from the PTE. Otherwise the DMA engine signals a
user page fault, by interrupting the processor. If the µTLB does not contain the
correct PTEBase, or if the matching entry has been marked as invalid, which
could theoritically happen if the operating system decides to swap out the user
page table that the entry used to point to, then the DMA hardware signals a
PTEBase fault.

Figure 1 shows user page table in main memory, as well as the PTEBase
µTLB and various registers within the DMA engine that are involved in the
look-up process. The figure also shows how the GIO physical address is used.

Every time the OS does a user context switch, it invalidates or updates all
entries in the µTLB.

3.4 Protected Physical GIO Address

Since the user will always refer to a GIO device that is physically mapped at a
known address, the user can provide that address directly by writing it as data
into an MC register. The GIO ADR descriptor register described in section 5.2
is dedicated for this purpose.

To provide some measure of security with regards to what physical GIO
addresses a user can access, two protected registers called the GIO MASK and
GIO SUBST are provided in the DMA engine are provided. The operating sys-
tem can configure these registers for each user during context switch to control
access to the physical map. Please refer to section 5.3.1 for more details.

5

Figure 1: Address Translation and µTLB

6

3.5 Directly Written Single Descriptor

Since most DMA needs entail the movement of one contiguous block, or can
otherwise be broken up into several consecutive DMA transfers (where a DMA
transfer is defined as a contiguous unidirectional transfer), there will be a limit
of a single descriptor per DMA transfer.

Since the addressable range of host memory by the DMA hardware is not
a limiting factor, given that PTEBase µTLB misses can be serviced by the
processor, a single descriptor can specify a DMA transfer of a single unlimited
sized contiguous block.

The main motivation for limiting the number of descriptors to one is that
the hardware responsible for descriptor fetching can be eliminated from the
DMA engine. The one and only descriptor can be written directly to the DMA
engine’s appropriate registers using programmed I/O.

3.6 Programmed I/O for Very Short Transfers

Since three way transfers are impractical and system DMA calls (mandatory on
all but the R4000MP and R3000) would incur too much CPU overhead for short
transfers to mapped hardware addresses, the only remaining alternative for the
R4000PC and R4000SC is to use programmed I/O for very short transfers.

Unfortunately, the R4000 incurs a seven- or eight-cycle penalty for uncached
single writes. That is, the entire R4000 pipeline is frozen for seven or eight cycles
after one write. An additional problem with programmed I/O common to any
processor is that the data must be loaded into the cache from memory, if it is
not there already, before it can be written with a store instruction. This not
only takes time in reloading the cache, but also invalidates the previous data in
those cache locations.

3.7 User Virtual DMA for Relatively Short Transfers

For the R4000MP with cache snooping and no system call overhead short DMAs
might be more efficient than programmed I/O. The comparison can be made
based on the performance estimates in section 4 below. One essential factor
is the break-even point of the transfer size. This is about 8 words for the
R4000MP. Transfers larger than that would be more efficiently done by the
DMA mechanism.

For short DMAs to have any chance of being fast enough, the DMA engine
has to be able to either look up the PTEBase by itself or have such a large uTLB
that µTLB misses are very rare. The µTLB would have to be large enough to
support many short DMAs scattered in virtual space, a situation quite likely if
small structures to be DMA’d are frequently allocated and deallocated from the
stack and heap. The current µTLB size chosen for implementation is 4 entries.

This mechanism can also be used with the R3000, since the memory is always
consistent with the cache unless there has been a DMA into memory. The latter

7

case should be handled by flushing the cache after a DMA write into memory.
However, most user DMAs will DMA reads (writes to the graphics pipeline).

3.8 System Call for Long Transfers

As explained in section 3.2, very long transfers should be done through a system
call so that the CPU does useful work instead of spinning. Choice of method
will be up to the discretion of the programmer.

4 Performance Estimates

4.1 Programmed I/O v3f() Calls on R4000

In order to estimate the rate at which the FastForward CPU can execute v3f()
calls, one must make certain assumptions such as the organization and state of
the R4000 caches. In both of the following scenarios, a the R4000 line size is
assumed to be 4 words for the primary cache, and 16 words for the secondary
cache.

Furthermore, as a worst case, the vertices to be loaded from memory and
stored to the graphics hardware are assumed to miss both caches on the load,
and the secondary cache line is assumed to be dirty. The page accessed is
assumed to be resident in physical memory, however the refill is assumed to
start with a non-page-mode read due to the GIO synchronization operation in
MC to switch from GIO bus (where the last set of vertices were being finally
sent) to the processor bus.

The cycle counts can be broken down into the essential cycles needed by
the CPU to execute the v3f() code plus the extra cycles for cache refills. The
following is a cycle count of the essential cycles required by the CPU to execrate
the instructions for a single v3f() call. All cycle counts are all normalized to
Pclock cycles, the processor’s internal 10ns clock.

instruction each total
1 load imm. 2 2
3 load word 1 3
3 store word 8.5 22.5
1 return 1 1
Execution Cycles 31.5

In the first scenario, it is assumed that the processor is continuously issuing
v3f() calls as fast as possible in a zero-overhead loop. It is also assumed that all
the vertices consecutive, thus there is one secondary cache miss per five vertices.
The calculation is carried out to see how long it takes to issue five consecutive
v3f() calls. Note that the second level refill concurrently refills the originally
missed first level cache line.

8

operation each total
5 execution v3f() instructions 31.5 158
1 first level miss, second level miss 96 96
3 first level miss, second level hit 12 36
1 round-trip SysAD/GIO bus synch 16 16
Total Pclocks for five v3f() calls 306
Total Pclocks for one v3f() calls 61

As can be seen from the above calculation, given the assumptions in the first
scenario, a v3f() call takes 61 Pclock cycles or 610ns on average. This implies a
peak rate of 1.64 million v3f() calls per second.

In the second scenario, it is assumed that the vertices have little locality,
and that one secondary level refill is required for each call. The first level refill
is done in parallel.

operation each total
1 execution v3f() instructions 31.5 31.5
1 first level miss, second level miss 96 96
1 round-trip sysad/gio bus synch 16 16
Total Pclocks for one v3f() call 145

In this scenario of bad vertex locality, it takes 145 Pclock cyles or 1.45 us
per v3f() call. This corresponds to a rate of 692 thousand v3f() calls per second.

4.2 User-Initiated DMA v3f() on R4000MP

In these calculations, the cache line sizes are assumed to be as in the above
calculations for programmed I/O, i.e. 16 word secondary, 4 word primary. Fur-
thermore, we assume that both µTLB entries are valid, i.e. we have the PTE-
Base for the user’s page table in memory, and we have the page frame number
for the graphics hardware. We also assume that the user page is resident in
memory.

The CPU instructions are not counted since the synchronization poll actually
allows the processor to continue as soon as the actual DMA transfer starts and
the write buffer in MC is empty. Thus the next transfer can be set up by the
CPU while the last one is in progress, so for short set-up code, the entire CPU
time is overlapped with the transfer.

CPU Cycles Operation
15 page table look-up
4 synchronise FIFO to CPU clock
12/47 snoop clean/dirty data
4 synchronise FIFO to GIO clock
20 transfer data
55/90 Total Tclocks for one v3f() call

9

From the above calculations, it takes 55 or 90 (20 ns) Tclock cycles, depend-
ing on if the cached data is clean or dirty, to do a single v3f() via a user mode
virtual DMA on the R4000MP. These numbers correspond to rates of 909/536
thousand v3f() calls per second.

4.3 GIO Bus Rates for Small User-Initiated DMA on
R4000MP

For the above v3f() 3-word virtual DMA transfers, the GIO bus attains a rate
of 10.9/6.67 MBytes/sec, depending on if the snoops are clean or dirty snoops.

For larger DMA blocks, the table look up time is amortized over the data
transfer. For 8 word DMA, the GIO bus attains 29/20 MBytes/sec, and for 16
word DMA, the GIO bus reaches 51 MBytes/sec assuming clean snoops all the
way.

4.4 Three-Way Transfer v3f() in Magnum

The three-way transfer mechanism in Magnum takes only 6 CPU cycles per v3f()
call. This rate is equivalent to 5.6 million calls per second, at 33 Mhz. Thus in
a zero-overhead loop, the R3000 could theoretically issue the calls faster than
PIC could transfer the vertices on the GIO bus, resulting in Magnum’s limit
being set by PIC/GIO bus at 1.27 million vertices per second.

CPU Cycles Operation
2 load immediate
1 trigger writes
1 start address writes
1 end address writes
1 subroutine return
6 Total SysOut cycles for 1 v3f() call

5 Software Interface

The programmer view of the DMA machinery consists primarily of a set of
addressable registers in MC. These registers are mapped as uncached locations
in the user’s virtual address space by the operating system. The user writes
various parameters describing the nature of the DMA into these registers, and
then writes a special location to start the transfer.

In user-initiated DMA, the user normally polls a special register to deter-
mine if the transfer is complete. The operating system can take an interrupt

10

generated by the DMA engine on completion of the transfer. The transfer com-
plete interrupt is maskable by the OS and should always be disabled in user
mode. The DMA engine can also interrupt the processor for various faults. The
OS gets a DMA interrupt and can read a cause register in MC that specifies the
cause of the interrupt.

5.1 Main Features

The main features supported by the DMA engine are:

• Virtual addressing of host memory and graphics

• Incrementing / Decrementing line scanning

• Up / Down line striding

• Y Zooming DMA

• Fill mode memory-write DMA

• Preemptable / Restartable DMA

• Save / Restore multiple DMA contexts

5.2 Descriptor Registers

This section describes the structure that specifies a DMA transfer. Recall that
this is not the traditional linked list in memory, but a set of special registers in
the DMA engine.

This set of registers, referred to as the descriptor registers, specify certain
details about the transfer of a block in user virtual space on the host to/from
the graphics subsystem. Some of these registers are the only copies of the addr
sequence counters within the DMA engine.

Once a DMA transfer starts, the descriptor registers implicitly define the
state of the transfer so far, so if the DMA gets stopped by the processor or
is waiting on a fault, the entire state can be read out or restored for context
switching.

• GIO MEMADR
This register holds the 32 bit address of the block to be transferred to/from
memory. This address is normally treated as a virtual address, and the top
bit is ignored. If the Xlate bit of the GIO CTL register is clear (should
always be set in user mode), then the full 32 bits indicate a physical
address.

The contents of this register are incremented according to the counting
scheme designated by the GIO SIZE, GIO ZOOM and GIO STRIDE reg-
isters described below. GIO MEMADR always contains the next address

11

Name Access Field

GIO MEMADR RW Memory Address[31:0], Don’t Set Defaults
GIO MEMADRD RW Memory Address[31:0], Set Defaults

GIO SIZE RW Line Count[15:0] Line Width[15:0]
GIO STRIDE RW Unused Line Zoom[9:0] Stride[15:0]
GIO ADR RW GIO Address, Don’t Start DMA

GIO ADRS RW GIO Address, Start DMA
GIO MODE RW Unused Long Snoop Dir Fill Sync Mode
GIO COUNT RW Unused Zoom Count[9:0] Byte Count[15:0]

Table 1: DMA Descriptor Register Summary

to be DMA’d to/from memory. This is so that when GIO MEMADR is
read and then, later written back as part of the state save/restore code
of the context switcher, the DMA transfer will be resumed at the correct
address.

• GIO MEMADRD
Writing to this address writes the given value into the GIO MEMADR
register as a write to GIO MEMADR would with an extra side effect.
The side effect entails automatically writing a set of default values into
some of the descriptor fields. The descriptor fields that get loaded and the
corresponding default values are shown in table 2.

• GIO SIZE
This register consists of two distinct fields that are each 16-bit wide un-
signed integers. The Line Count field denotes the total remaining number
of scan lines to be transferred. This is the normal way of specifying the
length of a DMA transfer. It is also made visible for context switchability.
This field is cleared when GIO MEMADRD is written.

The Line Width field denotes the number of bytes per scan line in memory.
A scan line in memory is transferred as consecutive (given a scan direction)
bytes until the line width is satisfied, at which point the address of the
next scan line is computed using the stride. This field is cleared when
GIO MEMADRD is written.

• GIO STRIDE
This register contains two fields. The Line Zoom field is an 10-bit un-
signed integer denoting the number of times that a given scan line is to
be transferred. This is useful for vertical zooming of bitmaps. This num-
ber gets reloaded into the Zoom Count field each time the Zoom Count
decrements to zero.

12

Field Value

Line Count 0x0001
Stride 0x000

Line Zoom 0x01
Zoom Count 0x01
Line Width 0x00C

Byte Count 0x00C
Long 0
Snoop 1

Fill 1
Dir 0
Sync 0

Mode 00

Table 2: Default Descriptor

The Stride field is a 16-bit signed integer. This quantity is added to the
address at the end of one line to compute the address of the next line
in (virtual) memory. Zero stride means that the lines are contiguous in
memory. Negative stride is useful for bitmap reflection in the x-axis. The
Line Zoom and Stride fields get loaded with default values of one and zero
respectively when GIO MEMADRD is written.

• GIO ADR
This register contains the physical address of the GIO device to be read
or written. The physical address is subject to certain constraints that
can be programmed by the operating system into the GIO MASK and
GIO SUBST protected registers in order to limit access by the user to
the physical map. See discussion of these registers for more details on the
protection scheme.

Also, if the DMA transfer is a memory write (GIO read) and the Fill bit is
set, then the address is used directly as the read data instead of indirecting
through the GIO location.

• GIO ADRS
This address is a write-only alias for the GIO ADR register described
above. Writing to this address also has the side effect of starting a DMA
transfer.

With the given defaults and aliased registers, v3f() DMAs can be set
up and triggered in two writes: GIO MENADRD and GIO ADRS. Sim-
ple contiguous DMA writes like VBFs but of a different size can be set

13

up and started in only three writes: GIO MEMADRD, GIO SIZE, and
GIO ADRS.

• GIO MODE
This register is composed of six separate fields. The Long field is the
bit (GIO MODE[6]) that specifies whether the DMA transfer should be
treated as a long burst or short burst transfer. If the Long bit is set, the
transfer will occur during the DMA time slice of the GIO bus, otherwise
the transfer will occur during the CPU time slice.

The Snoop field is a single-bit flag (GIO MODE[5]), that if set, enables
cache snooping (R4000MP only) during the DMA transfer. In some cases
it may be faster to flush the cache before the transfer and avoiding the
snooping overhead during the transfer.

The Host Dir is a single bit (GIO MODE[4]) and defines the direction that
a scan line is scanned. A value of one signifies address incrementing while
a value of zero signifies address decrementing, useful for bitmap reflection
in the y-axis.

The Fill field is a single bit (GIO MODE[3]) that, if set, attaches a special
meaning to the GIO ADR register when mode field is set to ”write”. When
the Fill bit is set and the DMA mode is write (to memory), then instead
of using the data at the given GIO address, GIO ADR is used as data
directly. The GIO / graphics device is not involved in the transaction.

The Sync field is a single bit flag (GIO MODE[2]) that delays the start of
a DMA until the DMASYNC pin on MC is asserted by an external device.
This is normally used to synchronize the DMA with the vertical retrace
of the monitor to eliminate screen flicker during graphics DMA.

The Mode field is a two-bit field (GIO MODE[1:0]) that specifies if the
DMA is a memory read, memory write, or accumulation mode transfer.
The mode is encoded in the following way:

mode [1:0] operation
00 DMA read (from memory to GIO)
10 DMA write (from GIO to memory)
X1 accumulation buffering (unimplemented)

• GIO COUNT
This register contains two down counter fields that contain state normally
used only for context switching. Most users will not want to read or write
this register.

Zoom Count is an 10-bit unsigned integer that specifies the number of
times to transfer the first (current) line before moving onto the next line.

14

This field is automatically loaded with the value being written into Line
Zoom when GIO STRIDE is written, and cleared when GIO MEMADRD
is written.

Byte Count is an 16-bit unsigned integer that specifies the number of bytes
to transfer in the fast (current) line before decrementing the Zoom Count.
This field is automatically loaded with the value being written into Line
Width when GIO SIZE is written, and cleared when GIO MEMADRD is
written.

Since this register gets initialized by writes to GIO STRIDE, GIO SIZE or
GIO MEMADRD, if any other value is intended by the user (most likely
the kernel doing a context switch), GIO COUNT should be written after
those registers.

The following fragment of C code describes the DMA algorithm. Note that
all variables are initialized using either the last value in the register (as when
resuming a stopped DMA), or as a result of a direct register write (as when
restoring the entire context). When initializing a DMA for the first time, zoom-
count and bytecount are automatically initialized with linezoom and linewidth
respectively, with the option of being modified.

while (linecount > 0) {

linecount--;

while (zoomcount > 0) {

zoomcount--;

while (bytecount > 0) {

bytecount--;

transfer(gio_addr, memory_addr, mode, fill);

if (dir == UP)
memory_vaddr++;

else

memory_vaddr--;

bytecount = linewidth;

}

if (zoomcount > 0)

if (dir == UP)

memory_vaddr -= linewidth;

else

memory_vaddr += linewidth;

}

zoomcount = linezoom;

memory_vaddr += stride;

}

15

Name Access Field

GIO MASK RW GIO Mask[31:0]
GIO SUBST RW GIO Substitute Value[31:0]

GIO CAUSE RW Unused Complete Clean TLB miss Page Fault
GIO CTL RW T Limit S Limit DecSlv Xlate IntMask Cache Size Page Size PTE Size

Table 3: Kernel DMA Control Register Summary

5.3 Control Registers

The GIO DMA master control registers are split into two sets that are addressed
within different page boundaries. This is for security reasons. One set of regis-
ters (see table 4) can be mapped as accessible to the user (and kernel, of course)
while the other set of registers (see table 3) can be accessed only by the kernel.

5.3.1 Protected Registers

• GIO MASK
This register contains a 32-bit field that the operating system can write to
individually specifies how each corresponding bit of the user-specified GIO
physical address gets transformed before accessing the GIO device. A one
in a certain position indicates that the DMA engine should substitute the
corresponding bit of the GIO SUBST register instead of the user-specified
bit. A zero in the specific bit position in the GIO MASK indicates that
the user address bit should be used as-is.

• GIO SUBST
This 32-bit register contains the values to be subsituted for the user speci-
fied value according to the GIO MASK register to form the actual physical
address used to access a GIO device.

• GIO CAUSE
All MC interrupt events (except for bus errors) are multiplexed onto a
single MC interrupt pin. The CPU has to read this register in MC to
determine the cause of the interrupt. The fields of this register are self-
explanatory single bit flags that are set if the respective event caused the
interrupt.

Upon completion of a DMA transfer, the complete (GIO CAUSE[3]) field
is set, and, if the IntMask field of GIO CTL had been set, an interrupt is
asserted on the interrupt pin.

There are also three kinds of DMA faults that can cause interrupts. These
are the result of an attempted write to a page that has been marked as

16

clean, indicated by Clean (GIO CAUSE[2]), a missing or invalid TLB entry
during address translation, indicated by TLB miss (GIO CAUSE[1]), or a
missing user data page, indicated by Page Fault (GIO CAUSE[0]), at the
end of a lookup.

The CPU can clear interrupts by writing zeros to this register.

• GIO CTL
This register contains six control fields that are used in configuring the
virtual DMA system. Most of these fields will not change after boot-time
initialization. The only likely exception to this rule is if the kernel wishes
to do an DMA directly to/from physical memory space, it would need to
clear the Xlate bit.

The T Limit field (GIO CTL[29:20]) is a 10-bit unsigned integer that
specifies the maximum number of GIO bus cycles that the DMA engine
can hold the GIO bus before relinquishing it back for rearbitration, giving
the CPU a chance to make external accesses.

The S Limit field (GIO-CTL[16:12]) is a 5-bit unsigned integer that spec-
ifies the maximum number of secondary cache lines (R4000SC only) that
the DMA engine can snoop and transfer before relinquishing the GIO bus
back for rearbitration, again giving the CPU a chance to make external
acceses.

Periodically allowing the CPU to make external accesses MC registers,
memory or GIO devices is essential during long DMA transfers, since it
permits the CPU to service any interrupts that occur during that transfer.

GIO CTL[9] contains the DecSlv field which, if set, indicates that that the
(graphics) GIO slave supports the true GIO bus protocol for decrementing
DMA. If the slave does not support the GIO bus protocol for decrement-
ing DMA, clearing this bit allows memory address decrementing DMA
transfers, with the restriction that the transfers must be word aligned in
memory. This bit can be programmed on power-up, and should not need
to be changed later.

GIO CTL[8] contains the Xlate field which, if clear, causes the DMA hard-
ware to interpret GIO MEMADR as a physical address. This field should
only be cleared during system set up DMA, since the user should not have
access to the physical address space. This feature is useful for debugging
and when the operating system wishes to make a DMA on behalf of itself
to/from a known physical memory block.

The IntMask field (GIO CTL[4]) is the mask for interrupts generated by
the GIO DMA master. Currently the DMA engine can produce an inter-
rupt due to four events in addition to MC’s bus error interrupt. Of the
four interrupt causes Clean, TLB Miss, Page Fault and DMA Complete,
only the latter is maskable by IntMask. This mask should be accessible

17

Name Access Field

GIO STDMA RW 0 Start
GIO RUN R 0 Run Cause

Table 4: User DMA Control Register Summary

only to the kernel who should clear it before handing control back to the
user. This prevents the DMA complete event from causing an interrupt
during user-initiated DMA.

The Cache Size field (GIO CTL[3:2]) specifies the cache line size in terms
of x, where line size = 16 × 2x bytes.

The Page Size field (GIO CTL[1]) specifies the page size. A value of zero
implies that pages are 4Kbytes, and a value of one implies 16Kbytes.
Finally, the PT Size field (GIO CTL[0]) specifies the number of bytes per
page table entry, so that the page table may be indexed correctly. A value
of zero implies 4 bytes per PTE and a value of one implies 8 bytes per
PTE.

5.3.2 Unprotected Registers

• GIO STDMA
This register contains a single-bit field that specifies the run status of the
DMA engine. The setting of Start (GIO STDMA[0]) by the CPU will
cause the DMA engine to begin transferring data according to the current
state of the descriptor registers. This bit should also be written to restart
a DMA transfer that had been waiting for a fault to be handled by the
CPU.

By writing a zero, the CPU can stop the current DMA. The response time
from the software clearing the Start bit to the DMA engine stopping is
not guaranteed since it depends on some event that disturbs the normal
operation of the DMA transfer. This event might be dirty cache data in
response to a snoop or any one of the three faults.

Before being stopped by the processor, the DMA engine needs to proceed
with the transfer up to a point where the entire state of the transfer can
be captured in the descriptor registers, in case the stop is due to a context
switch.

• GIO RUN
This register contains the run status of the DMA engine. A single bit
field Run (GIO RUN[4]) can be read (polled) by the CPU to determine

18

Name Access Field

GIO TLBHI RW VPNhi[31:21] Unused (all zeros)
GIO TLBLO RW Unused PTEBase[25:6] Unused V[1] Unused

Table 5: µTLB Entry Format

if a DMA transfer is in progress. A one in this bit location means that
the transfer is currently in progress with no unserviced faults. A zero
means that the DMA has stopped either due to successful completion or
due to a fault. The exact cause can be determined by examining the
remaining status bits in this register. A read-only copy of the cause field
of the GIO CAUSE register (GIO RUN[3 downto O]) is available for this
purpose.

Note that while polling this register, it is possible to find that one or more
Cause bits are a one at the same time that the Run bit is also a one. This
is due to the fact that faults can modify the Cause field before the DMA
engine has had time to fully wind down, as indicated by the Run bit still
being a one.

5.4 µTLB

From the CPU point of view, the µTLB consists of a set of protected registers
that can be read or written like any other register. The DMA engine relies
totally on the CPU to ensure that entries marked as valid correspond to the
current state of the virtual memory system. The DMA engine itself cannot
modify the contents of these registers.

Each of the four µTLB entries consists of two registers; GIO TLBHI[n] and
GIO TLBLO[n], where n is the entry number (0 through 3 inclusively). The
format of these registers is shovn in table 5.

• GIO TLBHI
This register contains the VPNhi field which is the CAM tag that is asso-
ciatively looked up by the VPNhi of the user’s virtual address. The exact
bits that define the user’s VPNhi depend on the page size as defined in
the GIO CTL control register.

• GIO TLBLO
This register contains the PTEBase for the page table that maps the
VPNhi address range. The number of significant bits and how they are
combined with the user’s VPNlo to yield a PTE address depend on the
definition of the page size defined in the GIO CTL control register. The
remaining bits of this register are unused and return zero when read.

19

The V field is the hardware valid flag which must be cleared by the CPU
if that entry becomes invalid for any reason. The CPU must set this bit
when writing a valid µTLB entry. The remaining bits of this register are
unused and return zero when read.

The format of the GIO TLBLO is chosen for maximum compatibility with
the R4000 (MIPS II & III) EntryLo format.

20

