
July 18, 1996

GBE ASIC spec for REV1.1 1 of 50

GBE ASIC spec for REV1.1
Rob Liston

Steve Ahlgrim
Mike Nielsen
Kamran Izadi

The Moosehead system architecture is centered around a unified main memory system which is capable of supplying
2.1 GB/s peak bandwidth. All devices in the system share this memory, including the CPU, CRIME, MACE, VICE, and
GBE. The GBE chip is responsible for retrieving several data streams from main memory, formatting them according to
SGI back end convention, and driving an external DAC at a dot clock of 140 MHz. The GBE chip contains a programma-
ble video timing controller, hardware cursor, 4608 entry color map, and a 256 entry gamma map. A two-dimensional RLE
encoded DID mechanism provides pixel by pixel control of the display mode. GBE manages the simultaneous fetching of
overlay and normal bitplane streams. The overlay stream is 8 bit color indexed. The normal stream can be 16 or 32 bits
deep, and can be split using the DIDs to provide 8+8 and 16+16 double buffering. These streams are mixed, along with the
hardware cursor, in the XMAP stage under control of the DIDs.

GBE runs at 66 MHz and 140 Mhz, uses 0.5uM CMOS technology at 3.3V, and is housed in a 592_380 TBGA pack-
age. The die size is 573 mils2.

•16 or 32 bit normal planes
•8 bit overlay planes
•multimode display
•4608 entry color map
•256 entry gamma map
•32x32, 3 color cursor
•programmable video timing
•stereo goggle support
•flat panel support
•up to 140 MHz dot clock (supports 1280x1024 @ 76 Hz refresh)
•I2C interfaces for DDC (Display Data Channel) support, flat panel control
•high resolution screen capture with flicker filter

July 18, 1996

2 of 50

July 18, 1996

3 of 50

1.0 Chip Interfaces

This section describes the external chip interfaces of GBE. There are three main ports: the CRIME interface, the
DAC/flat panel interface, and the I2C interface. The GBE pinout is as follows.

Pin name I/O type I/O cell JTAG Pin # Description

pad_data[63:0] 3v TTL bidi, 4mA PT3B02 yes data bus to CRIME
pad_token_in 3v TTL input PT3D01 yes from CRIME
pad_token_out 3v tristate output,

4mA
PT3T02 yes to CRIME

pad_ref67 3v TTL input PT3D01 no 66.6 MHz reference clock
pad_ref133 3v TTL input PT3D01 no 133.3 MHz reference clock
pad_reset_n 3v TTL input PT3D01 yes active low reset, internally synchronized
pad_pclk_in_pos differential + PG3D00 no differential pclk in
pad_pclk_in_neg differential - PG3D01 no differential pclk in
pad_pclk_in 3v TTL input PT3D01 no dot clock in from external PLL (optional)
pad_half_pclk_out 3v tristate output,

24mA
PT3T07 no 1/2 frequency dot clock to flat panel

pad_pclk_out 3v tristate output,
24mA

PT3T07 no 140 MHz dot clock to DAC

pad_red[7:0] 3v tristate output,
4mA

PT3B02 yes digital red to DAC/flat panel (also pll test in)

pad_grn[7:0] 3v tristate output,
4mA

PT3B02 yes digital green to DAC/flat panel (also pll test
in)

pad_blu[7:0] 3v tristate output,
4mA

PT3B02 yes digital blue to DAC/flat panel (also pll test in)

pad_alpha[7:0] 3v tristate output,
4mA

PT3B02 yes alpha bits for future use

pad_did[1:0] 3v tristate output,
4mA

PT3T02 yes did bits out for diagnostic purposes

pad_blank_n 3v tristate output,
4mA

PT3T02 yes blank to DAC

pad_sync_n 3v tristate output,
4mA

PT3T02 yes sync to DAC

pad_hdrv, pad_vdrv 3v tristate output,
4mA

PT3T02 yes CRT timing signals

pad_fp_hdrv, pad_fp_vdrv,
pad_fp_de

3v tristate output,
4mA

PT3T02 yes flat panel timing signals

pad_frmlock 3v TTL input PT3D01 yes from I/O chip, locks vertical sync
pad_crt_scl_in, pad_crt_sdc_in 3v TTL input, schmitt PT3D21 yes crt i2c clock,data input
pad_crt_scl_out,
pad_crt_sdc_out

3v tristate output,
4mA

PT3T02 yes crt i2c clock,data output, external 4.7k pullup

pad_fp_scl_in, pad_fp_sdc_in 3v TTL input, schmitt PT3D21 yes flat panel i2c clock,data input

4 of 50

1.1 CRIME interface

The CRIME to GBE interface is a point to point, burst oriented protocol with a peak bandwidth of 1 GB/s. The data
path between chips consists of a 64 bit data bus toggling at 133 MHz. The interface is centrally clocked using a 66 MHz
clock, with PLL cells in each chip to set the pin to core flip-flop delay to 0.0 ns. Care must be taken in the board level
clock routing to ensure 0.0 ns clock skew at the pins of GBE and CRIME. The timing budget assumes minimum 1.0 ns
and maximum 5.5 ns clock to out, plus chip and board level clock skew. Input path timing requires 0.0 ns hold time. The
data bus input and output flip flops are clocked at 133 MHz.

The CRIME interface is based on the simple notion of a point to point link with one sender and one receiver. A full
handshake is used to provide an orderly transition when swapping receiver and sender. There are no explicit flow control
signals between the chips. All flow control is performed implicitly through the data lines. The 64 data lines are clocked at
133 MHz and are internally demultiplexed to a 128 bit wide bus running at 66 MHz, synchronous to ref67. Therefore, the

pad_fp_scl_out,
pad_fp_sdc_out

3v tristate output,
4mA

PT3T02 yes crt i2c clock,data output, external 4.7k pullup

pad_f2rf 3v tristate output,
4mA

PT3T02 yes stereo goggle control

pad_sense_n 3v TTL input PT3D01 yes monitor sense input from DAC
pad_aux[9:0] 3v TTL bidi, 4mA PT3B02 yes programmable auxiliary pins
pad_xin xtal pad, low fre-

quency
PT3D01 no dot clock PLL crystal (20 MHz)

pad_spll_apwr, pad_spll_agnd,
pad_spll_vccok

none none no system clock PLL power

pad_spll_fb 3v tristate, 4mA PT3T02 no system pll feedback pin
pad_dpll_apwr, pad_dpll_agnd,
pad_dpll_dpwr,pad_dpll_dgnd
pad_dpll_pplus, pad_div2clr

none none no dot clock PLL support

pad_spll_teste_n system pll test enable input, active low
pad_spll_iddq system pll reset, active high
pad_spll_bypass system clock power down/bypass, active high
pad_dpll_teste dot clock pll test enable, active high
pad_dpll_orclrn dot clock reset, active low
pad_dpll_bypass dot clock power down/bypass, active high
pad_bist_a10, pad_bist_a11 yes bist address inputs for 4K CMAP RAMs
pad_trst_n 3v TTL input PT3D01 no JTAG reset, active low
pad_tdi 3v TTL input PT3D01 no JTAG test data in
pad_tms 3v TTL input PT3D01 no JTAG test mode select
pad_tck 3v TTL input PT3D01 no JTAG test clock
pad_tdo 3v tris. output, 4mA PT3T02 no JTAG test data out
pad_io_off_n 3v TTL input PT3D01 no tristate all outputs except for tdo, active low

Pin name I/O type I/O cell JTAG Pin # Description

July 18, 1996

5 of 50

interface is logically 128 bits, and the smallest individual data transfer is 128 bits. Data transfers consist of a 128 bit
header, optionally followed by some number of 128 bit data cycles. The header is formatted as follows.

1.1.1 CRIME as sender commands

When either CRIME or GBE is the sender, it must drive NOP commands by default. CRIME is the sender on system
reset, and must drive NOP commands during and after the reset period. This is to ensure that when GBE comes out of
reset and begins receiving, it will be sampling known data.

CRIME can write to GBE using the PIO write command. All writes are 32 data bits, and addresses are assumed to be
24 bits, and word-aligned (addr[1:0}= “00”). Address bits 31:24 are ignored. There is no flow control for PIO writes, so
GBE must be able to accept writes at the full rate of 66 MHz. The only exception is color map writes, which go through a
64 deep fifo and must be throttled by software. The 24 bit address should be based at the start of the GBE address space.

PIO reads from GBE are executed as a split transaction. To initiate the read, CRIME sends a PIO_READ_REQ com-
mand, which includes a 24 bit address field. GBE will respond with a PIO_READ_DATA command. There can only be
one outstanding PIO read request. All reads are 32 bits, and the 24 bit read address is 32-bit aligned and based at the start
of the GBE address space.

CRIME uses the DMA_READ_DATA command to send DMA data to GBE. The header contains a 5 bit COUNT
field, which specifies the number of 256 bit data words which immediately follow the header. For example, if COUNT=
“00002”, then the 128 bit header will be followed by 4 cycles of 128 bit data. DMA transfers are always aligned on 256 bit

cmd[3:0] size[4:0] unused[22:0] reserved[31:0] data[31:0] addr[31:0]
127:124 123:119 118:96 95:64 63:32 31:0

NOP
0000 - - - - -

cmd[3:0] size[4:0] unused[22:0] reserved[31:0] data[31:0] addr[31:0]
127:124 123:119 118:96 95:64 63:32 31:0

PIO WRITE
0001 - - - DATA ADDR

cmd[3:0] size[4:0] unused[22:0] reserved[31:0] data[31:0] addr[31:0]
127:124 123:119 118:96 95:64 63:32 31:0

PIO READ REQUEST
0010 - - - - ADDR

cmd[3:0] size[4:0] unused[22:0] reserved[31:0] data[31:0] addr[31:0]
127:124 123:119 118:96 95:64 63:32 31:0

DMA READ DATA
0011 COUNT - - - ADDR

cmd[3:0] size[4:0] unused[22:0] reserved[31:0] data[31:0] addr[31:0]
127:124 123:119 118:96 95:64 63:32 31:0

6 of 50

boundaries, and are always multiples of 256 bits. The address is returned with the data for debugging purposes; CRIME
always returns DMA data in the same order that it was requested by GBE.

CRIME sends a DMA_WR_DONE command to GBE to indicate that a DMA write has been flushed to main mem-
ory. CRIME has one DMA write buffer, and can therefore only handle one outstanding DMA write. GBE must wait for a
DMA_WR_DONE message from CRIME before issuing a new DMA write.

1.1.2 GBE as sender commands

GBE sends a PIO_READ_DATA command to complete the PIO read transaction. GBE always returns 32 bits of data
in the data field. The read address is returned for debugging purposes.

GBE sends a DMA_READ_REQ command to request a block of main memory. DMA reads are executed as split
transactions, and CRIME contains a memory transaction queue which can hold up to 16 requests. As a practical matter, it
is essential for GBE to keep the request queue non-empty, so that the memory controller inside CRIME will operate at full
bandwidth. The ADDR field is 256 bit aligned, so bits [4:0] must be “00000”. The COUNT field specifies the number of
256 bit words to transfer. CRIME guarantees that it will return DMA_READ_DATA blocks in the same order that they
were received.

GBE uses the DMA_WRITE_DATA header, followed by COUNT*2 data cycles, to transfer DMA write data from
GBE to one of the two DMA write buffers inside CRIME. The DMA will also be queued in the CRIME memory transac-

DMA WRITE DONE
0100 - - - - ADDR

cmd[3:0] size[4:0] unused[22:0] reserved[31:0] data[31:0] addr[31:0]
127:124 123:119 118:96 95:64 63:32 31:0

PIO READ DATA
0101 - - - DATA ADDR

cmd[3:0] size[4:0] unused[22:0] reserved[31:0] data[31:0] addr[31:0]
127:124 123:119 118:96 95:64 63:32 31:0

DMA READ REQUEST
0110 COUNT - - - ADDR

cmd[3:0] size[4:0] unused[22:0] reserved[31:0] data[31:0] addr[31:0]
127:124 123:119 118:96 95:64 63:32 31:0

DMA WRITE DATA
0111 COUNT - - - ADDR

cmd[3:0] size[4:0] unused[22:0] reserved[31:0] data[31:0] addr[31:0]
127:124 123:119 118:96 95:64 63:32 31:0

July 18, 1996

7 of 50

tion queue, to be executed in turn. The COUNT refers to 256 bit words, and the address is 256 bit aligned. GBE must
ensure that no more than two DMA writes are pending at any time.

GBE sends an interrupt command to indicate the vertical retrace interrupt. Note that this is a one-shot event, so the
interrupt must be latched inside CRIME. The lower 4 bits of the address field (MASK) identify the source of the interrupt
within GBE. If a MASK bit is ‘1’, then the corresponding interrupt is set inside CRIME. If the MASK bit is ‘0’, there is no
change to the interrupt register in CRIME. CRIME is only capable of clearing the interrupt.

To summarize the important assumptions:

•only 1 outstanding PIO read allowed

•only 1 outstanding DMA write allowed

•only 8 outstanding DMA reads/writes allowed

•no limits on PIO writes

•all PIO is 32 bits data, 24 bits address, 32 bit aligned, GBE start address => 0x000000

•all DMA is 512 byte aligned, multiples of 256 bits

•sender must drive NOP commands by default, also during reset

•data is always sent in big endian order

•no 8K DRAM page crossings

1.1.3 Transfer of mastership

The command/data structure describes the mechanism for transferring data. To complete the protocol we need to
know how the two devices swap roles as sender and receiver. This is accomplished using the token_in and token_out sig-
nals. On the board, CRIME’s token_out should be wired to GBE’s token in, and GBE’s token_out should be wired to
CRIME’s token_in. On system reset, CRIME is always the sender, which it indicates by driving token_out high and driv-
ing NOP commands. On reset, GBE is idle and will drive its token_out low. This state will continue until, through PIO
programming, GBE needs to become the sender. GBE will then drive its token_out high, and wait for its token_in to go
low. As soon as GBE detects that token_in is low, it should begin driving the data bus. At this point, GBE is the sender and
CRIME is the receiver. The sequence is identical to switch mastership back to CRIME.

INTERRUPT
1000 - - - - MASK

cmd[3:0] size[4:0] unused[22:0] reserved[31:0] data[31:0] addr[31:0]
127:124 123:119 118:96 95:64 63:32 31:0

0

0 1

0 1 2 3

127 0

06364127

127 0313263649596

8 of 50

The following timing diagram shows the transition from Device A sending to Device B sending.

Note that the current sender should not release the bus until it has completed sending all of its pending commands.
This will help to minimize the total number of bus turn arounds.

mclk

A:token_out

A:token_in

A:data_oe_n

B:data_oe_n

data[63:0]
B B B B B B B B B BA A A A A A A A

July 18, 1996

9 of 50

1.1.4 CRIME side of GBE interface, block diagram

Note that for DMA writes, the memory request is issued after the last data has been written into the 16x256 write
buffer. On DMA reads, the data may be transferred as soon as it arrives from the memory arbiter, since the memory data
rate is twice the GBE bus interface data rate.

bus controller

CPU interface

GBE

SYSAD

PIO
write
buffer

PIOwrite

PIO
read
request

PIO
read
data

PIO
write
ack

DMA write request
DMA read request

memory
arbiter

16x256 read buffer

16x256 read buffer

16x256 write buffer

256

256

memory request queue
MEM

interrupt

10 of 50

1.1.5 Clocking scheme

The following logical circuits are used to clock data in and out of GBE.

1.2 DAC / flat panel interface

GBE contains a programmable dot clock PLL, which generates a pixel clock up to 140 MHz. This clock drives the
pixel pipeline and the video timing controller. The pixel clock is output from GBE on the pclk_out pin. The interface to
the DAC consists of pclk_out, red[7:0], grn[7:0], blu[7:0], blank_n and sync_n. In addition, hdrv and vdrv provide sepa-

clk

data(63:0)

oe_n

din(127:0)

dout(127:0)

token_in

token_out

64

64

64

data(63:0)

din(127:64)

din(63:0)

le
0=latching
1=transparent

clk clk

clk

clk2xclk
0=transparent
1=latching

le

S

0

1

delayed clk

127:64

63:0

oe_n

data(63:0)
128 64dout(127:0)

clk

clk
token_out

clk

token_in

01 23 45

0 1 2 3 4 5 6 7

67

0 1 2 3 4 5 6 7

01 23 45 67

01 23 45 67

0 1 2 3 4 5 6 7

July 18, 1996

11 of 50

rate monitor sync signals. An input status bit is provided for the sense_n output of the DAC. This allows software to detect
whether the monitor is plugged in. The pixel clock can be driven externally or from the internal pixel PLL

The flat panel display requires a horizontal and vertical sync signal which is active for the entire blanking period. In
order to simultaneously drive the CRT and flat panel displays, GBE produces fp_hdrv and fp_vdrv specifically for the flat
panel. In addition, an fp_de (flat panel display enable) signal is produced, which functions as a flat panel blanking signal
but with slightly different timing than the CRT blank_n.

1.3 I2C interface

GBE provides an I2C interface in order to support the DDC (Display Data Channel). DDC is a VESA standard which
allows two way communication between the computer and the monitor. This will allow software to read the monitor tim-
ing information and automatically program the video timing controller inside GBE. In addition, DDC will allow software
access to additional monitor functionality. GBE provides separate input and output pins for the open drain SDA and SCL
lines so that external high power drivers can be used.

A separate I2C interface is also used to control the flat panel display.

1.4 Miscellaneous signals

GBE provides 10 general purpose auxiliary pins for unforeseen uses. These pins are programmed using the CTRL-
STAT register, and can be individually tristated.

2.0 Functional Description

The primary function of GBE is to fetch several pixel streams from main memory, format and blend them according
to the DID stream, and output them to the CRT in real time. The internal block diagram for GBE reflects these functions.
There are eight major functional blocks:

•DID pipeline. This logic fetches the DID frame and line tables and converts them into a real time DID stream.
•Normal planes pixel fetch. This block fetches the normal planes pixel stream (16 or 32 bits deep).
•Overlay planes pixel fetch. This block fetches the 8 bit overlay planes.
•Cursor. 32x32, 3 color hardware cursor.
•XMAP-CMAP-GAMMA. Using the DID stream as a control, blend the overlay, normal, and cursor pixels.
•Video timing. Fully programmable, handles stereo goggles.
•DMA/bus control. Handles CRIME interface, internal registers.
•Video capture. Optionally filters the high res output, sends screen pixels back to main memory.

12 of 50

The following block diagram shows the major blocks inside GBE. High speed RAMs are shaded.

64x128

8x128

DMA

DMA

(overlay pixel fetch)

(overlay tile ptr)

overlay
fetch

overlay
pop

8

128
overlay pixels

normal
fetch

16x128

128x128 normal
popDMA

(normal pixel fetch)

DMA
(normal tile ptr)

32
normal pixels

16x128 32x128

frame table line table

DMA
(frame table)

DMA
(line table)

wid 32x13

13128128
did expand wid stream

cursor

overlay pixels
normal pixels
wid stream

xmap
cmap gamma r

g
b

32+13 24

32x32x2

(3)4096x8

64x37PIO
fifo

(3)256x8
(3)512x8

128 128

128

to video
capture

24

July 18, 1996

13 of 50

2.1 Pixel formats

Moosehead pixels are 8, 16 or 32 bits deep. The following formats are supported in GBE.

2.2 Tile formats

In order to increase the amount of 2D spatial locality for screen rendering, Moosehead stores screen pixels in tiled
format. Tiles can be 8, 16, or 32 bits per pixel, and are always 64K bytes in size and are aligned on 64K byte boundaries.
The tiles are organized as 128 lines by 512 bytes. The pixel width of a tile is 512 divided by the pixel depth. That is, 8 bit
pixels are tiled 512x128, 16 bit pixels are tiled 256x128, and 32 bit pixels are tiled 128x128. The frame buffers are built
out of an integral number of tiles, possibly with unused pixels on the right and bottom edges. For example, a

h/v/f filter

32x128

32x128

2x128

video
capture
DMA

768x24

12824 DMA

DMA

(from cmap)

RGB8

RGB5

RGB4

RG3_B2

I12

I8

R G B A

R G B

R G B

I

I

R G B

8 8 8 8

31 24 23 16 15 8 7 0

15 14 10 9 5 4 0

5 5 5

15 12 11 8 7 4 3 0

4 4 4 4

7 5 4 2 1 0

3 3 2

15 11 012

12

7 0

8

14 of 50

1280x1024x32 frame buffer exactly occupies 10x8 tiles. Pixels appear in big endian format within the 256 bit memory
width, where the least significant word corresponds to the leftmost screen pixel.

2.3 Overlay planes

The overlay planes are 8 bits per pixel deep and operate in color index mode. An overlay pixel with value 0x00 will
be transparent. The overlay pixels always index into the last 256 entry window in the 4608 entry color map.

The overlay frame buffer is composed of 64K byte tiles which are aligned on 64K byte boundaries. The tiles do not
have to be contiguous in physical memory. GBE reads a list of tile pointers to determine the addresses of the overlay tiles.
The tile pointer list entries are 16 bits each, which correspond to the upper 16 bits of the physical tile address. The tile
pointer list must start on a 32 byte boundary, and must not cross an 8K DRAM page boundary. The tile pointers are
ordered from top to bottom, left to right. In other words, the first entry in the tile pointer list is the upper-left tile, followed
by the rest of the tiles in scan order. If a tile pointer entry is 0x0000, then GBE will not issue any DMA transactions for
that tile, producing 0x00 value pixels instead. If possible, software should detect the case of an entirely transparent over-
lay tile, and set those tile pointers to 0x0000. This will minimize the impact of overlay DMA on the rest of the system.

Note that the overlay and normal planes have the same width and height in pixels, and the same height in tiles. The
width in tiles may be different due to the variable pixel width of the normal planes tiles. The height in pixels is specified
using the fb_height_pix field in the FRM_1 register. In order to simplify the hardware, the width is specified by the number
of integral tiles and the width of the right hand side tile in 32 byte units. These are specified in the ovr_width_tile and
ovr_rhs registers. This means that that the width of the screen in pixels must be evenly divisible by 32. If the screen is
tiled into an integral number of pixels, then ovr_rhs should be “00000”.

GBE does not support display ID bits for the overlay planes. The 8 bits of overlay color index always point to entries
4352 to 4607 in the color map. Overlay pixels always pass through the gamma map. If the overlay pixel is 0x00, then the
overlay is transparent and the normal planes are displayed instead. Overlay can be completely disabled by setting ovr_d-
ma_enable to ‘0’, in which case no memory DMA transactions will be issued and zero value pixels will be generated. If
possible, software should detect the case when the entire overlay frame buffer is zero, and completely disable overlay
DMA. This will help lower the bandwidth consumption of GBE. The following registers control the operation of the over-
lay planes.

The pixel buffering for the overlay planes consists of a single 64x128 dual port RAM. This RAM is internally parti-
tioned into two 512 byte buffers, which are used in ping pong fashion to store incoming DMA pixels. The resulting pixel
stream is then sent to the XMAP stage. GBE reads the entire overlay tile pointer list into a 4x128 RAM at the beginning of
vertical blanking.

ovr_width_tile

31 08 7

ovr_tile_ptr

0531

OVR_0

OVR_1

ovr_dma_enable

ovr_rhs

12

July 18, 1996

15 of 50

2.4 DID table

SGI graphics hardware traditionally supports a multimode display in which each pixel can have a different display
mode. This is useful for multiple double buffered windows, and different color maps for different windows. GBE inter-
prets an RLE encoded DID table, expanding it into a real time stream of DIDs. The DID stream is then used to format the
raw pixel stream in the XMAP block. The DID table resides in main memory, and is transferred to GBE buffers as needed
using DMA.

The DID table consists of a frame table and a set of line tables referenced by the frame table. Each frame table entry
describes a vertical run of lines that have the same line table. Each line table describes a horizontal run of pixels that have
the same DID. The frame table is an array of 32 bit entries as shown below:

Each line table is an array of 16 bit entries of the form shown below:

The frame table and line tables must be packed into one 64k byte DID table, which is also aligned on a 64k boundary.
The base address of the DID table is specified in the did_base register, which specifies the upper 16 bits of the physical
address of the DID table. If the did_dma_enable bit is set to ‘0’, then GBE will not perform any DID DMA, and will pro-
duce “00000” value DIDs instead.

The yend field of a frame table entry specifies the last Y coordinate of the vertical line run, where yend=0 corresponds
to the first active line of a frame. If at the end of the current line table, the yend field does not match, the line table is reex-
ecuted; otherwise, the frame table advances to the next frame table entry. The block field specifies the 512 byte block
number of the display table that contains the line table. The offset field specifies the 16 bit offset into the block at which
the line table starts. That is, the physical byte address of the line table start did_base + 512*block + 2*offset. A line table
must not cross a 512 byte boundary. This limits a line table to a maximum of 256 entries. As many line tables as possible
should be packed into a single 512 byte block, without violating the boundary. The frame table may reference a line table
multiple times.

The xend field of a line table entry specifies the last X coordinate of the horizontal pixel run, where xend=0 corre-
sponds to the first active pixel of a line. When the xend field matches, the line table advances to the next entry. The last
entry in the line table should have an xend value of 2047.

yendoffsetblock

010111819252631

11876

(in memory)

xenddid

0101115

115

(in memory)

16 of 50

The did field of a line table entry indexes a 32 entry window table to obtain the actual display mode bits. This level of
indirection allows change of window mode such as swapbuffers() without updating the frame and line tables. The window
table is a 32x13 RAM inside GBE. The 32 window table entries are organized as follows.

As an implementation detail, the logic which processes the line table entries requires some care. The entire line table
is fetched into a 512 byte registered RAM, organized as 16x128. Therefore in each 128 bit location, 8 line table entries are
simultaneously available out of the RAM. However, because the RAM is registered there is a two clock pipeline delay
from the time the new read address switches to the time the new data switches. The DID logic must prefetch the next 128
bits of line table in advance, so that an uninterrupted stream of real time DIDs is produced.

The frame table RAM is only 256 bytes, organized as 16x128. The size is reduced because of the very small band-
width requirements of frame table fetch.

The following registers control the operation of the DID mechanism inside GBE.

2.5 Normal planes

The normal planes fetching logic behaves nearly identically to the overlay fetch. The normal planes are composed of
64K tiles, which are addressed by a tile pointer table to remove the requirement that the tiles be contiguous in physical

buf: 01=lower half, 10=upper half, 11=both

typ: 0=I8, 1=I12, 2=RG3B2, 3=RGB4,
4=RGB5, 5=RGB8

cm: upper 5 bits of cmap index for I8 mode

gm: 0=enable gamma, 1=disable gamma

buftypcmg

351 2

12 0
aux

2

aux: output to flat panel adapter

WID[0..31]
124591011

0151631

did_base

wid_entry

012

DID

WID[0..31]

did_dma_enable

July 18, 1996

17 of 50

memory. The normal planes can be 8, 16, or 32 bits deep, as specified by the frm_depth register. Like the overlay planes,

normal plane DMA can be completely disabled by setting frm_dma_enable, to ‘0’. This should be done whenever the
entire screen is blanked, e.g. during power saving modes. GBE reads the tile pointer list for the entire frame at the begin-
ning of vertical blanking. Note that the fb_height_pix field is also used by the overlay planes logic.

2.6 XMAP

The XMAP block is responsible for selecting between the cursor, overlay, and normal pixels. If the cursor pixel is
opaque, then it is selected. Otherwise, if the overlay pixel is non-zero, then it is selected. If the cursor and overlay are both
transparent, then the normal planes are selected. The XMAP block also uses the DID stream to demultiplex the front or
back buffers from a double buffered 16 or 32 bit pixel.

2.7 Color map

The color map takes the pixel stream from the XMAP block and performs any necessary color lookup to produce a 24
bit RGB8 pixel stream. It is organized as three 4608x8 maps which are indexed together for I8 and I12 modes, or on a
component basis for RGB modes to support X direct color visuals.

RG3B2, RGB4, and RGB5 pixels are first expanded to RGB8 by bit replication. Diagram 1 shows how 2, 3, 4, and 5
bit components are expanded to 8 bits.

If the cm field of the DID is zero, the resulting RGB8 pixels are output to the gamma stage. If cm is nonzero, then the
RGB8 pixels are used to index the color map using the following algorithm. The cm field is concatenated with each of the
R, G, B components to produce 3 13 bit indexes into the color map. The cm field provides the upper 5 bits, and the 8 bit
color index is the low order bits. The RGB components are independently mapped through the color map and are then out-
put to the gamma stage. Mapping RGB values on a component basis is needed to support the direct color visual in X-win-
dows.

I12 pixels are passed through the color map, using locations 0..4095. I8 pixels are concatenated with the DID cm field
to produce a 13 bit color index : cm(4 downto 0) & i8(7 downto 0).

frm_rhs frm_width_tile

fb_height_pix

31 13 12 0

31 16 15 0

8 7

frm_depth

15

frm_tile_ptr

0531

0=8 bpp
1=16 bpp
2=32 bpp

FRM_0

FRM_1

FRM_2

frm_dma_enable

14

18 of 50

The color map is a single port RAM, and so reading or writing it during the active video time will cause visible arti-
facts. Reading of the color map is considered a diagnostic operation. Writes to the color map go through a 64 deep FIFO,
which is used to maximize the throughput of color map updates. The 64 deep color map FIFO is drained during horizontal
and vertical blanking, and is guaranteed not to cause artifacts. Software can read the number of free entries in the FIFO at
any time by reading the cm_fifo register. Note that the actual number of free entries may be greater than the number
returned by reading cm_fifo, but will never be less. Software must ensure that no more than 64 color map writes are pend-
ing in the FIFO at any time. It can do this by writing 64 values to an empty FIFO, and then polling until a low water mark
is detected.

The following registers are used to control the color map.

2.8 Gamma map

The gamma map is organized as three 256x8 maps. Cursor pixels always bypass the gamma map. Overlay pixels are
always gamma corrected. Other pixels are gamma corrected if the gm field of the DID is ‘0’. The following registers are
used to control the gamma map.

r/g/b(1:0) -> r/g/b(7:0)

r/g/b(2:0) -> r/g/b(7:0)

r/g/b(3:0) -> r/g/b(7:0)

r/g/b(4:0) -> r/g/b(7:0)

1:0 1:0 1:0 1:0

2:0 2:0 2:1

3:0 3:0

4:0 4:2

Diagram 1: RGB color expansion

7 0

cm_fifo

red green blue

31 815162324

05

CMFIFO

CMAP[0..4607]

red green blue

31 815162324

GMAP[0..255]

July 18, 1996

19 of 50

2.9 Video timing

The video timing block is responsible for generating all of the pixel synchronous timing signals in GBE. Interlaced
video timings are not supported. The video out circuit in the MACE chip should be used to output interlaced video from
Moosehead.

All video timing signals are derived from a pair of 12 bit counters, vt_x and vt_y. vt_x counts from zero to vt_maxx at
the dot clock frequency, and then resets to zero. vt_y count counts from zero to vt_maxy, incrementing whenever vt_x==-
vt_maxx, and then resets to zero.

The external video timing signals are hdrv, vdrv, sync_n, and blank_n. These signals are not used internally by GBE
and may be programmed arbitrarily. The vertical sync pulse is turned on when vt_y==vt_vsync_on, and is turned off when
vt_y==vt_vsync_off. The horizontal sync is turned on when vt_x==vt_hsync_on, and turned off when vt_x==vt_hsync_off.
The resulting vsync and hsync signals are optionally inverted by setting vt_vdrv_invert or vt_hdrv_invert, and output as
vdrv and hdrv. The hdrv and vdrv signals can be forced high or low by setting vt_vdrv_low or vt_hdrv_low and optionally
inverting (for DPMS signaling).They are also combined into a composite, active low sync_n for use by the DAC. For
monitors which cannot handle sync on green and separate syncs simultaneously, the composite sync_n can also be forced
high or low by setting the vt_sync_high or vt_sync_low bits. The internal horizontal blank signal is turned on when
vt_x==vt_hblank_on, and turned off when vt_x==vt_hblank_off. The internal vertical blank signal is turned on when
vt_y==vt_vblank_on, and turned off when vt_y==vt_vblank_off. Horizontal blank and vertical blank are logically OR’ed,
and the composite active low blank is output on the blank_n pin. The following VHDL code partially describes the circuit
which generates vdrv.

process begin
wait until clk140’event and clk140=’1’;
if vt_y=vt_maxy then

vt_y <= “000000000000”;
else

vt_y <= vt_y + “000000000001”;
end if;

if vt_vdrv_low=’1’ then
vdrv <= vt_vdrv_invert;

elsif vt_y=vt_vsync_on then
vdrv <= not vt_vdrv_invert;

elsif vt_y=vt_vsync_off then
vdrv <= vt_vdrv_invert;

end if;
end process;

GBE supports stereo goggles through the f2rf output. Stereo works by running the monitor at 120 Hz refresh and
alternating left and right eye images on each frame. The stereo goggles use LCD shutters to alternately opaque each eye.
The f2rf output controls the left/right opacity of the goggles. To enable stereo, the video timing should be set to produce a
120 Hz frame rate. Software should create two sets of normal and overlay planes; one for the left eye and one for the right
eye. Once per frame, software will reprogram the ovr_tile_ptr and frm_tile_ptr registers to alternate between left and right
eye. Note that GBE reads the entire tile pointer list at the beginning of vertical blanking, so the tile pointers should be
reprogrammed during the active period with the intent that they take effect the next frame. The f2rf output toggles when
vt_y==vt_f2rf, and can be forced high by writing a one to vt_f2rf_high.

In order to support external frame lock, the framelock input pin causes the vt_y counter to preset to vt_frmlock. The
framelock pin is driven by the MACE chip, and is derived from an external video source. Note that this is not genlock;
only the frame to frame period is locked, not each individual pixel. A specific requirement is that if the GBE frame rate (as

20 of 50

determined by the video timing) and the external frame rate are not exactly the same, the GBE image should not “jump”
or lose pixels. This could happen if the framelock input is asserted at the end of the frame when active pixels are being
displayed. To prevent this, the vt_frmlock register should be set to a line which is advanced slightly in the vertical blank-
ing period. Then, if the frequencies do not match exactly, the high res screen might lose or gain some vertical blanking
time, but will maintain a stable image. The framelock input is internally synchronized to the GBE dot clock, and the rising
edge of the synchronized signal is used to preset vt_y at the next vt_x==vt_maxx.

GBE is specifically designed to simultaneously drive a CRT and a flat panel. Because the flat panel requires slightly
different sync signals, GBE produces fp_hdrv, fp_vdrv, and fp_de independently of the CRT sync signals. fp_hdrv is pro-
duced analogously to the hdrv signal, and is controlled by the fp_hdrv_on and fp_hdrv_off registers. fp_vdrv is produced
analogously to the vdrv, and is controlled by fp_vdrv_on and fp_vdrv_off. fp_de functions much like the CRT blank_n sig-
nal, and is controlled using fp_de_on and fp_de_off.

Four programmable vertical interrupts are provided. Whenever vt_intr_0, vt_intr_1, vt_intr_2 or vt_intr_3 match
vt_y, then the corresponding interrupt is generated. The interrupt is latched inside the CRIME chip, and must be cleared by
writing to CRIME. The host can also read the value of the vt_y register at any time to determine the location of the CRT
beam. These interrupts may be reprogrammed in real time to generate an arbitrary number of interrupt points per frame.

2.9.1 GBE internal timing signals

The video timing block is also responsible for generating the various internal timing information for the GBE pipe-
lines. The normal and overlay plane fetch logic requires a “pixel_enable” signal to enable the flow of pixels into the
XMAP stage. The horizontal component of this signal is controlled using the vt_hpixen_on and vt_hpixen_off registers,
which are compared against the vt_x register. The vertical pixel enable is controlled via the vt_vpixen_on and vt_vpix-
en_off registers, which are compared with the vt_y register. The horizontal and vertical are logically OR’ed to produce the
desired pixel enable signal.

The color map write logic requires a write enable input which is guaranteed to fall within a synchronization boundary
of the blanking period. This signal is generated in exactly the same way as pixel_enable. The following registers control
the “cmap_wr_enable” signal: vt_hcmap_on, vt_hcmap_off, vt_vcmap_on, vt_vcmap_off.

The DID block requires a version of the vt_x and vt_y counters to compare against the xend and yend fields of the
DID tables. These are 12 bit counters and are called did_x and did_y. The did_x counter increments at the dot clock rate,
and presets to the value did_startx when vt_x=vt_maxx. Similarly, the did_y counter increments when vt_y increments,
and presets to did_starty when vt_y resets to zero. did_startx and did_starty should be programmed so that the xend and
yend fields of the DID tables correspond tot he active region of the raster, so that xend=0 refers to the left edge and
yend=0 refers to the top edge. Note that the preset values can be made negative using two’s complement numbers. The
did_x and did_y counters leave the video timing block from a flip flop, and are immediately clocked into another flip flop
upon reaching the DID block.

The cursor block requires a similar X and Y counter as the DID block. These counters are preset to the values in the
crs_startx and crs_starty registers. These preset values should be adjusted so that the crs_posx and crs_posy registers are
properly referenced so that the lower right pixel of the cursor glyph corresponds to the upper left corner of the active ras-
ter.

The video capture block needs an X and Y counter like the DID and cursor blocks. These counters are preset to the
values in the vc_startx and vc_starty fields in the VC_19 register. These preset values should be set so that the left, right,
top and bottom fields of the video capture registers refer to the active region of the raster.

July 18, 1996

21 of 50

The following registers are used to control the external video timing signals in GBE.

2.10 Cursor

The cursor block generates a 32x32x2 cursor with the upper left pixel screen position specified by the 12 bit crs_posx
and crs_posy registers. The cursor coordinates are offset by (31, 31) to allow a cursor at (0, 0) to only have the lower right
pixel visible at the upper left corner of the screen. The cursor glyph is stored in a RAM accessed by the 64 crs_glyph reg-
isters. Each 32 bit register specifies 16 packed 2-bit cursor pixels of the glyph. The cursor glyph pixels are ordered from

vt_xvt_y
0111223

vt_vsync_offvt_vsync_on

0111223

vt_maxyvt_maxx

0111223

vt_hsync_offvt_hsync_on

0111223

vt_vblank_offvt_vblank_on

0111223

vt_f2rfvt_frmlock

0111223

vt_vdrv_invert
vt_vdrv_low
vt_hdrv_invert
vt_hdrv_low
vt_sync_high
vt_sync_low
vt_f2rf_high

vt_hblank_offvt_hblank_on

0111223

06

vt_int1vt_intr0

0111223

vt_intr3vt_intr2

0111223

VT_0

VT_1

VT_2

VT_3

VT_4

VT_5

VT_6

VT_7

VT_8

VT_9

22 of 50

top to bottom, left to right; i.e. crs_glyph[0] and crs_glyph[1] correspond to the left and right 16 pixels of the top row,
respectively. The cursor RGB colors are specified via the three crs_cmap registers. A cursor glyph pixel with value 0 is
transparent.

Alternatively, the cursor may be configured as a crosshair cursor, in which case the crs_pos register indicates the posi-
tion of the crosshair center. The crosshair is set to cursor color index 1 and the cursor glyph is ignored.

The cursor is enabled and the glyph/crosshair mode is set via the crs_ctl register. The cursor should be disabled dur-
ing access to the crs_glyph registers. The following registers are used to control the cursor.

2.11 I2C controller

The I2C controller is used to read and write the monitor and flat panel display. GBE makes the simplifying assump-
tion that it is the only I2C master on the bus. This minimizes the number of gates while preserving DDC2 compatibility.
The I2C controller relies on direct software control of the sdc and sda pins in order to send and receive data. The hardware
interface consists of two output pins and two input pins. The output pins are connected to external open collector drivers,
such as an ‘F06. Software can write the sdc and sda registers at any time. The input pins are Schmitt triggered and should
be connected to the I2C bus. The sdc_in and sda_in inputs are synchronized to the 66 MHz memory clock and can be read
at any time by software. Note that writing the sda/sdc registers affects the sda_out and sdc_out pins, while reading the sda/
sdc register returns the actual value of the I2C bus, which in general is not the same as the state of sda_out/sdc_out. This
interface is sufficient for very low bandwidth communication such as monitor adjustment and monitor timing information.

The DDC2 specification is a VESA creation which allows a host computer to read and write the monitor via an I2C
interface. DDC2 can be used to query monitor timing information, gamma characteristic, manufacturer information,
screen size, power saving modes, and other information.

crs_posxcrs_posy

red green blue

crs_enable

crs_crosshair

CRS_0

CRS_GLY[0..63]

CRS_CM[1..3]

CRS_1

L R

July 18, 1996

23 of 50

The following register is used to support the I2C interface:

2.12 Video capture

GBE has the capability of sending the 140 MHz pixel stream back into main memory, where it can be sent to the
video output port in MACE. This feature is referred to as GBE video capture, and consists of a filtering stage and a DMA
controller stage.

2.12.1 Video capture filter stage

Because of memory bandwidth limitations, the image data which is written back to main memory must be limited to
NTSC/PAL data rates. This means that the 1280x1024 high resolution display must be filtered down to either 768x288 for
interlaced square pixel PAL or 640x240 for interlaced square pixel NTSC. Optionally, the user may select no filtering, in
which case the capture region must correspond 1:1 with the target television resolution. Note that GBE will always output
square pixels; square to non-square conversion is performed in the MACE chip as part of the video out hardware.

The video capture filter can be partitioned into three discrete filtering blocks - the horizontal filter, the vertical filter,
and the anti-flicker filter. Each of these filter blocks can be engaged separately.

2.12.2 Horizontal averaging

The horizontal filter has two modes. It can filter 1280 input pixels down to 640 output pixels for NTSC, or filter 1280
input pixels down to 768 output pixels for PAL. In the case of 1:1 capture this filter can be disabled entirely. The NTSC
horizontal filter is a three tap transversal filter with weights 1/4, 1/2, 1/4. This filter is shown in the following table.

The PAL case is somewhat more complicated, requiring a reduction of 3/5 instead of 1/2. The following table
describes the relationship between input pixels and output pixels in the PAL case.

Horizontal averaging for NTSC

input P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

weight 1/2 1/4 1/4 1/2 1/4 1/4 1/2 1/4
1/4 1/2 1/4 1/4 1/2 1/4

output N1 N2 N3 N4 N5

sda

sdc

01

I2C

24 of 50

As in the NTSC case weights are applied to input pixels then accumulated until an output pixel results. The odd
weights must be approximated to greatest practical extent using shifts and adds or table lookup.

2.12.3 Vertical and flicker filtering

Vertical filtering is applied after horizontal filtering. Conceptually the vertical filter function can be thought of as an
averaging filter followed by an anti- flicker filter. The averaging filter performs the conversion from full screen, 960 lines,
down to either PAL (576) or NTSC (480) vertical resolution. Note that GBE outputs 1280x960 in order to maintain a 4:3
aspect ratio. The flicker filter is used to smear adjacent high resolution lines between fields to reduce 30 Hz flicker. If the
anti-flicker filter is disabled then every other line is dropped without filtering. In either case an interlaced television image
is obtained from a progressively scanned high resolution display. Although the user views these vertical filters as two sep-
arate blocks they are collapsed using a single line delay employed as an accumulator with use of different weights applied
to effect the following modes:

•High resolution, 960 lines filtered down to 576 lines (PAL) without flicker reduction
•High resolution, 960 lines filtered down to 576 lines (PAL) with flicker reduction
•High resolution, 960 lines filtered down to 480 lines (NTSC) without flicker reduction
•High resolution, 960 lines filtered down to 480 lines (NTSC) with flicker reduction
•PAL video resolution (1:1) 576 lines out, without flicker reduction
•PAL video resolution (1:1) 576 lines out, with flicker reduction
•NTSC video resolution (1:1) 486 lines out, without flicker reduction
•NTSC video resolution (1:1) 486 lines out, with flicker reduction

As in the horizontal case the vertical averaging filter must reduce the full screen image by a factor of 1/2 for NTSC
and 3/5 for PAL. The following table shows the relationship of input lines to output lines in the vertical averaging case.
Note that in this case as well as the other vertical filtering cases a given input line only contributes to filtered lines at
boundaries between output pixels. This eliminates the need for a second vertical delay element.

Horizontal averaging for PAL

input P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

weight 2/3 1/3 1/3 2/3 2/3 1/3 1/3 2/3

1/4 1/2 1/4 1/4 1/2 1/4
output N1 N2 N3 N4 N5 N6

July 18, 1996

25 of 50

The flicker filter is common to both NTSC and PAL since in both cases it performs 2:1 averaging. The next table
shows the relationship between input lines and the output of the flicker filter. Note the spatial relationship between even
fields and odd fields. The flicker filter will produce an odd or even field under software control and is determined ulti-
mately by video output timing.

Finally, the vertical filter along with the flicker filter are collapsed into a single vertical filter with a single line delay
element. This memory element is 768x24. The NTSC and PAL cases are shown in the following figures.

Vertical averaging for NTSC and PAL

input
line

NTSC PAL

coef coef output coef coef output
L0 1/4 2/3

L1 1/2 N1 1/3 1/4 N1

L2 1/4 1/4 1/2 N3
L3 1/2 N3 1/3 1/4
L4 1/4 1/4 2/3 N5

L5 1/2 N5 2/3

L6 1/4 1/4 1/3 1/4 N7

L7 1/2 N7 1/2 N9
L8 1/4 1/4 1/3 1/4
L9 1/2 2/3 N11

NTSC/PAL flicker filter

input
flicker
filter on

odd
field

even
field

flicker
filter off

odd
field

even
field

coef coef output coef coef output output output
L0 1/4 1/2 E0 E0
L1 1/2 O1 1/4 1/4 O1
L2 1/4 1/4 1/2 E2 E2
L3 1/2 O3 1/4 1/4 O3
L4 1/4 1/4 1/2 E4 E4
L5 1/2 O5 1/4 1/4 O5
L6 1/4 1/4 1/2 E6 E6

26 of 50

odd even odd even odd even

[vertical][flicker]
[1][1] [1][0] [0][1] [0][0]

coef coef coef coef coef coef

input

out out out out out out

odd/even

output

L0

L1

L2

L3

L4

L5

L6

L7

L8

1/4

1/8 1/8

1/4

1/4

1/4

1/81/8

1/4

1/4

1/4

O1

O3

1/4

1/4

1/4

1/81/8

1/4

1/4

1/4

1/8 1/8

1/4

E0

E2

1/4 1/4

1/2

1/41/4

1/2

1/4 1/4

1/2

1/41/4

1/2

1/4 1/4

O1

O3

1/4 1/4

1/2

1/4 1/4

1/2

1/41/4

1/2

1/4 1/4

1/2

1/41/4

E0

E2

1/4

1/2

1/4 1/4

1/2

1/41/4

1/2

1/4 1/4

1/2

1/4

O3

O5

O7

1/4

O1

1/2

1/4 1/4

1/2

1/41/4

1/2

1/4 1/4

1/2

1/41/4

1/2

E0

E2

E4

E6

E8

E0

O1

E2

O3

E4

O5

E6

O7

E8

Vertical filter combined with flicker filter, NTSC

line

July 18, 1996

27 of 50

even odd even odd even odd

[vertical][flicker]

[1][1] [1][0] [0][1] [0][0]

coef coef coef coef coef coef

input

out out out out out out

even/odd

output

L0

L1

L2

L3

L4

L5

L6

L7

L8

1/3

7/24

O1

E2

O3

E4

O5

E6

O7

E8

O9

L9

L10

L11

1/4

1/8 1/6

1/3

1/3

1/61/8

1/4

7/24

1/3

1/3

7/24

E2

E4

E6

E8

1/3

1/6 1/8

1/4

7/24

1/3

1/3

7/24

1/4

1/8 1/6

1/3

1/3

1/61/8

O1

O3

O5

O7

1/4

1/2

1/4 1/3

2/3

2/3

1/3 1/4

1/2

1/41/3

2/3

2/3

1/31/4

1/2

E2

E4

E6

E8

1/3 1/4

1/2

1/41/3

2/3

2/3

1/31/4

1/2

1/4 1/3

2/3

2/3

1/3 1/4

1/2

O1

O3

O5

O7

1/4

1/2

1/4 1/4

1/2

1/41/4

1/2

1/4 1/4

1/2

1/41/4

1/2

1/4 1/4

1/2

E2

E4

E6

E8

E10

E12

1/2

1/4 1/4

1/2

1/41/4

1/2

1/4 1/4

1/2

1/41/4

1/2

1/4 1/4

1/2

1/41/4

O1

O3

O5

O7

O9

O11

E10

O11

E12

Vertical filter combined with flicker filter, PAL

28 of 50

2.12.4 Filter programming interface

Software selects the area of the screen to capture by specifying an inclusive rectangle. The left, right, top, and bottom
registers specify this rectangle in terms of the active area of the screen. This area should enclose the pixels to be captured
before filtering. The filter mode is selected using the VC_2 register.

2.12.5 Video capture DMA stage

After filtering, the NTSC/PAL size field is written to main memory using DMA. The field is written as a continuous
stream of pixels in 64K byte blocks, as opposed to the tiled format of the frame buffers. The maximum size field is a PAL
resolution of 768x288. At 32 bits per pixel, this requires 884736 bytes, or 13.5 64K byte blocks. The video capture DMA
controller reads a small descriptor list to determine the addresses of the 64K blocks to write pixels into. The descriptor list
is 32 bytes long and must be aligned on a 32 byte boundary in main memory. The descriptor list has the following format:

vc_leftvc_right

vc_topvc_bottom

“00”=1/1
“01”=1/2
“10”=3/5

vc_horz:
vc_vert:

vc_flick: ‘0’=off
‘1’=on

0111223

0111223

01234

VC_0

VC_1

VC_2

July 18, 1996

29 of 50

The video capture hardware in GBE is capable of transferring one field of video to memory, filling each 64K byte
page in the descriptor list in order. Software is responsible for updating the descriptor pointer once per field so that succes-
sive fields are written to different main memory buffers. If software does not update the descriptor pointer, GBE will
rewrite the same field buffer every vertical CRT scan. The following register controls the video capture DMA controller.

This register may be written at any time. If bit 1=0, then no DMA occurs. Otherwise at the beginning of vertical
blanking, GBE will read the 32 byte descriptor list pointed to by the vc_descr_ptr field. Note that GBE only examines the
vc_descr_ptr register at the beginning of the vertical blanking period, so software has a full CRT frame time to update the
descriptor list pointer. The filtered pixels from the next active frame are buffered in a pair of 512 byte RAMs and stored
into the 64K byte pages pointed to by the descriptor list. Data is always written 512 bytes at a time, so it takes exactly 128
DMA writes to fill a 64K page. After filling a page, GBE will advance to the next descriptor in the list. The total time
required to write a 512 byte buffer to main memory must be less than 914 ns in order to avoid overrun. Also note that a
video line may cross a 64K boundary in this scheme.

XXX...00000

XXX...00100

XXX...01000

XXX...01100

XXX...10000

XXX...10100

XXX...11000

XXX...11100

0151631
0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Video capture descriptor list: each 16 bit field points to a 64K byte physical page

(in memory)

vc_descr_ptr

0=even, 1=odd

0=disable, 1=enable

01531

VC_3

30 of 50

2.13 Dot clock synthesis

GBE contains a PLL-based graphics dot clock synthesis unit. The clock synthesis unit has the following block dia-
gram.

2.13.1 PLL operation

The reference frequency is provided by a 20 MHz crystal connected to the Xin signal of the built in oscillator. The
input scaler divides the reference clock by N before entering the PLL phase comparator. The PLL VCO output is fed back
to the phase comparator through an M divider and output through a post scaler the divides the frequency by 2^P. There-
fore, the output frequency is:

horizontal
filter
1280 -> 768
1280 -> 640

RGBA
vertical
filter/ anti-flicker
filter

768x24

stacker

32 @
140 Mhz

32x128
RAM

32x128
RAM

DMA
controller

Read DMA controller
descriptor list

128

PIO R/W
rdreq

rdgrnt

wrreq

wrgrnt

Video capture block diagram

RAM

crystal oscillator /N PLL
ref

fb

/M

/2^P
xIn

xOut

fOut

July 18, 1996

31 of 50

fOut = M * fIn / (N * 2^P)

The M, N, and P parameters have the following precision:

The M and N parameters are programmed to the desired value minus one; for example, an M register value of 11
specifies division by 12. The P parameter is directly programmed with the power of two exponent; for example, a P value
of 2 specifies division by 4.

The oor and ool status bits of the gbeclk register allow monitoring of the out-of-range and out-of-lock conditions. The
oor bit is asserted after TBD reference clock cycles if the VCO has not achieved a stable operating frequency. If the oor-

Parameter Bits Range Divider

M 8 0..255 1..256
N 6 0..63 1..64
P 2 0..3 1, 2, 4, 8

32 of 50

condition occurs, the PLL disables itself and passes the reference clock input through to its output. A restart of the PLL
can be attempted by asserting the clr bit for 500 us. If oor reasserts, the PLL has a hard failure.

When the PLL is in reange, the ool bit asserts if after TBD reference clock cycles, the phase error of the PLL is out-
side of TBD% of the reference clock cycle time. This is not a direct problem for the dot clock since no phase relationship
is required, but indicates that the PLL is not operating properly.

There is a byp parameter that powers down the PLL and disables the clock to the GBE pixel logic. This allows a low
power suspended mode for the majority of the GBE ASIC. When reenabling the PLL, 10 ms must be allowed for the PLL
to stabilize. The M, N, P, C, V, clr, oor, ool, and byp parameters are accessed via the gbeclk register.

The following resolutions and corresponding dot clock frequencies are supported by moosehead:

OOR OOL CLR PLL condition

1 1 1 PLL in range and phase locked
1 0 1 PLL in range and out of lock
0 0 1 PLL out of range and out of lock
0 X 0 PLL in override mode

Active
pixels Active lines Total width Total lines Frames/sec

Frequency
 (MHz) Type

Max Err +/-
(PPM)

640 480 800 525 59.940 25.175 VGA 6355
800 600 1040 666 60.317 40.000 VESA 5280
800 600 1040 666 72.188 50.000 VESA 4160
1024 768 1320 808 59.940 63.546 SGI 4104
1024 768 1320 808 70.069 75.000 VESA 3541
1024 768 1320 808 75.000 78.750 VESA 3332
1280 1024 1680 1064 48.000 85.882 SGI 3912
1280 1024 1680 1064 50.000 89.544 SGI 3752
1280 1024 1680 1064 59.94 107.245 SGI 3133
1280 1024 1680 1064 72.000 128.701 SGI 2611
1280 1024 1680 1064 75.025 135.000 VESA 2501
1600* 1200* 2112* 1250* 60.000* 162.000* VESA* 2667*

M: PLL multiplier
N: Input divider
P: Output post scaler
Unused
Unused
BYP: Bypass/power down

OOR: Out of range
OOL: Out of lock

Unused

0781314161820212223

862221111 DOTCLK

July 18, 1996

33 of 50

* These are not supported with current GBE.

These frequencies would be obtained using the following parameters, assuming a 20 MHz reference clock.

Where the frequency error column results are in PPM and are based on the internal dot clock pll.

2.14 Memory bandwidth analysis

This section discusses the bandwidth usage of GBE in relation to the rest of the system. The Moosehead memory sys-
tem uses a 256 bit wide SDRAM array running at 66MHz to provide a peak data transfer rate of 2.1 GB/s. The underlying
mechanism for accessing memory is still the three step process characteristic of DRAM technology; first destructively
read a row into the sense amps, then read/write the sense amps, then write the sense amps back to the row. Because of
their relatively slow speed, the row operations effectively reduce the amount of actual bandwidth the memory system is
able to deliver. The 16Mbit SDRAMs used in Moosehead have two banks whose row operations can be overlapped. The
following discussion assumes the worst case, where there is no overlap due to successive row operations to different
banks.

The memory controller inside CRIME is responsible for arbitrating between the various memory masters: CPU, RE,
VICE, MACE, and GBE. GBE is the highest priority device. In its maximum configuration, GBE requires a peak band-
width of 675 MB/s (32+8 bpp). GBE is allowed to burst read 512 bytes at a time from memory, which corresponds to 16
data cycles. Since GBE accesses a different tile on each fetch, it is almost guaranteed to encounter a page miss. The pen-
alty for a page miss varies depending on the type of transition. The possibilities are read-read, read-write, write-read, and

1280 492 ? ? 119.880 107.072 SGI 3138
800* 600* 1040* 666* 119.800* 79.448* SGI* 2658*

Frequency M N 2^P FVCO Output Error

25.175 146 29 4 100.690 25.172 -102.729
40.000 240 30 4 160.000 40.000 0.000
50.000 150 30 2 100.000 50.000 0.000
63.546 197 31 2 127.097 63.548 37.565
75.000 225 30 2 150.000 75.000 0.000
78.750 252 32 2 157.500 78.750 0.000
85.882 146 34 1 85.882 85.882 4.110
89.544 197 44 1 89.545 89.545 16.244
107.245 177 33 1 107.273 107.273 258.541
128.701 251 39 1 128.718 128.718 131.691
135.000 216 32 1 135.000 135.000 0.000
162.000 243 30 1 162.000 162.000 0.000
107.072 182 34 1 79.444 79.444 -44.753

Active
pixels Active lines Total width Total lines Frames/sec

Frequency
 (MHz) Type

Max Err +/-
(PPM)

34 of 50

write-write. A read-read miss takes 4 clocks of overhead, while write-read takes 7 clocks, read-write takes 1 clock, and
write-write takes 7 clocks. Assuming an average of 6 clocks of overhead, the peak GBE reference pattern is:

6+16 ... 29 ... 6+16 ... 29 ... 6+16 ... 29 ...

Therefore, GBE takes 22 clocks out of 51 during active video, leaving 29 clocks to share between CPU, RE, VICE
and MACE. Assuming an average 5 clock penalty and an 8 clock transfer length for the other devices, this leaves about
760 MB/s. The actual left over bandwidth will depend on the average miss penalty and the average burst length, and may
be less than 760 MB/s. Overlapping row operations to different banks will reduce the average access time penalty, but this
is sensitive to the exact memory address patterns encountered by the memory controller and should not be relied upon if
real time access to memory is required.

3.0 Software Interface

All of the registers and RAMs inside GBE are mapped to the physical address range 0x016000000 to 0x017000000.
All loads and stores to GBE must be 32 bits and uncached. The following memory map and register descriptions use
address offsets from the 0x016000000 base address. All registers in GBE are read/write, and unused bits return undefined
values on reads and are ignored on writes. Software is responsible for masking unused bits on reads.

3.1 Memory map

The following memory map is intended for reference.

Name Address Description

CTRLSTAT 0x000000 general control
DOTCLK 0x000004 dot clock PLL control
I2C 0x000008 crt I2C control
SYSCLK 0x00000C system clock PLL control
I2CFP 0x000010 flat panel I2C control
DEVICE_ID 0x000014 device id / chip revision
VT_{0..19} 0x010000 - 0x01004C video timing control
OVR_{0..2} 0x020000 - 0x020008 overlay planes control
FRM_{0..3} 0x030000 - 0x03000C normal planes control
DID, DID_SHADOW 0x040000 - 0x040004 DID control
WID[0..31] 0x048000 - 0x04807C WID table RAM
CMAP[0..4607] 0x050000 - 0x0547FC color map RAM
CMFIFO 0x058000 color map fifo status
GMAP[0..255] 0x060000 - 0x0603FC gamma map RAM
CRS_0 0x070000 cursor control
CRS_1 0x070004 cursor control
CRS_CM[1..3] 0x070008 - 0x070010 cursor color map
CRS_GLY[0..63] 0x078000 - 0x0780FC cursor glyph RAM
VC_{0..8} 0x080000 - 0x08000C video capture control

July 18, 1996

35 of 50

3.2 Registers

This section summarizes the software-visible state in GBE, and is intended to be a programmer’s reference.

36 of 50

3.2.1 Control registers

CTRLSTAT: 0x000000

Bits Field name Reset state Description

3:0 chipid 0001 chip revision number
4 sense_n - sense_n input from monitor, read only
5 - - -
7:6 io_0 11 bit 6 is a general purpose io pin

bit 7 is the active low output enable
9:8 io_1 11 bit 8 is data, bit 9 is oe_n
11:10 io_2 11 bit 10 is data, bit 11 is oe_n
13:12 io_3 11 bit 12 is data, bit 13 is oe_n
15:14 io_4 11 bit 14 is data, bit 15 is oe_n
17:16 io_5 11 bit 16 is data, bit 17 is oe_n
19:18 io_6 11 bit 18 is data, bit 19 is oe_n
21:20 io_7 11 bit 20 is data, bit 21 is oe_n
23:22 io_8 11 bit 22 is data, bit 23 is oe_n
25:24 io_9 11 bit 24 is data, bit 25 is oe_n
26 half_phase 0 sets flat panel 1/2 clock w.r.t the falling edge of blank_n
27 csync_polarity 0 ‘1’ makes csync active low
29:28 pclksel 00 “00” = use external TTL pclk input

“01” = use external differential pclk input
“11” = use internal dot clock PLL

DOTCLK: 0x000004

Bits Field name Reset state Description

7:0 M 00000000 PLL multiplier
13:8 N 000000 Input divider
15:14 P 00 Output post scaler
17:16 - - -
19:18 - - -
20 - - -
21 - - -
22 oor - PLL out of range status
23 ool - PLL out of lock status
24 tdwni 0 normal operation state of tdwni to dot clock
25 tupi 0 normal operation state of tupi to dot clock

July 18, 1996

37 of 50

I2C: 0x000008

Bits Field name Reset state Description

0 sda 1 open drain I2C data
1 sdc 1 open drain I2C clock

SYSCLK: 0x00000C

Bits Field name Reset state Description

0 tdwni 0 normal operation state of tdwni to system pll
1 tupi 0 normal operation state of tupi to system pll
2 tm(1) 0 normal operation state of tm(1)
3 tm(0) 1 normal operation state of tm(0)
7:4 ---- ---- ----
9:8 vgain 00 normal operation state of vgain
11:10 cgain 00 normal operation state of cgain
14:12 divsel 000 normal operation state of divsel

I2CFP: 0x000010

Bits Field name Reset state Description

0 sda 1 flat panel open drain data
1 sdc 1 flat panel open drain clock

DEVICE_ID: 0x000014

Bits Field name Reset state Description

31:0 device_id 0x00000666 device id (same id that is read from jtag device_id)

38 of 50

3.2.2 Video timing

VT_0: 0x010000

Bits Field name Reset state Description

11:0 vt_x 000000000000 video timing x counter
23:12 vt_y 000000000000 video timing y counter
31 vt_freeze 1 vt_x increments when vt_freeze = ‘0’

VT_1: 0x010004

Bits Field name Reset state Description

11:0 vt_maxx 000000000000 vt_x==vt_maxx causes vt_x to reset
23:12 vt_maxy 000000000000 vt_y==vt_maxy causes vt_y to reset

VT_2: 0x010008

Bits Field name Reset state Description

11:0 vt_vsync_off 000000000000 vsync becomes inactive when vt_y==vt_vsync_off
23:12 vt_vsync_on 000000000000 vsync becomes active when vt_y==vt_vsync_off

VT_3: 0x01000C

Bits Field name Reset state Description

11:0 vt_hsync_off 000000000000 hsync becomes inactive when vt_x==vt_hsync_off
23:12 vt_hsync_on 000000000000 hsync becomes active when vt_x==vt_hsync_on

VT_4: 0x010010

Bits Field name Reset state Description

11:0 vt_vblank_off 000000000000 vblank becomes inactive when vt_y==vt_vblank_off
23:12 vt_vblank_on 000000000000 vblank becomes active when vt_y==vt_vblank_on

VT_5: 0x010014

Bits Field name Reset state Description

11:0 vt_hblank_off 000000000000 hblank becomes inactive when vt_x==vt_hblank_off
23:12 vt_hblank_on 000000000000 hblank becomes active when vt_x==vt_hblank_on

July 18, 1996

39 of 50

VT_6: 0x010018

Bits Field name Reset state Description

0 vt_vdrv_invert 0 ‘1’ causes inversion of vsync
1 vt_vdrv_low 0 ‘1’ causes vsync=’0’, or vsync=’1’ if vt_vdrv_invert=’1’

used for DPMS monitor power savings
2 vt_hdrv_invert 0 ‘1’ causes inversion of hsync
3 vt_hdrv_low 0 ‘1’ causes hsync=’0’, or hsync=’1’ if vt_hdrv_invert=’1’

used for DPMS monitor power savings
4 vt_sync_high 0 ‘1’ causes sync_n=’1’; used to disable sync on green
5 vt_sync_low 0 ‘1’ causes sync_n=’0’; used to disable sync on green
6 vt_f2rf_high 0 ‘1’ causes f2rf=’1’; used to synchronize left/right

VT_7: 0x01001C

Bits Field name Reset state Description

11:0 vt_f2rf 000000000000 f2rf toggles when vt_y==vt_f2rf
23:12 vt_frmlock 000000000000 vt_y presets to vt_frmlock on rising edge of frmlock

WAIT UNTIL vt_x==vt_maxx before resetting vt_y !!!

VT_8: 0x010020

Bits Field name Reset state Description

11:0 vt_intr1 000000000000 GBE issues interrupt #1 when vt_y==vt_intr1
23:12 vt_intr0 000000000000 GBE issues interrupt #0 when vt_y==vt_intr0

VT_9: 0x010024

Bits Field name Reset state Description

11:0 vt_intr3 000000000000 GBE issues interrupt #3 when vt_y==vt_intr3
23:12 vt_intr2 000000000000 GBE issues interrupt #2 when vt_y==vt_intr2

VT_10: 0x010028

Bits Field name Reset state Description

11:0 fp_hdrv_off 000000000000 when vt_x=fp_hdrv_off, clears fp_hdrv
23:12 fp_hdrv_on 000000000000 when vt_x=fp_hdrv_on, sets fp_hdrv

VT_11: 0x01002C

Bits Field name Reset state Description

11:0 fp_vdrv_off 000000000000 when vt_y=fp_vdrv_off, clears fp_vdrv
23:12 fp_vdrv_on 000000000000 when vt_y=fp_vdrv_on, sets fp_vdrv

40 of 50

VT_12: 0x010030

Bits Field name Reset value Description

11:0 fp_de_off 000000000000 when vt_x=fp_de_off, clears fp_de
23:12 fp_de_on 000000000000 when vt_x=fp_de_on, sets fp_de

VT_13: 0x010034

Bits Field name Reset value Description

11:0 vt_hpixen_off 000000000000 when vt_x=vt_hpixen_off, clear internal pixel enable
23:12 vt_hpixen_on 000000000000 when vt_x=vt_hpixen_on, set internal pixel enable

VT_14: 0x010038

Bits Field name Reset value Description

11:0 vt_vpixen_off 000000000000 when vt_y=vt_vpixen_off, clear internal pixel enable
23:12 vt_vpixen_on 000000000000 when vt_y=vt_vpixen_on, set internal pixel enable

VT_15: 0x01003C

Bits Field name Reset value Description

11:0 vt_hcmap_off 000000000000 when vt_x=vt_hcmap_off, clear cmap write enable
23:12 vt_vcmap_on 000000000000 when vt_x=vt_vcmap_on, set cmap write enable

VT_16: 0x010040

Bits Field name Reset value Description

11:0 vt_vcmap_off 000000000000 when vt_y=vt_vcmap_off, clear cmap write enable
23:12 vt_vcmap_on 000000000000 when vt_y=vt_vcmap_on, set cmap write enable

VT_17: 0x010044

Bits Field name Reset value Description

11:0 did_startx 000000000000 when vt_x=did_startx, preset did_x to 000000000000
23:12 did_starty 000000000000 when vt_y=vt_vblank_on, preset did_y to did_starty

VT_18: 0x010048

Bits Field name Reset value Description

11:0 crs_startx 000000000000 when vt_x=crs_startx, preset crs_x to 111111100000
23:12 crs_starty 000000000000 when vt_x-crs_x_offset AND vt_y=vt_vblank_on, pre-

set crs_y to crs_starty.
crs_x_offset = vt_hblank_on + 000000100000

July 18, 1996

41 of 50

VT_19: 0x01004C

Bits Field name Reset value Description

11:0 vc_startx 000000000000 when vt_x=vc_startx, preset vc_x to 000000000000
23:12 vc_starty 000000000000 when vt_y=vt_vblank_on, preset vc_y to vc_starty

42 of 50

3.2.3 Overlay planes

OVR_0: 0x020000

Bits Field name Reset state Description

4:0 ovr_rhs 00000 width of right hand side tile in 32 byte units
12:5 ovr_width_tile 00000000 overlay planes width in tiles (whole tiles)
13 ovr_fifo_reset 0 diagnostic bit, do not modify!

OVR_1: 0x020004

Bits Field name Reset state Description

31:5 ovr_tile_ptr 000...000 pointer to the tile descriptor list for overlay planes
0 ovr_dma_enable 0 ‘0’=disable overlay, ‘1’=enable overlay

OVR_2: 0x020008

Bits Fieldname Reset state Description

31:5 ovr_tile_ptr 000...000 copied into OVR_1 ovr_tile_ptr at beginning of blanking
0 ovr_dma_enable 0 copied into OVR_1 ovr_dma_enable at beginning of blanking

July 18, 1996

43 of 50

3.2.4 Normal planes

FRM_0: 0x030000

Bits Field name Reset state Description

4:0 frm_rhs 00000 width of right hand side tile in 32 byte units
12:5 frm_width_tile 00000000 normal planes width in tiles (whole tiles)
14:13 frm_depth 00 “00” = 8 bit, “01” = 16 bit, “10” = 32 bit
15 frm_fifo_reset 0 diagnostic bit, do not modify!

FRM_1: 0x030004

Bits Field name Reset state Description

31:16 fb_height_pix 0000000000000000 normal/overlay planes height in pixels

FRM_2: 0x030008

Bits Field name Reset state Description

31:5 frm_tile_ptr 000...000 pointer to the tile descriptor list for normal planes
0 frm_dma_enable ‘0’ ‘0’=disable normal planes, ‘1’=enable normal planes

FRM_3: 0x03000C

Bits Fieldname Reset state Description

31:5 frm_tile_ptr 000....000 copied to FRM_2 frm_tile_ptr at beginning of blanking.
0 frm_dma_enable ‘0’ copied to FRM_2 frm_dma_enable at beginning of blanking

44 of 50

3.2.5 DID generation

DID: 0x040000

Bits Fieldname Resetstate Description

15:0 did_base 0000000000000000 pointer to 64K DID table block
16 did_dma_enable ‘0’ ‘0’=disable dids, ‘1’=enable dids

DID_SHADOW: 0x040004

Bits Field name Reset state Description

15:0 did_base 0000000000000000 copied into DID did_base at beginning of blanking
16 did_dma_enable ‘0’ copied into DID did_dma_enable at beginning of blanking

WID[0..31]: 0x048000 - 0x04807C

Bits Field name Reset state Description

1:0 buf - “01” = lower half, “10” = upper half, “11” = both
4:2 typ - “000”=I8, “001”=I12, “010”=RG3B2, “011”=RGB4,

“100”=RGB5, “101”=RGB8
9:5 cm - upper 5 bits of cmap index for I8 mode, or R,G,B direct

visual map for RGB8 pixels if cm != 0
10 gm - 0=enable gamma, 1=disable gamma
12:11 aux - output to digital pixel bus, can be used to externally

interpret the 24 bit pixel stream

July 18, 1996

45 of 50

3.2.6 Color and gamma maps

CMAP[0..4607]: 0x050000 - 0x0547FC

Bits Field name Reset state Description

15:8 blue - blue component
23:16 green - green component
31:24 red - red component

CMFIFO: 0x058000

Bits Field name Reset state Description

5:0 cm_fifo 000000 number of free entries in cmap fifo

GMAP[0..255]: 0x060000 - 0x0603FC

Bits Field name Reset state Description

15:8 blue - blue component
23:16 green - green component
31:24 red - red component

46 of 50

3.2.7 Cursor

CRS_0: 0x070000

Bits Field name Reset state Description

15:0 crs_posx 0000000000000000 cursor x position
31:16 crs_posy 0000000000000000 cursor y position

CRS_1: 0x070004

Bits Field name Reset state Description

0 crs_enable 0 ‘1’ means enable cursor
1 crs_crosshair 0 ‘1’ means enable crosshair mode

CRS_CM[1..3]: 0x070008 - 0x070010

Bits Field name Reset state Description

15:8 blue - blue component
23:16 green - green component
31:24 red - red component

CRS_GLY[0..63]: 0x0780000 - 0x0780FC

Bits Field name Reset state Description

1:0 crs_pix15 - rightmost cursor glyph pixel
31:30 crs_pix0 - leftmost cursor glyph pixel

July 18, 1996

47 of 50

3.2.8 Video capture

VC_0: 0x080000

Bits Field name Reset state Description

11:0 vc_left 000000000000 left edge of video capture region (inclusive)
23:12 vc_right 000000000000 right edge of video capture region (inclusive)

VC_1: 0x080004

Bits Field name Reset state Description

11:0 vc_top 000000000000 top edge of video capture region (inclusive)
23:12 vc_bottom 000000000000 bottom edge of video capture region (inclusive)

VC_2: 0x080008

Bits Field name Reset state Description

0 vc_dmavideo 0 ‘1’ enables video capture dma
1 vc_flick 1 flicker filter enable: ‘0’=disable, ‘1’=enable
2 vc_autofield 1 ‘1’- odd/even field sequence automatically advances at

oef. ‘0’ field type must be set by PIO
3 vc_fullscreen 0 ‘1’ enables fullscreen out mode
4 vc_cscbypass 0 ‘1’ enables RGB555 mode that bypasses color space

conversion. Intended for diag only

VC_3: 0x08000C

Bits Field name Reset state Description

0 vc_field 0 specifies which field to capture: 0=even, 1=odd
1 vc_discdmaenb 0 (NOTE: This feature not

functional on REV1.1.
Descriptor list must be
PIO’d manually.)

‘0’=disable descriptor list DMA, ‘1’=enable d.l. DMA

2 vc_fieldcorrupt 0 ‘1’ - current field corrupt, must be reset by software
3 vc_eof 0 ‘1’ - last field successfully DMA’ed, reset by software

DMA FIFO fully flushed
4 vc_oddeven 1 READ ONLY, field type currently being DMA’ed
31:5 vc_descr_ptr 000...000 pointer to 32 byte descriptor list

VC_4: 0x080010

Bits Field name Reset state Description

31:16 vc_Tileaddr#1 0x0000 first tile address in descriptor list
15:0 vc_Tileaddr#2 0x0000 second tile address in descriptor list

48 of 50

4.0 PLL TEST SUPPORT

GBE contains two PLL blocks. Test support is provided per the recommended usage guidelines from VTI. The fol-
lowing pins are muxed as PLL test pins when spll_teste or dpll_test =’1’. io_off_n should be asserted to ‘0’ during PLL
testing. If teste=’1’, then aux(9:0) will drive regardless of the state of io_off_n.

VC_5: 0x080014

Bits Field name Reset state Description

31:16 vc_Tileaddr#3 0x0000 third tile address in descriptor list
15:0 vc_Tileaddr#4 0x0000 forth tile address in descriptor list

VC_6: 0x080018

Bits Field name Reset state Description

31:16 vc_Tileaddr#5 0x0000 fifth tile address in descriptor list
15:0 vc_Tileaddr#6 0x0000 sixth tile address in descriptor list

VC_7: 0x08001C

Bits Field name Reset state Description

31:16 vc_Tileaddr#7 0x0000 seventh tile address in descriptor list
15:0 vc_Tileaddr#8 0x0000 eigth tile address in descriptor list

VC_8: 0x080020 (WRITE ONLY)

Bits Field name Reset state Description

31:16 vc_Tileaddr#9 0x0000 ninth tile address in descriptor list
15:0 vc_Tileaddr#10 0x0000 tenth tile address in descriptor list

Dot clock PLL test pins

PLL port Input pin Output pin Description

cgain(1:0) red(7:6)
multsel(7:0) red(5:0) & grn(7:6)
ndivsel(5:0) grn(5:0)
pdivsel(1:0) blu(7:6)
tclke blu(1)
tclki blu(0)
tdwni blu(5)
tupi blu(4)
tm(2:0) alpha(7:5)
oor aux(0)

July 18, 1996

49 of 50

ool aux(1)
tdwno aux(2)
tupo aux(3)

System clock PLL test pins

PLL port Input pin Output pin Description

oor aux(9)
ool aux(8)
div2o aux(7)
clkob aux(6)
tdwno aux(5)
tupo aux(4)

Dot clock PLL test pins

PLL port Input pin Output pin Description

50 of 50

