
VICE Design Specification 099-0123-003 April 17, 1997 Silicon Graphics Proprietary and Confidential

VICE Design Specification 099-0123-003

Salvatore Arcuri
David Barnett
Michael Fuccio
Bent Hagemark

Steve Klinger
Te-Li Lau

Henry Moreton
Robb Pryor
Doug Quist
Mike Travis

Mark Troeller
Chuck Tuffli

Desktop Systems Division

Version1.0

VICE Design Specification 099-0123-003 April 17, 1997 Silicon Graphics Proprietary and Confidential

VICE Design Specification 099-0123-003 April 17, 1997 Silicon Graphics Proprietary and Confidential

VICE Design Specification 099-0123-003 April 17, 1997 Silicon Graphics Proprietary and Confidential

Preface

The ideas for building a general purpose block of hardware that can be applied as a Unix Workstation
resource are not new. That is in fact what a RISC core is, what a Floating Point Unit is and what various I/O
blocks are. We wanted to build something that could be used for image processing and that could be shared
across multiple applications. Rather than build a hard coded block that was dedicated to a single task such as
texture generation or data compression or image processing, we wanted it all.

It is most interesting to see applications that manipulate video and images on the workstation rather than just
playing this information through the workstation to emulate a television or a photograph. Bringing an addi-
tional billion instructions per second of general purpose pixel manipulation seems like a useful resource in
the workstation to apply across a wide range of real world applications. Feeding the incredible high band-
width of the human eye, creates an insatiable demand for processing power. We hope this creation will serve
up some tasty visual meals.

April 17, 1997 Silicon Graphics Proprietary and Confidential

1.0 Introduction..15
1.1 General Overview ..15
1.2 System Overview ...15
1.3 Features ..17
1.4 VICE Overview..19

1.4.1 Media Signal Processor ...19
1.4.2 Bitstream Processor ...19
1.4.3 DMA Unit..19
1.4.4 Host Interface ..20

2.0 Programmer’s Interface..22
2.1 Address Map ..22
2.2 Vice_ID decoding ..22

2.2.1 VICE address protection..25
2.2.2 VICE address convenience ..25

2.3 Chip Initialization ..26
2.3.1 Unix Processor - VICE reset interaction ...26
2.3.2 Internal VICE initialization ...26
2.3.3 Selective VICE initialization ...26

2.4 Interrupts/Exceptions ...27
2.4.1 MSP Exception Processing..27
2.4.2 Exception Priority..29
2.4.3 Handling Multiple Exception ..29

2.5 MSP Code Management ..30
2.5.1 Basic MSP Operation ..30
2.5.2 Code Segment Updates..30
2.5.3 Debug Operations ..30

2.6 BSP Code Management ...32
2.6.1 Initialization...32
2.6.2 Code Segment Updates..32
2.6.3 Debug Operations ..32

2.7 DMA Management ..33
2.7.1 DMA Programming Restrictions...33
2.7.2 TLB and Address Space ..33
2.7.3 64K Linear Tiles ..35
2.7.4 64K Frame Buffer Tiles...36
2.7.5 Hits and Misses..37
2.7.6 TLB Entry Format ...38

2.8 Register Address Map Summary ...39
2.8.1 DMA descriptor registers ..42

2.9 Register Description...44
2.9.1 VICE_ID - Chip ID and Revision Register Format...44
2.9.2 VICE_CFG - General Configuration Register...44
2.9.3 VICE_INT_RESET - Interrupt Reset Register ...45
2.9.4 VICE_INT - Interrupt Status Register...46
2.9.5 VICE_INT_EN - Interrupt Enable Register ..47
2.9.6 BSP_SW_INT - BSP Software Interrupt Register ..47
2.9.7 MSP_SW_INT - MSP Software Interrupt Register ..47
2.9.8 MSP_D_RAM - Data RAM Arbitration Register ...48
2.9.9 MSP_CTL_STAT - Media Signal Processor Control Register............................49
2.9.10 MSP_PC Media Signal Processor Program Counter Register50
2.9.11 MSP_BadAddr Register ..50

April 17, 1997 Silicon Graphics Proprietary and Confidential

2.9.12 MSP_WatchPoint Register ..50
2.9.13 MSP_EPC Registers ..50
2.9.14 MSP_CAUSE Register ..51
2.9.15 MSP_ExcpFlag Registers ..52
2.9.16 VICEMSP_COUNT - MSP Free Running Counter..53
2.9.17 BSP_CTL_STAT - Bit Stream Processor Control and Status Register54
2.9.18 BSP_WatchPoint Register ...54
2.9.19 BSP_IN_COUNT - BSP Input bits counter ..55
2.9.20 BSP_OUT_COUNT - BSP Output bits counter..55
2.9.21 BSP_IN_BOX - Bit Stream Processor Input Mailbox ..56
2.9.22 BSP_OUT_BOX - Bit Stream Processor Output Mailbox..................................57
2.9.23 HST_BSP_IN_BOX - Host Snoop of BSP Input Mailbox58
2.9.24 HST_BSP_OUT_BOX - Host Snoop of BSP Output Mailbox...........................58
2.9.25 BSP_PC Bitstream Processor Program Counter Register59
2.9.26 BSP_EPC Bitstream Processor Exception Program Counter.............................59
2.9.27 BSP_HALT_RESET - Bit Stream Processor Halt and Reset Register................60
2.9.28 BSP_CAUSE Register...61
2.9.29 BSP_FIFO_CTL_STAT - Bit Stream Processor Fifo Control and Status Register.

62
2.9.30 BSP_AVALID_BITS - Bit Stream Processor A Fifo Valid Bits Register63
2.9.31 BSP_FVALID_BITS - Bit Stream Processor F Fifo Valid Bits Register63
2.9.32 DMA_CTL_CH1 - DMA Control Register ..64
2.9.33 DMA_STAT_CH1 - VICE DMA Status Register ...65
2.9.34 DMA_DATA_CH1 - VICE DMA Data Fill Register..66
2.9.35 DMA_MEM_PT_CH1 - DMA System Memory Pointer66
2.9.36 DMA_VICE_PT_CH1 - DMA Internal Vice Memory Pointer66
2.9.37 DMA_COUNT_CH1 - DMA Internal Vice DMA Counter................................67
2.9.38 DMA_CTL_CHX_DY - DMA Descriptor Control Entry...................................68
2.9.39 DMA_SMEM_HI_CHX_DY - System Memory Upper Address Pointer71
2.9.40 DMA_SMEM_LO_CHX_DY - System Memory Lower Address Pointer.........71
2.9.41 DMA_WIDTH_CHX_DY - DMA Descriptor Width ...71
2.9.42 DMA_STRIDE_CHX_DY - DMA Descriptor Stride...71
2.9.43 DMA_LINES_CHX_DY - DMA Descriptor Lines ..72
2.9.44 DMA_VMEM_Y_CHX_DY - Vice Address Y..72
2.9.45 DMA_VMEM_C_CHX_DY - Vice Address C ..72

3.0 System Interface...73
3.1 VICE <-> CRIME SysAD Protocol...73

3.1.1 Physical Signals...73
3.1.2 Address ..74
3.1.3 Bytes, Words, Cycles...75
3.1.4 SysCMD Extensions..77
3.1.5 Data Identifiers ..80

3.2 Unix Processor read/write of VICE ...83
3.3 VICE read/write of System Memory ...84

3.3.1 VICE DMA Read ..84
3.3.2 VICE DMA Write ...86

3.4 VICE SysAD Protocol Timing Diagrams..89
3.5 Clock Interface...92
3.6 Error Checking...94

4.0 Architectural Description...95
4.1 Host Interface...97

4.1.1 Host Access ...97

April 17, 1997 Silicon Graphics Proprietary and Confidential

4.1.2 DMA..97
4.1.3 Host/DMA interaction ...98

4.2 Arbiter/Internal Bus Sharing..99
4.2.1 Rules for Access to Internal VICE buses ..100
4.2.2 Common Bus Arbiter Protocol ..104
4.2.3 DMA Bus Arbiter Protocol ...106

4.3 DMA ..109
4.3.1 DMA Descriptors ..110
4.3.2 DMA Registers ..112

4.4 Media Signal Processor Overview...113
4.4.1 Instruction Fetch Mechanism ..115
4.4.2 Common Bus Interface..118
4.4.3 Shared Memory ...119

4.5 MSP Scalar Unit ..120
4.5.1 Scalar unit instructions format...122
4.5.2 Scalar Unit Instruction Set...122
4.5.3 Instructions not supported ...124
4.5.4 Pipeline ..124
4.5.5 Scalar unit operation..129
4.5.6 Scalar Unit Blocks...131
4.5.7 Registers ..132
4.5.8 Load Store Mechanism..132

4.6 MSP Vector Unit ..143
4.6.1 Functional Overview ...143
4.6.2 VU Features...143
4.6.3 VU Programming Model ...144
4.6.4 Binary Fixed-Point Format..144
4.6.5 Instruction Set Overview ...144
4.6.6 VU Instruction Pipeline...165

4.7 Bitstream Processor ...172
4.7.1 Bitstream Processor Programming Model...176
4.7.2 VLC Decode Table Structure ..185
4.7.3 VLC Encode Table Structure...188
4.7.4 Programming Restrictions. ..189
4.7.5 Performance of Bitstream Processor ...191
4.7.6 Bitstream Processor Hardware Architecture ...192
4.7.7 Bitstream Processor / Scalar Unit Synchronization...196

5.0 Operational Description ...198
6.0 Performance Analysis ..199

6.0.1 Peak Hardware Performance ...199
6.1 Baseline JPEG Decode Application...199

6.1.1 Baseline JPEG decode Data Flow ...200
6.1.2 Baseline JPEG decode registration Diagram...201

6.2 Baseline JPEG Encode (lossy) Application...201
6.2.1 Baseline JPEG Encode MCU data flow: ...202
6.2.2 Baseline JPEG Encode registration diagram:..203

6.3 Lossless JPEG Application ..203
6.4 MPEG-2 Decode Application ..203

6.4.1 MPEG-2 Decode Application Data Flow:...204
6.4.2 MPEG-2 Decode Application registration Diagram ...205

6.5 H.261 Application..205

April 17, 1997 Silicon Graphics Proprietary and Confidential

6.6 Image Vision Library Primitives..205

7.0 Precision Analysis..206
7.1 Scalar Unit ...206
7.2 Vector Unit ...207

8.0 Device Interface ...208
8.1 Signal Descriptions ..208
8.2 Pin Assignments ..213
8.3 Test Modes ...231
8.4 Schematic Icon...231
8.5 Physical Packaging Diagram ...232
8.6 Physical Package Markings ...233
8.7 Bonding Diagram...233

9.0 Device Characteristics..234
9.1 Absolute Maximum Ratings ..234
9.2 Operating Range ..234
9.3 DC Characteristics and Capacitance..235
9.4 AC Characteristics ...235

9.4.1 PLL Characteristics ...235
9.5 Package Thermal Characteristics ...236

10.0 Bugs ...237
10.1 Software Simulator vs. Silicon Behavior...237

10.1.1 MSP_D_EN Register...237
10.1.2 MSP_CAUSE Register ..237

10.2 Silicon Bugs ...238
10.2.1 Leading Zero Bug..238
10.2.2 Rocky bad block ..239
10.2.3 Low Quant - Low Compression ..239
10.2.4 Skier Sparkle ...240
10.2.5 Decode...240
10.2.6 MPEG hang ...241
10.2.7 VSUM2..241
10.2.8 BSP Halt Ack ..242
10.2.9 MSSM Reset..242
10.2.10 MSP PC Pins ...243
10.2.11 Vice-Crime Handshake Pins..244

11.0 Revision History ..245
Appendix A: ..250
Vector Unit Instruction Set Details... 250
Appendix B: ..392
Vector Unit Block Diagrams .. 392
Appendix C ...413
Bitstream Processor Instruction Set Details: ...413
Appendix D: ..431
Test Plan ..431
Bibliography ...468

April 17, 1997 Silicon Graphics Proprietary and Confidential

FIGURE 1. VICE applied to Silicon Graphics entry workstation16
FIGURE 2. Logical pin diagram of VICE ..18
FIGURE 3. VICE Functional Block Diagram...21
FIGURE 4. SMEM Pointer decomposition for 64K Linear Page.................................35
FIGURE 5. SMEM Pointer decomposition for 64K Linear Page.................................36
FIGURE 6. 4Meg System Memory using 64K tiles ...37
FIGURE 7. Moosehead SysAD Bus processor connections...76
FIGURE 8. System Interface Command Syntax Bit Definition....................................77
FIGURE 9. Read Request SysCmd Bus Bit Definition ..77
FIGURE 10. Write Request SysCmd Bus Bit Definition..79
FIGURE 11. Data Identifier SysCmd Bus Bit Definition ...80
FIGURE 12. MPEG-2 Field Predictor DMA Read - System Memory to MSP Data

RAM85
FIGURE 13. MPEG-2 Frame Picture DMA Write - VICE Data RAM to System

Memory87
FIGURE 14. MPEG-2 Field Picture DMA Write - MSP Data RAM to System Memory

88
FIGURE 15. Unix Processor Write to VICE Address Space..89
FIGURE 16. Unix Processor Read from VICE Address Space89
FIGURE 17. VICE Bus Request ...90
FIGURE 18. VICE Bus Release..90
FIGURE 19. VICE DMA read request to CRIME, VICE already owns SysAD bus91
FIGURE 20. VICE-CRIME DMA Read Response, CRIME already owns SysAD bus 91
FIGURE 21. VICE - CRIME DMA Block Write ...91
FIGURE 22. SysAD Clock Distribution ...93
FIGURE 23. VICE block diagram ..96
FIGURE 24. Internal Address/Control Flow ..102
FIGURE 25. Host/DMA Block Diagram..103
FIGURE 26. MSP (Scalar Unit) Access on Common Bus ...105
FIGURE 27. Bit Stream Processor Access on Common Bus106
FIGURE 28. Bit Stream Processor Access on DMA Bus...108
FIGURE 29. Host/DMA Access on DMA Bus...109
FIGURE 30. DMA Descriptor Format..111
FIGURE 31. Media Signal Processor Block Diagram..114
FIGURE 32. Instruction RAM and Instruction Fetch Control......................................116
FIGURE 33. Fetching 2 Instructions from the Instruction Ram116
FIGURE 34. Scalar Unit Instruction Format...122
FIGURE 35. Su Instruction Pipeline...125
FIGURE 36. Visualization of the various pipeline stages...125
FIGURE 37. Illustration of Branch Taken ..126
FIGURE 38. Illustration of Branch Not Taken ..126

April 17, 1997 Silicon Graphics Proprietary and Confidential

FIGURE 39. Illustration of wrap-around access ...133
FIGURE 40. Big Endian Mode ...133
FIGURE 41. Bitstream Processor in the context of the VICE chip173
FIGURE 42. Bitstream Processor and Memory..174
FIGURE 43. BSP Internal Block Diagram ...175
FIGURE 44. BSP Instruction Pipeline ..176
FIGURE 45. BSP Instruction Pipeline - Multi-cycle ..177
FIGURE 46. BSP Jump/Branch Instruction..177
FIGURE 47. BSP Status and Control Register ...178
FIGURE 48. Generic Table Entry Format...186
FIGURE 49. Run-Level Table Descriptor Format ..187
FIGURE 50. Run-Length Table Descriptor Format ..188
FIGURE 51. Bitstream Buffer...194
FIGURE 52. BSP Code Search Block Diagram..195
FIGURE 53. Logical pin diagram of VICE ..208
FIGURE 54. 380 Lead Tab Ball Grid Array ...232
FIGURE 55. Package Markings..233

April 17, 1997

TABLE 1. VICE_ID Address Response..23
TABLE 2. VICE Address Map..24
TABLE 3. Exception Priority Order..29
TABLE 4. VICE DMA view of System Memory ...35
TABLE 5. MSP DMA TLB Entry Format ..38
TABLE 6. Register Address Map Summary ...40
TABLE 7. DMA Descriptor Address Map..42
TABLE 8. VICE_ID Register Format ...44
TABLE 9. VICE_CFG Register Format..44
TABLE 10. VICE_INT_RESET Register Format...45
TABLE 11. VICE_INT Register Format...46
TABLE 12. VICE_INT_EN Register Format ...47
TABLE 13. MSP_D_RAM Register Format...48
TABLE 14. MSP_CTL_STAT Register Format ..49
TABLE 15. MSP_PC Register Format..50
TABLE 16. MSP_BadAddr Register Format ..50
TABLE 17. MSP_WatchPoint Register Format ..50
TABLE 18. MSP_EPC Register Format ...51
TABLE 19. MSP_CAUSE Register Format..51
TABLE 20. Exception Code Field of Cause Register ...51
TABLE 21. MSP_ExcpFlag Register Format ...52
TABLE 22. MSP_COUNT Register Format ...53
TABLE 23. BSP_WatchPoint Register Format ...54
TABLE 24. BSP_IN_COUNT Register Format..55
TABLE 25. BSP_OUT_COUNT Register Format..55
TABLE 26. BSP_IN_BOX Register Format ...56
TABLE 27. BSP_OUT_BOX Register Format ...57
TABLE 28. HST_BSP_IN_BOX Register Format..58
TABLE 29. HST_BSP_OUT_BOX Register Format..58
TABLE 30. BSP_PC Register Format...59
TABLE 31. BSP_EPC Register Format ..59
TABLE 32. BSP_HALT_RESET Register Format ...60
TABLE 33. BSP_CAUSE Register Format...61
TABLE 34. BSP_FIFO_CTL_STAT Register Format ..62
TABLE 35. BSP_AVAILD_BITS Register Format...63
TABLE 36. BSP_FVALID_BITS Register Format...63
TABLE 37. DMA_CTL_CH1 Register Format ..64
TABLE 38. DMA_STAT_CH1 Register Format...65
TABLE 39. DMA_DATA_CH1 Register Format..66
TABLE 40. DMA_MEM_PT_CH1 Register Format..66
TABLE 41. DMA_VICE_PT_CH1 Register Format..66

April 17, 1997

TABLE 42. DMA_COUNT_CH1 Register Format ..67
TABLE 43. DMA_CTL_CHX_DY Register Format..68
TABLE 44. DMA_SMEM_HI_CHX_DY Register Format ...71
TABLE 45. DMA_SMEM_LO_CHX_DY Register Format ..71
TABLE 46. DMA_WIDTH_CHX_DY Register Format ..71
TABLE 47. DMA_STRIDE_CHX_DY Register Format ...72
TABLE 48. DMA_LINES_CHX_DY Register Format ..72
TABLE 49. DMA_VMEM_Y_CHX_DY Register Format ..72
TABLE 50. DMA_VMEM_C_CHX_DY Register Format ..72
TABLE 51. VICE <-> CRIME unique connections..74
TABLE 52. Data Size Name Convention ..75
TABLE 53. Encoding of SysCmd(7:5) for System Interface Commands.....................77
TABLE 54. Encoding of SysCmd(4:3) for Read Requests ...78
TABLE 55. Encoding of SysCmd(2:0) for Block Read Requests.................................78
TABLE 56. Doubleword, Word, or Partial-word Read Request Data Size Encoding of

SysCmd(2:0)78
TABLE 57. Encoding of SysCmd(4:3) for Write Requests ..79
TABLE 58. Encoding of SysCmd(2:0) for Block Write Requests................................79
TABLE 59. Doubleword, Word, or Partial-word Write Request Data Size Encoding of

SysCmd(2:0)80
TABLE 60. Unix Processor Data Identifier Encoding of SysCmd(7:3)........................81
TABLE 61. Vice generated External Data Identifier Encoding of SysCmd(7:3)81
TABLE 62. VICE as Processor Data Identifier Encoding of SysCmd(7:3)82
TABLE 63. CRIME generated External Data Identifier Encoding of SysCmd(7:3).....82
TABLE 64. Unix Processor PClock - SClock Relationship..92
TABLE 65. ..94
TABLE 66. ..94
TABLE 67. VICE Datapath Flow..101
TABLE 68. List of Signals on Common Bus ..104
TABLE 69. List of Signals on DMA Bus..107
TABLE 70. Dependency check for 2 cycle load delay slots127
TABLE 71. Memory byte marks ...135
TABLE 72. Element Selection for Computational Instructions151
TABLE 73. VICE Pin Descriptions...209
TABLE 74. 380 BGA Pin Assignments - Pin Order ...213
TABLE 75. Signal Name - Pin Assignment ..217
TABLE 76. ..231
TABLE 77. Absolute Maximum Ratings - Non Operational234
TABLE 78. Device Operating Range ..234
TABLE 79. DC Characteristics (Tj = 0 to 110o C) ..235
TABLE 80. AC Characteristics ...235

April 17, 1997

TABLE 81. Package Thermal Resistance Characteristics - Air Flow Consideration..236
TABLE 82. HD diag list ..432
TABLE 83. BSP diag list...436
TABLE 84. MSP diag list..447
TABLE 85. Acceptance test ..466

If a picture is worth a thousand words, imagine what 30 pictures every second is worth.

.... Unknown 1994

April 17, 1997 15

1.0 Introduction

This document itemizes requirements and design implementation for hardware and embedded software sup-
port of image processing in the next generation low end Silicon Graphics Workstation. Image processing is
defined as any function(s) that apply to two dimensional blocks of pixels. These pixels may be in the format
of file system images, fields or frames of video entering the workstation through video ports, mass storage
devices such as CD-ROMs, fixed-disk subsystems and Local or Wide Area network ports. This hardware
will be able to convert between various image protocols, colorspace and different signal domains such as fre-
quency and time. The demanding performance requirements for these kinds of operations presently exceed
the capabilities of our general purpose microprocessors that run the Unix Operating system and its associ-
ated application programs. The intent of this hardware will be to allow images to course through the work-
station without requiring significant processing resources from the central CPU. The goal is to provide this
additional hardware support at a minimum cost that is leveraged over existing and new image processing
tasks so as to make its price increase to the base system cost effective AND justifiable.

1.1 General Overview

This document describes a digital ASIC that will reside alongside the Unix Operating System processor and
perform image processing tasks. The ASIC is called VICE for Video, Imaging and Compression Engine. It
consists of several blocks to achieve the feature set listed below. The major blocks will be DMA engines to
move data from and to system RAM, an implementation of the Silicon Graphics Media Signal Processor
architecture (MSP) that can perform integer, logical, and mathematical operations necessary for signal pro-
cessing and Data and Instruction Memory for the MSP to operate upon. A Bitstream Processor complements
the MSP architecture and is optimized to perform variable bit length processing common in compression
and de-compression algorithms.

1.2 System Overview

VICE is one of the major chips of Moosehead. Moosehead contains a large bandwidth bus, through which
devices communicate with main memory. The main memory acts as a system memory, frame buffer, Z
buffer and texture memory. Graphics primitives are rendered by the CRIME into main memory.Video and
audio streams travel through the I/O chip to and from main memory. Image compression and expansion, and
image processing are implemented in VICE.

April 17, 1997 16

FIGURE 1. VICE applied to Silicon Graphics entry workstation

Main memory

Graphics output

CRIMECPU

I/O
(SCSI,
Ethernet,
PCI,

SGI ENTRY SYSTEM

Graphics
Back End

VICE

Video,
Audio)

April 17, 1997 17

1.3 Features

Silicon Graphics Media Signal Processor Architecture

• 6K Byte Data RAM

• 4K Byte Instruction RAM

• 32 bit Scalar Unit running at 66 MHz, 1 instruction per clock

• 128 bit SIMD Vector Unit running at 66 MHz, 1 Multiply and 1 Accumulate per clock

• Dual Issue Instruction Dispatch Unit

Bit Processor to accelerate compression standard variable length bit formats

• 16 Bit RISC Core

• Multi-Cycle Instruction Extensions

• Programmable Tables for Multi-Standard Support (JPEG, MPEG, Px64)

Intelligent Direct Memory Access Controller

• Flexible address generation to use Unix System Memory and avoid costly dedicated RAM

• “Virtual” address support for Media Signal Processor access to Unix System Memory

• Special Features to manipulate pixels during DMA (Y/C split & 1/2 Pixel Calculation)

April 17, 1997 18

FIGURE 2. Logical pin diagram of VICE

VICE
SysAD(63:0)

MSPClock

20

VDD

VSS

20

PLL_ANALOG_DIG
5

TDO

PllOut

TMS
TRST

PllEn
Tristate_en
TDI

TEST PINS

ViceSysRqst_n

64
SysADC(7:0)

8
SysCmd(8:0)

9

Vice_Int_n
SClock

ViceSysGnt_n
ViceRelease_n

RdRdy_n
WrRdy_n

R4ValidOut_n

R4ValidIn_n

Reset_n

SysCmdP
1

ViceValidOut_nViceValidIn_n
ViceWrRdy_n

Core

25

VDD
I/O

VSS

25

Core I/OTCK

VDD

April 17, 1997 19

1.4 VICE Overview

VICE contains four major functional blocks:

• Media signal processor.
• Bit stream processor
• DMA unit
• Host Interface

These processing units accelerate industry standard compression and de-compression algorithms. Figure 3,
“VICE Functional Block Diagram,” on page 21 shows a block level representation of the units within the
VICE ASIC.

1.4.1 Media Signal Processor

For more information on the origin of the Media Signal Processor architecture, refer to MIPS Media Engine
Sketch referenced in the Bibliography.

The implementation of the Media Signal Processor for VICE has been customized in the areas of Memory
organization, Pipeline Depth and Interlocks and, when necessary, the actual computational elements in the
pipelines have been modified for the target silicon technology chosen for the VICE ASIC.

This Processor is really two processors consisting of one 32 bit instruction unit with 32 bit data path oper-
ands (referred to hereafter as the Scalar Unit) and a second 32 bit instruction unit with 128 bit data path
operands (referred to hereafter as the Vector Unit). The data path of the Vector Unit can be sliced in 8/16 bit
pieces for the purpose of performing integer mathematical operations. No branch instructions are included in
the Vector Unit instruction set, as it relies on the Scalar Unit for those functions.

1.4.2 Bitstream Processor

The bitstream processor is a programmable device which is tailored for processing bitstreams of compressed
data. The bitstream processor has a 16-bit RISC-like load-store architecture. Hence, it has an instruction set
which has familiar register to register operations (such as arithmetic operations), instruction stream control
(jumps and branches) and memory to register transfer of data. In addition, the bitstream processor has
instructions which are specific to manipulating arbitrarily aligned tokens in a bitstream of data. furthermore,
the bitstream processor has instructions which can perform the table lookup operations necessary to decode
variable length tokens in a bitstream. The tables provided to these instructions are programmable. They may
be programmed to support the MPEG-1, MPEG-2, H.261 and JPEG compression standards, and with
restrictions, can be programmed for proprietary algorithms.

1.4.3 DMA Unit

The DMA unit of VICE consists of two DMA channels. Each DMA channel consists of a DMA state
machine, control registers and a descriptor memory. The MSP Scalar Unit, Bitstream Processor or the host
can program the control registers and descriptor memory of a DMA channel. DMA transactions can occur
from Unix System Memory to any memory resource inside the VICE chip. DMA transactions can occur
from any memory resource inside of the VICE chip to Unix System Memory. The DMA engine can be used
to fill any memory resource inside of the VICE chip using an on-chip data pattern register.

For DMA transaction to/from Unix System Memory, the DMA Unit decomposes the descriptor requests into
physical Unix System Memory address and byte count. A Lookup table to convert between the contiguous
4Meg address space of the on-chip VICE processors (MSP & BSP) and the 4Meg physical System Memory

April 17, 1997 20

is implemented with 64K page segment entries. The DMA Unit will “batch” these requests to exploit Sys-
tem Memory bandwidth which is maximized when 256 byte transfers are performed.

Because the spans of image data that make up a 256 byte block may not be continuous, the DMA unit must
break up the memory requests into address plus byte count so that the CRIME memory controller need not
manage row and column “gaps” in the memory requests.

A special mode of the DMA engine will allow data stored as 4:2:2 YCrCb in System Memory to be retrieved
and split into separate Y and CrCb blocks of MSP Data RAM. Consideration for further decimating the
CrCb channel is covered as well. Similarly, the DMA engine can gather separate Y and CrCb blocks of MSP
Data RAM and interleave it when writing the data back into System Memory in 4:2:2 YCrCb format.

Finally, Half-Pixel Calculation is available as part of the DMA transaction. For example, a strip of 17 pixels
can be DMA’ed from System Memory resulting in 16 pixels in the VICE Data RAM. Modes for independent
Horizontal and Vertical Half-Pel calculation are available. A transaction that interleaves two fields into a
frame AND performs half-pel calculation AND separates the target data into Y/C uses most of the features
of the DMA engine.

1.4.4 Host Interface

The VICE chip shares the SysAD bus with the Unix processor. Extensions to allow multiple outstanding
reads have been added to CRIME and VICE to support efficient transfer of large blocks of data between Sys-
tem Memory and VICE internal data RAM. Arbitration takes place to allow VICE to initiate transactions on
the SysAD bus.

The R4K processor family will be able to write/read directly to the VICE chip to a specific address space
that is recognized by CRIME and VICE alike to allow efficient transfer of data between VICE and the Unix
processor without the overhead of CRIME acting as an intermediary in the data path.

For more information on the SysAD interface refer to Section 3.0 on page 73 of this document and to the
CRIME Design Specification.

April 17, 1997 21

FIGURE 3. VICE Functional Block Diagram

Vector Unit

Scalar Unit

MEM A MEM BMEM C

DMA
Controller

I/O &
HOST
I/F

Inst.
Memory

Table
Memory

64

128

128

128
128

3232

32

MSP

128x128 128x128 128x128

1Kx16

1280 x22

512 x64

DMA-Bus
Arbiter

Bitstream
Processor

Media Signal ProcessorBitstream Proc.

Instruction
Memory

X Bar

128 128
64

April 17, 1997 22

2.0 Programmer’s Interface

VICE will communicate with the system in the following ways. All chip Control Registers are mapped to the
Unix system address space. All internal RAM is also mapped to the Unix system address space. Only the
DMA engines within VICE can access the Unix system address space. Access by the DMA engines will go
through a mapping memory that will limit access to a physical 4 MByte region of Unix system memory.
This is added as protection to prevent errant code on the VICE chip from corrupting Unix system memory.

The Register Files of the on-chip VICE processors (Media Signal Processor and Bit Stream Processor) are
not mapped to Unix system address space.

The VICE device driver will most likely load initialization code into the Instruction RAM of the VICE ASIC
and then utilize the MSP_CTL_STAT register, Table 14, “MSP_CTL_STAT Register Format,” on page 49 to
allow the VICE Media Signal Processor to begin code execution.

Interrupts from the VICE chip are collected within VICE and presented to the system on a signal pin that
ultimately finds its way to the Unix system processor.

The VICE Media Signal Processor does not respond to interrupts. It does however halt on exceptions and it
can be halted and restarted by using the MSP_CTL_STAT register from the Unix host processor. Additional
communication with the Unix System processor is expected to take place in shared system RAM or through
internal VICE data RAM. There are no plans to provide register mailboxes within the VICE chip for this
inter-processor communication.

The Bitstream Processor and the Media Signal Processor CAN communicate with each other through spe-
cial Mailbox registers.

2.1 Address Map

The chip is mapped to system address space so that the Unix processor can access internal information in the
VICE chip. On-Chip registers (excluding BSP and MSP register files) and RAM are also accessible to the
on-board Media Signal Processor and Bit Stream Processor. The map below shows the general layout of the
VICE chip address space and the address space through which each processor (MSP, BSP and Unix proces-
sor) can access that resource.

Unix processor accesses within an address range that exceed the physical range implemented will return 0’s
in the data field and will NOT return data from a register or memory location. This allows for expansion of
physical memory such as Data RAM or Instruction RAM to be implemented in future versions of the chip
while remaining obvious and deterministic to the Programmer’s Interface.

Note that the MSP does NOT have self diagnostic capability for its Instruction RAM and will rely on the
System address space ports to verify this memory. The same is true for the Instruction RAM of the BSP. The
Address Sequence has been preserved for the System, MSP and BSP address space across the Instruction
RAM gaps of each processor, to maintain simplicity of address decode for the entire ASIC.

The MSP and BSP will require diagnostic code to exercise and verify proper operation of their register files.

2.2 Vice_ID decoding

The VICE_ID(1:0) pins on VICE allow for multiple VICE chips to share the SysAD bus. The value of the
VICE_ID pins are compared with SysAD Address bits (21:20), to provide the following mapping:

April 17, 1997 23

Note that only PIO decoding of the SysAD protocol is covered by use of the VICE_ID pins. The VICE <->
CRIME pins would need to be repeated on CRIME for each VICE implemented on the SysAD bus. So the
ViceSysRqst_n pin would be ViceSysRqst0_n and ViceSysRqst1_n on CRIME, ViceSysGnt0_n and
ViceSysGnt1_n etc.

The use of multiple VICE chips has NEVER been tested on the SysAD bus. It has not been tested in the sim-
ulator either!

TABLE 1. VICE_ID Address Response

VICE_ID VICE Address Range
00 0x0 170F FFFC - 0x0 1700 0000
01 0x0 171F FFFC - 0x0 1710 0000
10 0x0 172F FFFC - 0x0 1720 0000
11 0x0 173F FFFC - 0x0 1730 0000

April 17, 1997 24

TABLE 2. VICE Address Map

System
Address

VICE
Address

Address
Range Function Comments

MSP
Access

BSP
Access

Contained in
TLB

0x10BF FFFC
0x1080 0000

4M Vice Accessible Sys-
tem Memory

64K Frame
Buffer Tiles

DMA
Engine

DMA
Engine

Contained in
TLB

0x00BF FFFC
0x0080 0000

4M Vice Accessible Sys-
tem Memory

64K Linear
Page

DMA
Engine

DMA
Engine

0x0 17FF FFFC
0x0 1701 0000

Not Used Unused Space Excepti
on

Excepti
on

0x0 1700 FFFC
0x0 1700 F000

0x0000 FFFC
0x0000 F000

4K VICE TLB 64 entry map Excepti
on

Excepti
on

0x0 1700 EFFC
0x0 1700 E000

0x0000 EFFC
0x0000 E000

4K Kernel Restricted
Regs

Protected from
debugger/user

Excepti
on

Excepti
on

0x0 1700 DFFC
0x0 1700 C000

0x0000 DFFC
0x0000 C000

8K Unused Unused Excepti
on

Excepti
on

0x0 1700 BFFC
0x0 1700 9800

0x0000 BFFC
0x0000 9800

10K Data RAM - Unused Excepti
on

Excepti
on

0x0 1700 97FC
0x0 1700 9000

0x0000 97FC
0x0000 9000

2K Data RAM - Bank C Load/
Store

Load/
Store

0x0 1700 8FFC
0x0 1700 8800

0x0000 8FFC
0x0000 8800

2K Data RAM - Bank B Load/
Store

Load/
Store

0x0 1700 87FC
0x0 1700 8000

0x0000 87FC
0x0000 8000

2K Data RAM - Bank A Load/
Store

Load/
Store

0x0 1700 7FFC
0x0 1700 7000

0x0000 7FFC
0x0000 7000

4K Bitstream Processor
Input/Output buffers

IN 0x7800
OUT 0x7000

Excepti
on

Load/
Store?

0x0 1700 6FFC
0x0 1700 5000

0x0000 6FFC
0x0000 5000

8K Bitstream Processor
Table Memory

1280K x 22 None Load/
Store

0x0 1700 4FFC
0x0 1700 4000

0x0000 4FFC
0x0000 4000

4K Bitstream Processor
Instruction

1K x 16 None Fetch
Only

0x0 1700 3FFC
0x0 1700 3000

0x0000 3FFC
0x0000 3000

4K MSP Instruction
RAM

Reserved Not
Implemented

Excepti
on

None

0x0 1700 2FFC
0x0 1700 2000

0x0000 2FFC
0x0000 2000

4K MSP Instruction
RAM

Fetch
Only

None

0x0 1700 1FFC
0x0 1700 1000

0x0000 1FFC
0x0000 1000

4K Chip DMA Descrip-
tor Set Registers

64 r/w loca-
tions accessed
as COP3

MTC3/
CTC3

Load/
Store

0x0 1700 0FFC
0x0 1700 0008

0x0000 0FFC
0x0000 0008

4K Chip Registers Mode, Status/
Control, Inter-
rupts

MTC1/
MFC1

Load/
Store

0x0 1700 0007
0x0 1700 0000

0x0000 0007
0x0000 0000

8Bytes Reg Address 0
“Safe” Not Used

Safe
Watchp
oint

Safe
Watchp
oint

April 17, 1997 25

2.2.1 VICE address protection

To aide in Unix System Memory protection, the VICE chip contains a software managed translation buffer
known as a TLB. On-chip VICE processors can modify this TLB through use of the DMA engine. A special
permission bit controlled by the Unix Processor must be enabled before the DMA engine can modify the
TLB. If any address beyond the 4Meg range is programmed into one of the DMA engine registers or if the
DMA engine itself computes an address beyond this “logical” address range, the DMA engine will halt and
raise the interrupt line to the Unix Processor.

Note also that Load/Store operations from the MSP/BSP cannot access the 4 Meg range of System Memory.
This is as much for protection as it is to maintain hardware simplicity so that the VICE TLB can be dedi-
cated to the VICE DMA engines.

The VICE TLB is expected to have a Unix System Memory page size of 64K. Sequential pages in the VICE
TLB do not need to be physically contiguous blocks of memory.

2.2.2 VICE address convenience

For hardware simplicity, the MSP and BSP will not be able to perform load/store operations on their Instruc-
tion RAM. Only the Unix Processor and the VICE DMA engine will be able to access Instruction RAM
address space. Also, because of the varying datapath arrangements, the Instruction RAM and Data RAM
will not be swappable.

The Instruction RAM diagnostics will be a combination of host access and VICE assembly language that
performs various branches whose targets perform Data RAM modifications that can be monitored by the
host.

April 17, 1997 26

2.3 Chip Initialization

2.3.1 Unix Processor - VICE reset interaction

Vice has a dedicated pin named ViceReset_n. It is expected that this be driven by a pin on the CRIME chip.
The present plan is to connect the MIPS RESET* pin and ViceReset_n together. CRIME will drive this net.

During the reset condition, VICE will tri-state all of its common I/O shared on the SysAD bus with the Unix
host processor. This list:

SysAD(63:00)
SysADC(7:0)
SysCmd(8:0)
SysCmdP
R4ValidIn_n

These VICE <-> CRIME handshake pins are 3-state during ViceReset_n = 0. They must be pullued up
on the CPU Board so that CRIME will see valid levels during reset:

ViceValidOut_n = 1
Vice SysRqst_n = 1
ViceRelease_n = 1
ViceInt_n = 1

2.3.2 Internal VICE initialization

VICEwill require 100 milliseconds for its PLL to stabilize. On a Power-On Reset, the Unix Processor
RESET* pin will be asserted at least this long (along with the VCCOk signal). The present plan is to connect
the Unix Processor RESET* pin and ViceReset_n together. CRIME will drive this net.

If the PLL is stable, then VICE will only require 16 clocks? to fully initialize. ViceReset_n must be held
asserted for at least 16 clocks for VICE to fully reset.

ViceReset_n will cause all internal state machines and processors inside of VICE to initialize.

2.3.3 Selective VICE initialization

The MSP has a control register that can be used to reset the MSP independently of the rest of the VICE chip.
The DMA engine has the same. The BSP has a control register that can be used to reset the BSP indepen-
dently of the rest of the VICE chip. The host interface in VICE is not resettable in this manner. If the host
interface needs to be reset, the ViceReset_n pin must be asserted.

Any individual register initiated reset will require the reset mode to be active for a minimum of 16 clocks
before removing the reset condition.

April 17, 1997 27

2.4 Interrupts/Exceptions

Interrupts are generated to the Unix system processor from MSP program control, MSP exceptions and
DMA complete or error conditions. The cause of any interrupt is indicated by a bit in the VICE_INT register
which is cover in the register section.

2.4.1 MSP Exception Processing

This section describes what conditions generate an MSP exception.

On an exception the MSP immediately halts and posts an interrupt to the host CPU. The host CPU examines
MSP registers to determine the cause of the exception and must restart the MSP as appropriate. Once the
MSP has halted itself it must be restarted by the host CPU -- i.e., an agent external to the MSP.

MSP exceptions are imprecise. That is, when the exception is detected, no further instructions are issued and
instructions already in the SU pipe are completed. The state of the MSP when it has halted will be different
from that when the exception was detected.

After an exception has been taken, the MSP PC is non-deterministic and must be set to a known value before
the Go bit is set.

2.4.1.1 Load Store Address Error Exception (0,1)

Cause. The Address Error Exception occurs when an attempt is made to:

• MSP SU load or store a word that is not aligned on a word boundary

• MSP SU load or store a halfword that is not aligned on a word boundary

• MSP VU load or store a half that is not aligned on a quad, quad+1 boundary

• MSP VU load or store a fourth that is not aligned on a quad, quad+1, quad+2, quad+3 boundary

• MSP VU load or store a transpose/wrap that is not aligned on a quad boundary

• MSP VU load or store an alterante that is not aligned on a quad, quad+2 boundary

• MSP SU/VU load or store access inst ram space

• MSP SU/VU load or store access address space outside valid MSP Address space

• MSP SU/VU load or store access valid address space but exceed physical range implemented

Handling. When this exception occurs, the BadAddr register retains the load store address that caused the
exception. On loads, undefined data will be returned and written to the destination register in the SU or VU
file. On stores, undefined data will be written to Data Memory. The address where this undefined data will be
read from or written can be found in Table 6, “Register Address Map Summary,” on page 40. This is the off-
set address that must be combined with the base address for registers wich can be found in Table 2, “VICE
Address Map,” on page 24.

The EPC register points at the instruction that caused the exception. The AdEL or AdES code in the Cause
register is set.

2.4.1.2 Breakpoint Exception (2)

Cause. The Breakpoint exception occurs when a BREAK instruction is reached.

April 17, 1997 28

Handling. The BP code in the Cause register is set.

The EPC register points at the BREAK instruction.

Programmer’s Note.

If the instruction immediately following the BREAK instruction is not a VU instruction, or if the BREAK
instruction was the latter instruction in a 2-instruction issue boundary, the Breakpoint exception is precise.
i.e. the SU & VU Reg File after this exception has occurred would be the state before the exception is taken.

The BREAK instruction should not be inserted in a branch or jump delay slot.

2.4.1.3 Watchpoint Exception (3)

Cause. The Watchpoint exception occurs when a MSP load or store instruction references the address spec-
ified in the MSP Watchpoint Register. In doing the address comparison, the low 3 bits of the address are
ignored.

Handling. The WP code in the Cause register is set. The load/store operation that causes this exception
completes.

The EPC register points at the load store instruction that caused this exception. To disable Watchpoint excep-
tion, clear the MSP_WatchPoint Register to 0x00000000.

2.4.1.4 Scalar Unit Reserved Instruction Exception (4)

Cause. The Reserved Instruction exception occurs when an attempt is made to execute an instruction whose
major opcode (bits 31..26) is undefined, or a SPECIAL instruction whose minor opcode (bits 5..0) is unde-
fined.

Handling. The SuRI code in the Cause register is set.

The EPC register points at the reserved instruction.

Programmer’s Note. If an undefined instruction falls outside of the above definition for detecting a reserved
instruction exception, the hardware will default to the nearest synthesized valid opcode which is non-deter-
ministic.

2.4.1.5 Vector Unit Reserved Instruction Exception (5)

Cause. The Reserved Instruction exception occurs when an attempt is made to execute a VU instruction that
is undefined.

Handling. The VuRI code in the Cause register is set.

The EPC register points at the reserved instruction.

2.4.1.6 Contention Exception (6)

Cause. The Contention exception occurs when the MSP SU load or store to a Data RAM bank deselected by
the MSP_Config register.

April 17, 1997 29

Handling. The CON code in the Cause register is set.

The EPC register points to the load or store instruction that cause this exception

2.4.1.7 Instruction Fetch Address Exception(7)

Cause. The Instruction Fetch Address Exception occurs when an attempt is made to:

• MSP PC access address space outside Instruction RAM

• MSP PC access valid address space but exceed physical range implemented

In this implementation, the PC is only 14 bits wide with bits [31:16] and bits[1:0] grounded to 0. Hence,
range checking is only done on bits[15:3].

Handling. BadAddr register is NOT updated with the faulting address. The AdEI code in the Cause register
is set.

The EPC register points to the instruction that causes this exception.

2.4.2 Exception Priority

The following table indicates which exception will be posted if more than one exception condition arise
simultaneously. To observe if multiple exceptions occurred, look at the Exception Flag Register.

TABLE 3. Exception Priority Order

2.4.3 Handling Multiple Exception

If more than one exception occur during the same cycle, the exception which is stored into the EPC and the
Cause register is determined by the above Exception Priority. If however, at the next cycle, should an excep-
tion be detected, the EPC or the Cause Register is not updated. That is, the EPC, Cause, BadAddr register is
only updated when all bits in the Exception Flag Register are cleared to 0.

Note: Information regarding subsequent exceptions will only be written into the EPC and the Cause Register
when all bits in the Exception Flag Register are cleared.

Instruction fetch addr exception
Breakpoint exception
SU Reserved instruction exception
VU Reserved instruction exception
Contention exception
Address error exception (load)
Address error exception (store)
Watchpoint exception

April 17, 1997 30

2.5 MSP Code Management

This section describes how the host manages the MSP.

2.5.1 Basic MSP Operation

Before starting the MSP the host CPU allocates physical system memory for input and/or output data buff-
ers, application-specific constants and scratch area and loads the VICE TLB with mappings to this memory
(see DMA Management). This memory must be pinned down and otherwise allocated for VICE operation.

The host loads the MSP instruction RAM with MSP instruction text and loads Data RAM with arguments.
The host then sets the MSP_PC and takes the MSP out of halt (see MSP_CTL_STAT in Register Descrip-
tion).

The MSP now runs to completion with no further interaction with the host CPU. The MSP program reads its
input data and/or writes its output data in host memory using DMA. The MSP reads in additional program
segments using DMA (see Code Segment Update below).

The MSP program completes on its own by executing the break instruction which causes an exception inter-
rupting the host CPU. The MSP may alternately leave completion notification to the BSP and simply spin --
the BSP then halts and interrupts the host CPU which then halts the spinning MSP using the
MSP_CTL_STAT register.

2.5.2 Code Segment Updates

The MSP reads in additional program segments using DMA. The MSP programs DMA as it would for any
transfer to VICE, indicating MSP Instruction RAM as the destination.

The MSP Instruction RAM is dual ported. DMA can write to the Instruction RAM at the Same time that the
MSP is executing from Instruction RAM. MSP Code can intelligently manage overlays to allow program
execution to continue while new Instructions are brought in by the DMA engine.

2.5.3 Debug Operations

The MSP is debugged from the host using a debugger that maps in VICE RAMs and registers. This host-res-
ident debugger uses the break instruction and its own MSP code to save and restore scalar and vector regis-
ters to implement single stepping, breakpoints and register set and dump.

VICE Data RAM is directly accessible from the host are the MSP and BSP Instruction RAMs and BSP
Table RAMs.

2.5.3.1 Break points

To set a breakpoint the MSP debugger replaces an MSP instruction with the break instruction. The debugger
continues execution by replacing the original instruction and then takes the MSP out of halt.

2.5.3.2 Register dump

MSP Vector and Scalar Unit registers are not mapped into host address space. To examine or set vector or
scalar registers the MSP debugger first halts the MSP. Data RAM and MSP Instruction RAM are then both

April 17, 1997 31

copied from VICE and saved on the host. The debugger loads its own code to save or set registers using load
and store instructions. The register values are staged through Data RAM. The debugger continues execution
of the MSP by replacing the saved Instruction and Data RAM.

Programmer’s Note: When the MSP is halted either by reaching a BREAK or by setting the HALT bit in
the MSP_CTL_STAT Register, the programmer must write the PC to a known value since the PC is indeter-
minate whenever the MSP is halted.

April 17, 1997 32

2.6 BSP Code Management

2.6.1 Initialization

To have the software (unix processor) reset the BSP, perform the following sequence:

1) Assert bit 0 (write 1) of the BSP_HALT_RESET register. This will reset the write buffer, encode pipe and
decoding state machine.

Assertion of this bit will HALT THE BSP, where the PC is pointing at that instance. NOPs will be
pushed through the instruction pile. The HALT bit (bit 1) will be set and the halt will be acked (bit
2).

2) Assert bit 2 of the BSP_FIFO_CTL_STAT register. (write a 1). This resets the input FIFO.

Note: To start the BSP up again requires the following steps:

1) Put a valid value in the BSP’s PC (zero is a good choice).
2) Negate bit 2 of the BSP_FIFO_CTL_STAT register. (write a 0)
3) Negate bit 0 (write a 0) of the BSP_HALT_RESET register.

Now the reset is complete and the BSP is simply halted.

To run the BSP, negate bit 1 of the BSP_HALT_RESET register.

2.6.2 Code Segment Updates

2.6.3 Debug Operations

April 17, 1997 33

2.7 DMA Management

This section covers the programmers interface to the various DMA subsystems on the VICE chip. There are
two DMA channels that either the MSP Scalar Unit, the Bit Stream Processor or the host can access. The
MSP takes advantage of the DMA controller being a virtual device to simplify the overhead involved in
accessing Unix system memory buffers.

The TLB is used only for DMA transfers. MSP load/store instructions operate only on MSP Data RAM.

MSP initiated DMA transfers may use TLB-mapped addresses. If the bit to allow the DMA engine to bypass
the TLB has been enabled by the host processor in the VICE_CFG register (See “VICE_CFG - General
Configuration Register” on page 44.) and that function is enabled in the DMA_CTL register for that dma
channel. This is a host owned safety mechanism. This restriction implements system security! MSP TLB
entries are writable by the host CPU and by the DMA engine itself. [They could be read by the MSP if the
address range to the Common Bus is sufficient].

2.7.1 DMA Programming Restrictions

The DMA_FILL mode does not work in Y/C split mode.

For 4:2:2 -> 4:2:0 and 4:2:2 -> 4:2:2 Y/C split mode, and luma only mode and chroma only mode, the width
granularity in System Memory must be modulo quad word (16 byte) and the starting address in system
memory must be quad word (16 byte) aligned.

The 4:2:2 -> 4:2:0 Y/C split mode, the algorithm that the DMA engine uses is to overwrite the chroma value
of the first line transferred with the value of the second line transferred. This works fine for even line refer-
ence pictures that have “synthesized” 4:2:2. That is the second line of chroma always matches the first line
since it was copied from the first line. For dma transfers that originate on an odd line, the algorithm imple-
mented in the DMA engine is incorrect. This is because the second line of chroma is from the next even line,
while the chroma we want is actually from the previous even line.

Note for VICE respin (version -004), the algorithm to decimate chroma should be to always keep the
first line of chroma specified by the DMA engine system memory pointer, drop the second line, keep
the third, drop the fourth etc. This is the correct algorithm that will work for descriptors that origi-
nate on even or odd scan lines of reference pictures.

2.7.2 TLB and Address Space

MSP DMA engine addresses are translated into physical addresses using the TLB. The TLB is a 64 element
array of physical (64Kbyte) page numbers mapping a 4Mbyte virtual address space to System RAM.

If a given (64Kbyte) range of the address space is not accessible for any reason, a TLB entry is marked
invalid.

The page size is expected to be fixed to 64K bytes and aligned on 64K byte boundaries in system memory.

Both linear and “tiled” 64K pages in system memory are supported. These modes are selected through the
address programmed into the DMA_SMEM_HI_CHX_DY entry in the DMA Descriptors as part of DMA
setup. The supported ranges for this pointer are enumerated in Figure 4, “VICE DMA view of System Mem-
ory,” on page 35.

April 17, 1997 34

The contents of the TLB are really unaffected by the two types of pages. The bit fields of the
DMA_SMEM_HI_CHX_DY register are interpreted differently by the hardware during the TLB lookup
process depending on the value of bit 28 of the DMA_SMEM_HI_CHX_DY.

April 17, 1997 35

2.7.3 64K Linear Tiles

For a contiguous Linear UNIX page size of 64K, the SMEM pointer is interpreted by the hardware as shown
in the figure below. Address bits 21 through 16 form the pointer to select one of 64 addresses of the TLB.
The Contents of that TLB address are used to produce the upper 16 bits of system memory address space.
These bits are combined with the lower 16 bits of the SMEM pointer to form the complete system memory
address. The hardware decomposition of the SMEM pointer is shown graphically in Figure 4, “SMEM
Pointer decomposition for 64K Linear Page,” on page 35

FIGURE 4. SMEM Pointer decomposition for 64K Linear Page

This corresponds to the address range 0x0080 0000 - 0x00BF FFFC in TABLE 1. Vice Address Map.

TABLE 4. VICE DMA view of System Memory

SMEM
Address

Address
Range Function Comments

MSP
Access

BSP
Access

0xFFFF FFFC
0x2000 0000

3512M Unused DMA error int DMA
Engine

DMA
Engine

0x1FFF FFFC
0x10C0 0000

244M Reserved Future
Space

64K Frame
Buffer Tiles

DMA
Engine

DMA
Engine

0x10BF FFFC
0x1080 0000

4M Vice Accessible Sys-
tem Memory

64K Frame
Buffer Tiles

DMA
Engine

DMA
Engine

0x107F FFFC
0x1000 0000

8M Unused DMA error int DMA
Engine

DMA
Engine

0x0FFF FFFC
0x00C0 0000

244M Reserved Future
Space

64K Linear
Page

DMA
Engine

DMA
Engine

0x00BF FFFC
0x0080 0000

4M Vice Accessible Sys-
tem Memory

64K Linear
Page

DMA
Engine

DMA
Engine

0x007F FFFC
0x0000 0000

8M Unused DMA error int DMA
Engine

DMA
Engine

15 01631

Linear 64K Mode Index into 64K page

21

TLB Addr
5:0

22

0x00[10xx]

April 17, 1997 36

2.7.4 64K Frame Buffer Tiles

The 4 Meg System Memory can also be configured as a 4K x 1K rectangle. Within this rectangle are placed
blocks 512 x 128 of contiguous memory that represent a 64K tiled page. (This can also be thought of as a 1K
x 1K rectangle with 128 x 128 blocks with each location 4 bytes deep). For an MSP or BSP program to see
this 4K x 1K region as continuously incrementing in raster order, the hardware will decompose the SMEM
pointer differently than the 64K linear mode. The indication to the hardware that this mode is selected is
through the address space in bit 28 of the SMEM pointer. The TLB is still accessed with a 6 bit pointer made
up of bits 21:19 and 11:9 of the SMEM pointer.

Bits 18:12 and 8:0 of the SMEM pointer are appended to the 16 bits from the TLB to form the complete sys-
tem address.

FIGURE 5. SMEM Pointer decomposition for 64K Linear Page

This corresponds to the address range 0x1080 0000 - 0x10BF FFFC in Figure 4, “VICE DMA view of Sys-
tem Memory,” on page 35

This tiled format allows the MSP and BSP to continue to locate pixels in raster order in a linear increasing
progression. The fact that memory is crossing page boundaries every 512 locations in the X axis and 128
lines in the Y axis is hidden by the TLB.

This relationship can be seen in Figure 4, “SMEM Pointer decomposition for 64K Linear Page,” on page 35

8 031

64K Tile Mode X index each page
0x10[10xx]

911
Tile # X
axis

18 12

Y index each page

1921
Tile # Y
axis

22

0 to 5110 to 127

April 17, 1997 37

FIGURE 6. 4Meg System Memory using 64K tiles

2.7.5 Hits and Misses

If the virtual address maps to a valid TLB entry the physical page number is extracted from the TLB and
concatenated with the offset to form the physical address.

If the virtual address maps to a invalid TLB entry the MSP generates a TLB Miss Exception.

4K

1K

512
128

X index within each page

Y index within each page

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Tile # X axis

Ti
le

 #
Y

 a
xi

s

April 17, 1997 38

2.7.6 TLB Entry Format

Process to load TLB is as follows:

The Operating System provides a 4k page number for the first 4k page of the 64k physically contiguous
range. Since this 4k page number is aligned to 64k its low 4 bits will be 0. That number is shifted right 4 bits
and stored into 31:16 of the TLB entry.

The Valid bit is set to 1.

If the Writable bit is set to one (binary on), this allows permission for Vice DMA to write to this range of
system memory. If set to zero (binary off) this will prevent Vice DMA from writing to this range of system
memory.)

Note that a TLB entry must be written all 32 bits at a time so it must be assembled with the Physical Page
Number, Valid and Writeable bits before being written into VICE.

TABLE 5. MSP DMA TLB Entry Format

Bits Function Read/Write Reset
0 Valid r/w undefined
1 Writable r/w undefined
15:2 Undefined no access undefined
31:16 64k Physical Page Number r/w undefined

April 17, 1997 39

2.8 Register Address Map Summary

The offset within the System and MSP Address space for the Registers is given below. Note that no Address
is given to locations of the MSP register file in the MSP address register column. This is because Register
File addresses are implicit in the instructions. Table 6, “Register Address Map Summary,” on page 40 shows
the accessible registers in the address space. All accesses are on a double-word (64 bit) boundary regardless
of the actual data size of the register.

The MSP accesses all control registers and DMA descriptors inside of the VICE chip through co-processor 1
and 3 op codes. This causes the MSP to use the internal VICE Common Address and Data buses during
these register accesses. This allows the BSP or DMA engines access to the VICE internal Data RAM at the
same time the MSP is accessing a register. Note that any writable register that is accessed with a MTCz or
CTCz instruction can be read with it’s complementary MFCz or CFCz instruction.

April 17, 1997 40

TABLE 6. Register Address Map Summary

SYS
Offset
Addr.

MSP
Offset
Addr.

Register
Name Group Function r/w

Reset
Value bits

0008 No Access VICE_ID Chip Rev/ID r 0xE1 8
0010
0020

No Access Unused Chip

E000 No Access VICE_CFG Chip Vice General Config r/w 0x00 16
E008 No Access VICE_INT_RESET Chip Reset Interrupt w 0x00 9
E010 No Access VICE_INT_EN Chip Interrupt Enable Reg r/w 0x00 9
0028 No Access HST_BSP_IN_BOX BSP Host copy of BSP/

MSP In mailbox
r 0x00 16

0030 No Access HST_BSP_OUT_BOX BSP Host copy of BSP/
MSP Out mailbox

r 0x00 16

0038 Not Access Unused Chip
0040 No Access MSP_CTL_STAT MSP MSP Control/Status

Reg
r/w 0x00 32

0048 No Access MSP_ExcpFlag MSP MSP Exception Flag r/w 0x00 32
0050 No Access MSP_PC MSP MSP Program

Counter
r/w 0xXX 32

0058 No Access MSP_BadAddr MSP MSP Bad Address r 0xXX 32
0060 No Access MSP_WatchPoint MSP MSP WatchPoint r/w 0x00 32
0068 No Access MSP_EPC MSP MSP Exception PC r 0xXX 32
0070 No Access MSP_CAUSE MSP MSP Exception Cause r 0xXX 32
0078 No Access BSP_RPAGE BSP BSP R Page r/w 0xXX 16
0080 No Access BSP_SW_INT Chip BSP Software Int. w 0xXX 0
0100 CTC1 $0 MSP_D_RAM MSP MSP Data RAM Arbi-

tration Register
r/w 0x00 32

0108 CFC1 $1 VICEMSP_COUNT MSP MSP Free Running
Counter

r 0xXX 32

0110 CTC1 $2 BSP_CTL_STAT BSP BSP Control/Status
Reg

r/w 0x00 16

0118 CTC1 $3 BSP_WatchPoint BSP BSP WatchPoint r/w 0x00 16
0120 CFC1 $4 BSP_IN_COUNT BSP BSP Decoded Bits

Counter
r 0xXX 24

0128 CFC1 $5 BSP_OUT_COUNT BSP BSP Encoded Bits
Counter

r 0xXX 24

0130 CTC1 $6
0138 CFC1 $7
0140 CTC1 $8 BSP_PC BSP BSP Program Counter r/w 0x00 16
0148 CTC1 $9 BSP_EPC BSP BSP Exception PC r 0x00 16

April 17, 1997 41

0150 CTC1 $10 BSP_HALT_RESET BSP BSP Halt and Reset
Control Register

r 0x00 2

0158 CTC1 $11 BSP_CAUSE BSP BSP Exception Cause r 0x00 16
0160 CTC1 $12 VICE_INT Chip Interrupt and Status r 0x00 9
0168 CTC1 $13 BSP_FIFO_CTL_STAT BSP BSP FIFOs, Control

and Status Register
r/w 0x05 6

0170 CTC1 $14 BSP_AVALID_BITS BSP BSP A Fifo Valid Bits
(Decode Fifo)

r/w 0x00 ?

0178 CTC1 $15 BSP_FVALID_BITS BSP BSP F Fifo Valid Bits
(Encode Fifo)

r/w 0x00 ?

0180 CTC1 $16 DMA_CTL_CH1 DMA Ch 1 DMA Control r/w 0x10 16
0188 CFC1 $17 DMA_STAT_CH1 DMA Ch 1 DMA Status r 0x10 16
0190 CTC1 $18 DMA_DATA_CH1 DMA Ch 1 DMA Data Fill r/w 0x00 16
0198 CFC1 $19 DMA_MEM_PT_CH1 DMA Ch 1 DMA Sys

Pointer
r 0x00 32

01A0 CFC1 $20 DMA_VICE_PT_CH1 DMA Ch 1 DMA Vice
Pointer

r 0x00 16

01A8 CFC1 $21 DMA_COUNT_CH1 DMA Ch 1 DMA Remaining
Count

r 0x00 16

01B0 CFC1 $22 Unused
01B8 CFC1 $23 MSP_SW_INT Chip MSP Software Inter-

rupt
w 0xXX 0

01C0 CTC1 $24 DMA_CTL_CH2 DMA Ch 2 DMA Control r/w 0x10 16
01C8 CFC1 $25 DMA_STAT_CH2 DMA Ch 2 DMA Status r 0x10 16
01D0 CTC1 $26 DMA_DATA_CH2 DMA Ch 2DMA Data Fill r/w 0x00 16
01D8 CFC1 $27 DMA_MEM_PT_CH2 DMA Ch 2 DMA Sys

Pointer
r 0x00 32

01E0 CFC1 $28 DMA_VICE_PT_CH2 DMA Ch 2 DMA Vice
Pointer

r 0x00 16

01E8 CFC1 $29 DMA_COUNT_CH2 DMA Ch 2 DMA Remaining
Count

r 0x00 16

01F0 CFC1 $30 BSP_IN_BOX BSP BSP/MSP In mailbox r 0x00 16
01F8 CTC1 $31 BSP_OUT_BOX BSP BSP/MSP Out mail-

box
r/w 0x00 16

TABLE 6. Register Address Map Summary

SYS
Offset
Addr.

MSP
Offset
Addr.

Register
Name Group Function r/w

Reset
Value bits

April 17, 1997 42

2.8.1 DMA descriptor registers

The DMA descriptor registers are grouped below in their own table.

TABLE 7. DMA Descriptor Address Map

SYS
Offset
Addr.

MSP
Offset Addr.

Register
Name Group Function r/w

Reset
Value bits

1000 MTC3 $0 DMA_CTL_CH1_D1 DMA Descriptor Control r/w 0xXX 16
1008 MTC3 $1 DMA_SMEM_HI_CH1_D1 DMA Upper Address Pointer r/w 0xXX 16
1010 MTC3 $2 DMA_SMEM_LO_CH1_D1 DMA Lower Address Pointer r/w 0xXX 16
1018 MTC3 $3 DMA_WIDTH_CH1_D1 DMA Width in Bytes of Line r/w 0xXX 16
1020 MTC3 $4 DMA_STRIDE_CH1_D1 DMA # Bytes to Skip r/w 0xXX 16
1028 MTC3 $5 DMA_LINES_CH1_D1 DMA # Lines r/w 0xXX 16
1030 MTC3 $6 DMA_VMEM_Y_CH1_D1 DMA Vice Pointer Y comp r/w 0xXX 16
1038 MTC3 $7 DMA_VMEM_C_CH1_D1 DMA Vice Pointer C comp r/w 0xXX 16
1040 MTC3 $8 DMA_CTL_CH1_D2 DMA Descriptor Control r/w 0xXX 16
1048 MTC3 $9 DMA_SMEM_HI_CH1_D2 DMA Upper Address Pointer r/w 0xXX 16
1050 MTC3 $10 DMA_SMEM_LO_CH1_D2 DMA Lower Address Pointer r/w 0xXX 16
1058 MTC3 $11 DMA_WIDTH_CH1_D2 DMA Width in Bytes of Line r/w 0xXX 16
1060 MTC3 $12 DMA_STRIDE_CH1_D2 DMA # Bytes to Skip r/w 0xXX 16
1068 MTC3 $13 DMA_LINES_CH1_D2 DMA # Lines r/w 0xXX 16
1070 MTC3 $14 DMA_VMEM_Y_CH1_D2 DMA Vice Pointer Y comp r/w 0xXX 16
1078 MTC3 $15 DMA_VMEM_C_CH1_D2 DMA Vice Pointer C comp r/w 0xXX 16
1080 MTC3 $16 DMA_CTL_CH1_D3 DMA Descriptor Control r/w 0xXX 16
1088 MTC3 $17 DMA_SMEM_HI_CH1_D3 DMA Upper Address Pointer r/w 0xXX 16
1090 MTC3 $18 DMA_SMEM_LO_CH1_D3 DMA Lower Address Pointer r/w 0xXX 16
1098 MTC3 $19 DMA_WIDTH_CH1_D3 DMA Width in Bytes of Line r/w 0xXX 16
10A0 MTC3 $20 DMA_STRIDE_CH1_D3 DMA # Bytes to Skip r/w 0xXX 16
10A8 MTC3 $21 DMA_LINES_CH1_D3 DMA # Lines r/w 0xXX 16
10B0 MTC3 $22 DMA_VMEM_Y_CH1_D3 DMA Vice Pointer Y comp r/w 0xXX 16
10B8 MTC3 $23 DMA_VMEM_C_CH1_D3 DMA Vice Pointer C comp r/w 0xXX 16
10C0 MTC3 $24 DMA_CTL_CH1_D4 DMA Descriptor Control r/w 0xXX 16
10C8 MTC3 $25 DMA_SMEM_HI_CH1_D4 DMA Upper Address Pointer r/w 0xXX 16
10D0 MTC3 $26 DMA_SMEM_LO_CH1_D4 DMA Lower Address Pointer r/w 0xXX 16
10D8 MTC3 $27 DMA_WIDTH_CH1_D4 DMA Width in Bytes of Line r/w 0xXX 16
10E0 MTC3 $28 DMA_STRIDE_CH1_D4 DMA # Bytes to Skip r/w 0xXX 16
10E8 MTC3 $29 DMA_LINES_CH1_D4 DMA # Lines r/w 0xXX 16
10F0 MTC3 $30 DMA_VMEM_Y_CH1_D4 DMA Vice Pointer Y comp r/w 0xXX 16
10F8 MTC3 $31 DMA_VMEM_C_CH1_D4 DMA Vice Pointer C comp r/w 0xXX 16
1100 CTC3 $0 DMA_CTL_CH2_D1 DMA Descriptor Control r/w 0xXX 16
1108 CTC3 $1 DMA_SMEM_HI_CH2_D1 DMA Upper Address Pointer r/w 0xXX 16

April 17, 1997 43

1110 CTC3 $2 DMA_SMEM_LO_CH2_D1 DMA Lower Address Pointer r/w 0xXX 16
1118 CTC3 $3 DMA_WIDTH_CH2_D1 DMA Width in Bytes of Line r/w 0xXX 16
1120 CTC3 $4 DMA_STRIDE_CH2_D1 DMA # Bytes to Skip r/w 0xXX 16
1128 CTC3 $5 DMA_LINES_CH2_D1 DMA # Lines r/w 0xXX 16
1130 CTC3 $6 DMA_VMEM_Y_CH2_D1 DMA Vice Pointer Y comp r/w 0xXX 16
1138 CTC3 $7 DMA_VMEM_C_CH2_D1 DMA Vice Pointer C comp r/w 0xXX 16
1140 CTC3 $8 DMA_CTL_CH2_D2 DMA Descriptor Control r/w 0xXX 16
1148 CTC3 $9 DMA_SMEM_HI_CH2_D2 DMA Upper Address Pointer r/w 0xXX 16
1150 CTC3 $11 DMA_SMEM_LO_CH2_D2 DMA Lower Address Pointer r/w 0xXX 16
1158 CTC3 $11 DMA_WIDTH_CH2_D2 DMA Width in Bytes of Line r/w 0xXX 16
1160 CTC3 $12 DMA_STRIDE_CH2_D2 DMA # Bytes to Skip r/w 0xXX 16
1168 CTC3 $13 DMA_LINES_CH2_D2 DMA # Lines r/w 0xXX 16
1170 CTC3 $14 DMA_VMEM_Y_CH2_D2 DMA Vice Pointer Y comp r/w 0xXX 16
1178 CTC3 $15 DMA_VMEM_C_CH2_D2 DMA Vice Pointer C comp r/w 0xXX 16
1180 CTC3 $16 DMA_CTL_CH2_D3 DMA Descriptor Control r/w 0xXX 16
1188 CTC3 $17 DMA_SMEM_HI_CH2_D3 DMA Upper Address Pointer r/w 0xXX 16
1190 CTC3 $18 DMA_SMEM_LO_CH2_D3 DMA Lower Address Pointer r/w 0xXX 16
1198 CTC3 $19 DMA_WIDTH_CH2_D3 DMA Width in Bytes of Line r/w 0xXX 16
11A0 CTC3 $20 DMA_STRIDE_CH2_D3 DMA # Bytes to Skip r/w 0xXX 16
11A8 CTC3 $21 DMA_LINES_CH2_D3 DMA # Lines r/w 0xXX 16
11B0 CTC3 $22 DMA_VMEM_Y_CH2_D3 DMA Vice Pointer Y comp r/w 0xXX 16
11B8 CTC3 $23 DMA_VMEM_C_CH2_D3 DMA Vice Pointer C comp r/w 0xXX 16
11C0 CTC3 $24 DMA_CTL_CH2_D4 DMA Descriptor Control r/w 0xXX 16
11C8 CTC3 $25 DMA_SMEM_HI_CH2_D4 DMA Upper Address Pointer r/w 0xXX 16
11D0 CTC3 $26 DMA_SMEM_LO_CH2_D4 DMA Lower Address Pointer r/w 0xXX 16
11D8 CTC3 $27 DMA_WIDTH_CH2_D4 DMA Width in Bytes of Line r/w 0xXX 16
11E0 CTC3 $28 DMA_STRIDE_CH2_D4 DMA # Bytes to Skip r/w 0xXX 16
11E8 CTC3 $29 DMA_LINES_CH2_D4 DMA # Lines r/w 0xXX 16
11F0 CTC3 $30 DMA_VMEM_Y_CH2_D4 DMA Vice Pointer Y comp r/w 0xXX 16
11F8 CTC3 $31 DMA_VMEM_C_CH2_D4 DMA Vice Pointer C comp r/w 0xXX 16

TABLE 7. DMA Descriptor Address Map

SYS
Offset
Addr.

MSP
Offset Addr.

Register
Name Group Function r/w

Reset
Value bits

April 17, 1997 44

2.9 Register Description
In the following 8/16/32-bit register descriptions, all bits not explicitly defined are read back as 0 from the
Host port. Note that an approved “Name” has been suggested for each register. This name appears as part of
each registers’ paragraph title (so that it will show up in the table of contents) and in the Table Title. Where
a register is representative of a set of registers (one per channel) all register names are listed in the section
paragraph while the first channel is listed in the Paragraph and Table titles. This will help both hardware and
software refer to the register throughout the life of this hardware by using the same moniker.
Registers appear on doubleword address boundaries (8bytes) regardless of the size of the register.
The term “write 1” or “write a logical 1” or “write 0” or “write a logical 0” used in the following descrip-
tions implies that those particular bits should be that value during the write. All other bits will take effect
during the write, so the write operation needs to consider this as well. This will require a read-modify-write
approach to make sure that software only changes the desired bits.

2.9.1 VICE_ID - Chip ID and Revision Register Format
This register will change only when the chip itself goes through a revision.

2.9.2 VICE_CFG - General Configuration Register

General purpose configuration register for the VICE chip. Features which tend to be performed one time at
system power up or initialization should be put in this register. If we decide to support little endian (which I
would strongly discourage) then this would be the place to put it.

TABLE 8. VICE_ID Register Format

Bits Function Read/Write Mask Value
3:0 VICE revision number

099-0123-001 Vice-A (VTI # vy06762)
099-0123-002 Vice-B (VTI # vy21314-) “DX”
099-0123-003 Vice-C (VTI # vy21314b) “TRE”

Read Only
0001
0010
0011

7:4 VICE ID value
Vice ‘A” -001 vy6167

Read Only

TABLE 9. VICE_CFG Register Format

Bits Function
Read/
Write

Reset
Value

0 check_data_sysad
0=No check data [SysCmd(4) = 1 on data identifiers when VICE is
external agent]
1=Check data

r/w 0

1 MSP TLB Bypass
0=Do not allow MSP to bypass TLB even if it sets the bit in the DMA
config register
1=Allow MSP to bypass TLB under control of bit in the DMA config
register that MSP can access

r/w 0

31:02 Not Defined 0

April 17, 1997 45

2.9.3 VICE_INT_RESET - Interrupt Reset Register

The VICE_INT_RESET register is write only. Writing a logical 1 to a bit in this register will clear the cor-
responding bit in the VICE_INT register. A write to the register affects all bits that are being written with a
logical 1. The register is cleared (logical 0) on reset. Writing a logical 0 to any of the bits has no effect on the
value of the bit.

TABLE 10. VICE_INT_RESET Register Format

Bits Function
Read/
Write

Reset
Value

0 DMA complete interrupt Channel 1 w 0
1 DMA error interrupt Channel 1 w 0
2 MSP Software interrupt to Unix Processor w 0
3 MSP exception interrupt to Unix Processor w 0
4 BSP Software Interrupt to Unix Processor w 0
5 BSP exception Interrupt to Unix Processor w 0
6 SysAD erroneous data received

When Data Identifier SysCmd(5) = 1 then data
on SysAD contains error. This interrupt bit is set
on that condition.

w 0

7 DMA complete interrupt Channel 2 w 0
8 DMA error interrupt Channel 2 w 0

April 17, 1997 46

2.9.4 VICE_INT - Interrupt Status Register

The VICE_INT register is read only. All bits are active high (logical 1). The bits are set (logical 1) by hard-
ware and cleared by a software write to the VICE_INT_RESET register, (write logical 1to clear). The regis-
ter is cleared (logical 0) on reset. Writing to this register has no effect on the value of the bit.

TABLE 11. VICE_INT Register Format

Bits Function
Read/
Write

Reset
Value

0 DMA complete interrupt Channel 1 r 0
1 DMA error interrupt Channel 1 r 0
2 MSP Software interrupt to Unix Processor r 0
3 MSP exception interrupt to Unix Processor r 0
4 BSP Software Interrupt to Unix Processor r 0
5 BSP exception Interrupt to Unix Processor r 0
6 SysAD erroneous data received

When Data Identifier SysCmd(5) = 1 then data
on SysAD contains error. This interrupt bit is set
on that condition.

r 0

7 DMA complete interrupt Channel 2 r 0
8 DMA error interrupt Channel 2 r 0

April 17, 1997 47

2.9.5 VICE_INT_EN - Interrupt Enable Register

The VICE_INT_EN register is read/write. Writing a logical 1 to a bit location of the register will allow the
interrupt (when it occurs) to affect the interrupt pin of the VICE chip. Regardless of the state of this bit, the
VICE_INT register reflects the state of any interrupt condition.

This means that an interrupt can be disabled by writing its appropriate bit to a 0 in this register. When a con-
dition occurs that would normally create an interrupt, the relevant bit in the VICE_INT register will be set to
a logical 1.

2.9.6 BSP_SW_INT - BSP Software Interrupt Register

The BSP_SW_INT register is write only. Writing any value to this register will cause the BSP Software
Interrupt to Unix Processor bit to be set. This bit is contained in the VICE_INT Register. A read from this
register will deliver meaningless data.

The interrupt bit in the VICE_INT Register will be set and latched regardless of the state of the
VICE_INT_EN bit corresponding to this interrupt.

2.9.7 MSP_SW_INT - MSP Software Interrupt Register

The MSP_SW_INT register is write only. Writing any value to this register will cause the MSP Software
Interrupt to Unix Processor bit to be set. This bit is contained in the VICE_INT Register. A read from this
register will deliver meaningless data.

The MSP accesses this register as a CTC1 $31 instruction.

The interrupt bit in the VICE_INT Register will be set and latched regardless of the state of the
VICE_INT_EN bit corresponding to this interrupt.

TABLE 12. VICE_INT_EN Register Format

Bits Function
Read/
Write

Reset
Value

0 DMA complete interrupt Channel 1 r/w 0
1 DMA error interrupt Channel 1 r/w 0
2 MSP Software interrupt to Unix Processor r/w 0
3 MSP exception interrupt to Unix Processor r/w 0
4 BSP Software Interrupt to Unix Processor r/w 0
5 BSP exception Interrupt to Unix Processor r/w 0
6 SysAD erroneous data received

When Data Identifier SysCmd(5) = 1 then data
on SysAD contains error. This interrupt bit is set
on that condition.

r/w 0

7 DMA complete interrupt Channel 2 r/w 0
8 DMA error interrupt Channel 2 r/w 0

April 17, 1997 48

2.9.8 MSP_D_RAM - Data RAM Arbitration Register

Data RAM arbitration register. The MSP can inform the arbiter as to which Data RAM banks it intends to
access. Any access to a Data RAM bank that has been configured as “Not Allowed” will cause the Load/
Store instruction for that address to be ignored by the Data RAM control logic. The MSP will read unknown
data. Data will not be written to Data RAM on Stores that violate the “Not Allowed” address space.

The D_RAM_EN bits are used by the internal arbiter to allow users of the DMA bus access to a particular
Data Ram Bank without suspending access by the Scalar Unit. The safe way is to allow the MSP access to
all three memories, but then DMA will be stalled whenever the Scalar Unit does a Load/Store.

TABLE 13. MSP_D_RAM Register Format

Bits Function
Read/
Write

Reset
Value

0 D_RAM_A_EN
0=Do Not Allow MSP access to Data RAM A
1=Allow MSP access to Data RAM A

r/w 0

1 D_RAM_B_EN
0=Do Not Allow MSP access to Data RAM B
1=Allow MSP access to Data RAM B

r/w 0

2 D_RAM_C_EN
0=Do Not Allow MSP access to Data RAM C
1=Allow MSP access to Data RAM C

r/w 0

April 17, 1997 49

2.9.9 MSP_CTL_STAT - Media Signal Processor Control Register

The MSP_CTL_STAT register is read/write. This is primarily a diagnostic register that is used in conjunc-
tion with the BREAK Instruction to set a breakpoint for the Media Signal Processor.

After Power Up Reset this register will be 0x00.

Any time the MSP is running, it can be halted and reset by writing this register as 0x00.

For setting up the MSP in normal running mode Take MSP out of Reset (bit 1 write 1), and write the GO bit
to logical 1. Poll the Go bit see if the MSP is still running or halted, because of reaching a BREAK instruc-
tion. For example sequences, See “Debug Operations” on page 30.

TABLE 14. MSP_CTL_STAT Register Format

Bits Function
Read/
Write

Reset
Value

0 MSP GO/HALT
1 - Writing a 1; Causes MSP to start.
0 - Writing a 0; If MSP Stopped No effect, If MSP Running, MSP
will be halted.
1 - Reading a 1; MSP is running
0 - Reading a 0; MSP is halted

r/w 0

1 Reset MSP
0 - MSP is held in reset.
1- MSP taken out of reset. Wait for Go bit.

r/w 0

April 17, 1997 50

2.9.10 MSP_PC Media Signal Processor Program Counter Register

The MSP_PC register is read/write. The MSP_PC register must always be loaded whenever the MSP is
taken out of its halted state in order to direct restart of program execution.

Programmer’s Note: Writing the MSP_PC writes into the Instruction Fetch PC while reading the MSP_PC
returns the value of the Decode PC. Hence, when the MSP is halted, writing the MSP_PC and then immedi-
ately reading the MSP_PC will return a different value from what was written.

2.9.11 MSP_BadAddr Register

The MSP_BadAddr register is a read-only register that displays the load/store address that caused an excep-
tion. (AdEL or AdES)

2.9.12 MSP_WatchPoint Register

The MSP provides a debugging feature to detect references to a selected physical address; MSP load or store
operations to the location specified by the MSP_WatchPoint register. This is a read-write register.

2.9.13 MSP_EPC Registers

The Exception Program Counter register, EPC, is a 32-bit read-only register that contains the address of the
instruction which was the direct cause of the exception.

TABLE 15. MSP_PC Register Format

Bits Function Read/Write Reset
31:16 0 Readonly 0
15:2 MSP PC Read/Write Unknown
1:0 0 Readonly 0

TABLE 16. MSP_BadAddr Register Format

Bits Function Read/Write Reset
31:0 Bad Address Readonly Unknown

TABLE 17. MSP_WatchPoint Register Format

Bits Function Read/Write Reset
31:3 WatchPoint Address Read/Write 0
2:0 0 Readonly 0

April 17, 1997 51

2.9.14 MSP_CAUSE Register

The Cause register is a 32-bit read-only register. Its contents describe the cause of the last exception. A 5 bit
exception code is listed below. The Branch Delay (BD) bit indicates whether the last exception was taken
while executing in a branch delay slot. (0 -> normal; 1 -> delay slot)

TABLE 18. MSP_EPC Register Format

Bits Function Read/Write Reset
1:0 0 Readonly 0
15:2 Exception Program Counter Readonly Unknown
31:16 0 Readonly 0

TABLE 19. MSP_CAUSE Register Format

Bits Function Read/Write Reset
1:0 0 Readonly 0
6:2 Exception Code Readonly Unknown
30:7 0 Readonly 0
31 BD Readonly Unknown

TABLE 20. Exception Code Field of Cause Register

Exception
Code Value Mnemonic Description Source
0 AdEL Address error exception (load) SU
1 AdES Address error exception (store) SU
2 BP Breakpoint exception SU
3 WP Watchpoint exception SU
4 SuRI SU Reserved instruction exception SU
5 VuRI VU Reserved instruction exception VU
6 Con Contention exception SU
7 AdEI Instruction fetch addr exception SU
8-31 - Reserved for future use -

April 17, 1997 52

2.9.15 MSP_ExcpFlag Registers

The Exception Flag register, EPC, is a 32-bit read-write register that has one bit associated with each excep-
tion. Once an exception is detected, this corresponding bit is set. The bits need to be cleared explicitly by
software. This register is to be mainly used as a diagnostic register to catch multiple exceptions. If several
exceptions should occur within the same cycle, the Cause register would only record the cause of the excep-
tion which has the highest priority. This Exception Flag register would allow the programmer to know if
multiple exceptions occurred.

Note: All bits in the MSP_ExcpFlag Register must be cleared before exceptions will be detected.

TABLE 21. MSP_ExcpFlag Register Format

Bits Function Read/Write Reset
0 AdEL Read/Write 0
1 AdES Read/Write 0
2 BP Read/Write 0
3 WP Read/Write 0
4 SuRI Read/Write 0
5 VuRI Read/Write 0
6 Con Read/Write 0
7 AdEI Read/Write 0
31:8 0 Readonly 0

April 17, 1997 53

2.9.16 VICEMSP_COUNT - MSP Free Running Counter

32 bit counter that runs off the MSP clock. Used to measure number of clocks that have elapsed for a given
operation.

Counts up in binary. 4Gig resolution allows for approximately 60 seconds before counter rolls over. This
assumes 66MHz MSP clock.

Counter is writable for diagnostics reasons. If scan logic implemented on this counter in the physical design
of the chip, it will be changed to read only.

TABLE 22. MSP_COUNT Register Format

Bits Function
Read/
Write

Reset
Value

31:00 VICEMSP_COUNT r/w 0

April 17, 1997 54

2.9.17 BSP_CTL_STAT - Bit Stream Processor Control and Status Register

The BSP_CTL_STAT register is read/write. For a complete description of this register refer to Figure 47,
“BSP Status and Control Register,” on page 178.

2.9.18 BSP_WatchPoint Register

The BSP provides a debugging feature to detect references to a selected physical address; BSP load or store
operations to the location specified by the BSP_WatchPoint register. This is a read-write register. Bit 0 is
ignored so byte and word accesses to the selected physical address will cause a match to occur.

TABLE 23. BSP_WatchPoint Register Format

Bits Function Read/Write Reset
0 0 Readonly 0
15:01 WatchPoint Address Read/Write 0

April 17, 1997 55

2.9.19 BSP_IN_COUNT - BSP Input bits counter

24 bit counter that updates as bits are extracted by the Bit Stream Processor from the Bit Stream Buffer.
Used by the Host to implement a rate buffer control algorithm for de-compression applications. This regiater
counts the number of 32-bit transfers from the BSP Input FIFO to the BSP’s Beta register. This register
along with the fVALIDBITS register to compute the number of bits consumed by the BSP.

2.9.20 BSP_OUT_COUNT - BSP Output bits counter

24 bit counter that updates as the bits are inserted by the Bit Stream Processor into the Bit Stream Buffer.
Used by the Host to implement a buffer control algorithm for compression applications. This register counts
the number of 16-bit ransfers from the BSP Alpha register to the BSP’s write buffer. Along with the fAL-
PHAVALIDBITS and FVALIDBITS registers, the number of bits produced by the BSP can be computed.

TABLE 24. BSP_IN_COUNT Register Format

Bits Function
Read/
Write

Reset
Value

23:00 BSP_IN_COUNT r/w 0

TABLE 25. BSP_OUT_COUNT Register Format

Bits Function
Read/
Write

Reset
Value

23:00 BSP_OUT_COUNT r/w 0

April 17, 1997 56

2.9.21 BSP_IN_BOX - Bit Stream Processor Input Mailbox

The BSP_IN_BOX register is read/write by the Medial Signal Processor. It is read only by the Bit Stream
Processor. This register is used to communicate control information between the MSP and the BSP.

Bit 15 of this register is a “magic” bit. When the Media Signal Processor writes this register, Bit 15 will
become a logical 1. This will occur regardless of the value that the Media Signal Processor placed in Bit 15
of the word written. When the Bit Stream Processor reads this register, Bit 15 will become a logical 0. The
value of Bit 15 will be read by the BSP along with bits 14-00. The value of Bit 15 read by the BSP will be
the value prior to the read operation. The MSP can read this register at any time and use the state of Bit 15 to
decide if the BSP has read its mail.

After Power Up Reset this register will be 0x00.

TABLE 26. BSP_IN_BOX Register Format

Bits Function

MSP
Read/
Write

BSP
Read/
Write

Reset
Value

14:00 BSP_IN_MESSAGE r/w r 0
15 BSignal

Any MSP, BSP or HD write to this register causes the bit to become a
logical 1.
Any MSP,BSP or HD read from this register causes the bit to become
a logical 0. The value read will correspond to the value of the bit prior
to it being set to zero.
1 - MSP Read 1, BSP has NOT read the message
0 - MSP Read 0, BSP has read the message

r/w r 0

April 17, 1997 57

2.9.22 BSP_OUT_BOX - Bit Stream Processor Output Mailbox

The BSP_OUT_BOX register is read/write by the Bit Stream Processor. It is read only by the Media Signal
Processor. This register is used to communicate control information between the BSP and the MSP.

Bit 15 of this register is a “magic” bit. When the Bit Stream Processor writes this register, Bit 15 will
become a logical 1. This will occur regardless of the value that the Bit Stream Processor placed in Bit 15 of
the word written. When the Media Signal Processor reads this register, Bit 15 will become a logical 0. The
value of Bit 15 will be read by the MSP along with bits 14-00. The value of Bit 15 read by the MSP will be
the value prior to the read operation. The BSP can read this register at any time and use the state of Bit 15 to
decide if the MSP has read its mail.

After Power Up Reset this register will be 0x00.

TABLE 27. BSP_OUT_BOX Register Format

Bits Function

MSP
Read/
Write

BSP
Read/
Write

Reset
Value

14:00 BSP_OUT_MESSAGE r r/w 0
15 SUSignal

Any BSP, HD or MSP write to this register causes the bit to become a
logical 1.
Any MSP, HJD or BSP read from this register causes the bit to
become a logical 0. The value read will be that value prior to the bit
being set to zero.
1 - BSP Read 1, MSP has NOT read the message
0 - BSP Read 0, MSP has read the message

r r/w 0

April 17, 1997 58

2.9.23 HST_BSP_IN_BOX - Host Snoop of BSP Input Mailbox

This address is a shadow read address of the BSP_IN_BOX register. It allows the Host (or any processor
with access to the common bus address space internal to VICE) to read the BSP_IN_BOX without affecting
the “magic” bit (Bit 15). The MSP cannot access this register as it not assigned one of the CTC addresses
used by the MSP to access the common bus registers.

2.9.24 HST_BSP_OUT_BOX - Host Snoop of BSP Output Mailbox

This address is a shadow read address of the BSP_OUT_BOX register. It allows the Host (or any processor
with access to the common bus address space internal to VICE) to read the BSP_OUT_BOX without affect-
ing the “magic” bit (Bit 15). The MSP cannot access this register as it not assigned one of the CTC addresses
used by the MSP to access the common bus registers.

TABLE 28. HST_BSP_IN_BOX Register Format

Bits Function
Read/
Write

Reset
Value

14:00 BSP_IN_MESSAGE r 0
15 BSignal r 0

TABLE 29. HST_BSP_OUT_BOX Register Format

Bits Function
Read/
Write

Reset
Value

14:00 BSP_OUT_MESSAGE r 0
15 SUSignal r 0

April 17, 1997 59

2.9.25 BSP_PC Bitstream Processor Program Counter Register

The BSP_PC register is read/write. The BSP_PC register may be loaded whenever the BSP is taken out of
its halted state in order to direct restart of program execution. The reset value of this register is zero, so with-
out initialization, the BSP will begin execution at location 0x0000 of it instruction memory.

2.9.26 BSP_EPC Bitstream Processor Exception Program Counter

The Exception Program Counter register, EPC, is a 16-bit read-only register that contains the address of the
instruction which was the direct cause of the exception.

TABLE 30. BSP_PC Register Format

Bits Function Read/Write Reset
15:0 BSP PC Read/Write 0x0000

TABLE 31. BSP_EPC Register Format

Bits Function Read/Write Reset
15:0 BSP EPC Read Unknown

April 17, 1997 60

2.9.27 BSP_HALT_RESET - Bit Stream Processor Halt and Reset Register

The BSP_HALT_RESET register is read/write. This is primarily a diagnostic register that is used in con-
junction with the BREAK Instruction to set a breakpoint for the Bit Stream Processor.

After Power Up Reset this register will be 0x00.

Any time the BSP is running, it can be halted and reset by writing this register as a logical 0.

For setting up the BSP in normal running mode Take BSP out of Reset (bit 1 write 1) and write the GO bit to
logical 1. Poll Go bit to see if the BSP is still running or if it has halted because of reaching a BREAK
instruction.

Assertion of the HALT/GO bit to 1 will cause the BSP to come to a graceful stop. The Exception Program
Counter (EPC) captures the contents of the PC when the HALT/GO bit is set. All subsequent instructions in
the BSP execution pipeline are nullified. Any instructions in progress, including instructions in the BSP
encode pipe execute to completion before the HALT_ACK bit is asserted in acknowlegement of the halt
request. Note: All instructions executing when the HALT/GO is asserted will come to completion, incurring
stalls in the process. If the stall condition cannot be satisfied, the BSP may remain in a stall condition indefi-
nitely. This HALT/GO bit does not pre-empt any BSP stall conditions. In order to receive the HALT_ACK,
all stall conditions must be resolved. This means that one should be careful to make sure that the BSP is
HALTED before the HD processor so that the HD can service potential BSP stall conditions.

TABLE 32. BSP_HALT_RESET Register Format

Bits Function
Read/
Write

Reset
Value

0 Reset BSP
0 - BSP is held in reset.
1- BSP taken out of reset. Wait for Go bit.

r/w 0

1 BSP HALT/GO
0- Writing a 0; Causes BSP to start.
1 - Writing a 1; If BSP Stopped No effect, If BSP Running, BSP will
be halted.
0- Reading a 0; BSP is running
0- Reading a 1; BSP is halted

r/w 1

2 HALT_ACK
0 - BSP has not recognized a HALT request (1 written into bit 0 of
this register).
1- BSP has recognized the HALT request (1 written into bit 0 of this
register) . When this bit is asserted, all instructions in progress when
the HALT request is asserted (1) have come to completion. This
includes any instructions using the encode pipeline or the multi-cycle
state machine (format D BSP instructions).

r/w 0

April 17, 1997 61

2.9.28 BSP_CAUSE Register

The Cause register is a 16-bit read-only register. Its contents describe the cause of the last exception.

An address error on a load is caused by loading a halfword from an odd-byte address.

An address error on a store is caused by trying to store a halfword to an odd-byte address.

A break exception is caused by the execution of a BREAK instruction.

A watchpoint eception --- NOT implemented.

A reserved-instruction exception is caused by the attempt to execute an undefine instruction.

An instruciton address exception is caused by trying to execute from non-existent instruction memory.

A bitstream error exception is cused by the detection of an error in a bitstream (during bitstream decoding).
This exception does not cause the BSP to stop executing. Whne detected, the BSP will take a branch to the
error location (0x00c0) in its instruction memory and will continue to execute from there. (Note: a break
instruction can be palce there to cause an exception to be taken).

A write-buffer address exception iws cause by an odd-byte address in the BSP write buffer. NB. the write
buffer only writes halfwords.

TABLE 33. BSP_CAUSE Register Format

Bits Function Read/Write Reset
0 Address Error - LOAD Readonly 0
1 Address Error - STORE Readonly 0
2 BREAK exception Readonly 0
3 WATCHPOINT exception Readonly 0
4 RESERVED INSTRUCTION-

exception
Readonly 0

5 INSTRUCTION ADDRESS
exception

Readonly 0

6 BITSTREAM ERROR excep-
tion

Readonly 0

7 WRITE_BUFFER ADDRESS
error exception

Readonly 0

April 17, 1997 62

2.9.29 BSP_FIFO_CTL_STAT - Bit Stream Processor Fifo Control and Status Register

The BSP_FIFO_CTL_STAT register is read/write. This is primarily a diagnostic register that is used to
check the BSP Input Fifo Flags. The BSP Input Fifo pointers can be reset with this register.

The values on the MSP_SIGNAL and BSP_SIGNAL bits are take directly out to the MSP_SGNAL and
BSP_SIGANL outputs of the VICE chip.

.

TABLE 34. BSP_FIFO_CTL_STAT Register Format

Bits Function
Read/
Write

Reset
Value

0 BSP INPUT FIFO EMPTY
1 - Reading a 1; BSP input Fifo is Empty
0 - Reading a 0; BSP input Fifo is Not Empty (Contains 1 or more
entries)

r 1

1 BSP INPUT FIFO FULL
1 - Reading a 1; BSP input Fifo is Full, Contains 16 entries
0 - Reading a 0; BSP input Fifo is Not Full (Contains 15 or less
entries)

r 0

2 Reset BSP INPUT FIFO
1- BSP Input FIFO is reset and held in reset.
0- BSP Input FIFO is taken out of reset. Normal Operation

r/w 0

3 MSP_SIGNAL r/w ?

4 BSP_SIGNAL r/w ?

April 17, 1997 63

2.9.30 BSP_AVALID_BITS - Bit Stream Processor A Fifo Valid Bits Register

The BSP_AVALID_BITS register is read/write.

After Power Up Reset this register will be 0x00.

2.9.31 BSP_FVALID_BITS - Bit Stream Processor F Fifo Valid Bits Register

The BSP_FVALID_BITS register is read/write.

After Power Up Reset this register will be 0x00.

TABLE 35. BSP_AVAILD_BITS Register Format

Bits Function
Read/
Write

Reset
Value

5:0 BSP A VALID BIT Pointer r/w 0
15:6 Reserved r/w 0

TABLE 36. BSP_FVALID_BITS Register Format

Bits Function
Read/
Write

Reset
Value

5:0 BSP F VALID BIT Pointer r/w 0
15:6 Reserved r/w 0

April 17, 1997 64

2.9.32 DMA_CTL_CH1 - DMA Control Register

The DMA_CTL_CH1 and DMA_CTL_CH2 registers set up control functions for each channel of DMA.
The data in this register informs the DMA engine which descriptor set to start with, when to stop, when to go
and when to reset. If interrupts are to be allowed there is a bit to enable them.

TABLE 37. DMA_CTL_CH1 Register Format

Bits Function
Read/
Write

Reset
Value

0 DMA_CTL_GO
0=DMA hardware resets to 0 when complete
1=Start DMA
Note: Writing a 0 to this bit has no affect on stopping DMA. The
DMA_CTL_STOP bit must be asserted to stop DMA that is in
progress.

r/w 0

1 DMA_CTL_IE
0=No interrupt when DMA complete
1=Allow Interrupt when DMA complete

r/w 0

2 DMA_CTL_STOP
0=Allow DMA to Run
1=Stop DMA

r/w 0

3 DMA_CTL_RESET
0=Allow DMA to Run
1=Reset DMA State Machine and FIFOs independent of VICE chip
reset.

r/w 0

7:4 DMA_CTL_DESCR_PT
0001=Start DMA with First Descriptor Set
0010=Start DMA with Second Descriptor Set
0100=Start DMA with Third Descriptor Set
1000=Start DMA with Fourth Descriptor Set

r/w 0001

8 DMA_TLB_BYP
0=DMA will use TLB for address translation
1=DMA will bypass the TLB and treat addresses in the descriptor set
as physical memory addresses.

r/w 0

9 DMA_FLUSH_BUF
0=Normal DMA Operation
1=If DMA w/ Non-fifo source, empty SysAD buffer and indicate
DMA Complete. If DMA Write BSP Output Buffer -> System Mem-
ory then empty buffer and dump DMA buffer into memory before set-
ting DMA Done bit.

This bit is not set at the beginning of a DMA transfer. It is set to ter-
minate a DMA transfer of compressed bits and flush the last of those
bits prior to terminating the DMA.

0

April 17, 1997 65

2.9.33 DMA_STAT_CH1 - VICE DMA Status Register

The DMA_STAT_CH1 and DMA_STAT_CH2 registers allow monitoring of each channel of DMA. The
information in this register can allow a processor to determine if DMA is active, if it has completed and if it
completed as a result of an error. Internal states of DMA are brought out as Status codes.

TABLE 38. DMA_STAT_CH1 Register Format

Bits Function
Read/
Write

Reset
Value

0 DMA_STAT_DONE
0=DMA Not complete
1=DMA Complete (all descriptors finished)

r 0

1 DMA_STAT_ERROR
0=No DMA error has occurred
1=DMA error has occurred

r 0

2 DMA_STAT_ACTIVE
0=DMA is not running
1=DMA is running

r 0

3 DMA_STAT_RW
0=DMA is performing a Write Descriptor
1=DMA is performing a Read Descriptor

r 0

7:4 DMA_STAT_DESCR_PT
0001=DMA working on or pointing to First Descriptor Set
0010=DMA working on or pointing to Second Descriptor Set
0100=DMA working on or pointing to Third Descriptor Set
1000=DMA working on or pointing to Fourth Descriptor Set

r 0001

11:8 DMA_STAT_CODE
0000=DMA Idle
0001=DMA Halted from DMA Stop bit in Control Reg
0010=DMA Halted from DMA Halt bit in Descriptor
0011=DMA computing addresses
0100=DMA waiting to move addresses to CRIME
0101=DMA waiting for response data from CRIME
0110=DMA moving data on internal VICE bus
0111=DMA Halted from TLB Miss (Address Invalid)
1000=DMA Halted from TLB MOD (Write attempted to read only
address)
10001=DMa fetching Descriptors

r 0

April 17, 1997 66

2.9.34 DMA_DATA_CH1 - VICE DMA Data Fill Register

The DMA_DATA_CH1 and DMA_DATA_CH2 registers are used as the data source when the DMA mode
to fill memory with a data pattern is selected. This 16 bit value is replicated 4 times by the DMA engine to
build a 64 bit word. The DMA engine then runs at full DMA bus bandwidth (inside the VICE chip) during
the DMA data fill operation. Note that this limits the data pattern to a unique 16 bit value that is then repli-
cated across the 64 bit word.

The destination for a DMA data fill operation cannot be Unix System memory. However, this effect can be
achieved by first performing a DMA data fill operation on the VICE internal Data RAM and then performing
a DMA write operation from VICE internal Data RAM to Unix System memory.

2.9.35 DMA_MEM_PT_CH1 - DMA System Memory Pointer

The DMA_MEM_PT_CH1 and DMA_MEM_PT_CH2 registers contain internal DMA engine state. The
DMA engine calculates Addresses from the descriptor list. These registers contain the internal state
machine’s last calculated physical address for Unix System Memory. This address is 4 byte aligned in sys-
tem memory. Useful for diagnostics when figuring out where the DMA engine halted.

System Memory Pointer is updated after data moved from System RAM to internal Vice DMA buffer. Vice
Memory Pointer is updated after data is moved from internal Vice DMA buffer to Vice Data RAM. DMA
Count Updated after data moved from internal Vice DMA buffer to Vice Data RAM.

2.9.36 DMA_VICE_PT_CH1 - DMA Internal Vice Memory Pointer

The DMA_VICE_PT_CH1 and, DMA_VICE_PT_CH2 registers contain internal DMA engine state. The
DMA engine calculates Addresses from the descriptor list. These registers contain the internal state
machine’s last calculated Address for memory inside of VICE. Valid for Y channel only in the Y/C split
mode. Useful for diagnostics.

TABLE 39. DMA_DATA_CH1 Register Format

Bits Function
Read/
Write

Reset
Value

15:0 DMA_DATA r/w 0

TABLE 40. DMA_MEM_PT_CH1 Register Format

Bits Function
Read/
Write

Reset
Value

31:0 DMA_MEM_PT r 0

TABLE 41. DMA_VICE_PT_CH1 Register Format

Bits Function
Read/
Write

Reset
Value

31:16 DMA_VICE_PT Contains the C address pointer in Y/C mode r 0
15:0 DMA_VICE_PT Contains the Y address pointer in Y/C mode r 0

April 17, 1997 67

2.9.37 DMA_COUNT_CH1 - DMA Internal Vice DMA Counter

The DMA_COUNT_CH1 and DMA_COUNT_CH2 registers contain the remaining byte count of the cur-
rent DMA descriptor. Useful for diagnostics to see how many bytes have been transferred when DMA termi-
nated. Useful to check progress within a descriptor to see how much longer the DMA channel will be
processing the current descriptor.

TABLE 42. DMA_COUNT_CH1 Register Format

Bits Function
Read/
Write

Reset
Value

15:0 DMA_COUNT r 0

April 17, 1997 68

2.9.38 DMA_CTL_CHX_DY - DMA Descriptor Control Entry

Each DMA channel has four descriptor sets that can be programmed. A set of descriptors consists of 8 regis-
ter entries:
DMA_CTL_CH
DMA_SMEM_HI
DMA_SMEM_LO
DMA_WIDTH
DMA_STRIDE
DMA_LINES
DMA_VMEM_Y
DMA_VMEM_C

The DMA engine can process these descriptors sequentially without additional input from a processor. Any
descriptor in the list can be programmed to cause the DMA engine to halt AFTER completing the DMA
associated with that descriptor. This allows all 4 descriptors to be useful.

All the DMA modes are embedded in the descriptor control entry. This allows the descriptors to select dif-
ferent DMA modes while running unattended. For example two descriptors could be DMA reads and the
next two could be DMA writes. Or two desciptors could be memory fill operations while the next two
descriptors could be Y/C split mode transfers.

It is recommended to load all the descriptors prior to setting the GO bit in the DMA_CTL_CH1 register.
Note that the DMA_CTL_CH1 register is only one per DMA engine while this Descriptor Control register
appears 4 times for each DMA engine. It is possible to set up one or more descriptors prior to starting DMA.
It is important to set the halt bit in the last valid descriptor so that only valid descriptors are processed.

The DMA_CTL_CHX_DY notation is shorthand to describe 4 of these control descriptors per DMA chan-
nel. For a complete enumeration of each register’s full name refer to Table 7, “DMA Descriptor Address
Map,” on page 42

TABLE 43. DMA_CTL_CHX_DY Register Format

Bits Function
Read/
Write

Reset
Value

1:0 DMA_DCTL_CHF
Chroma Half Flags NOT IMPLEMENTED DO NOT USE
00= Full Pel Vertical Full Pel Horizontal
01= Full Pel Vertical Half Pel Horizontal
10= Half Pel Vertical Full Pel Horizontal
11= Half Pel Vertical Half Pel Horizontal

r/w X

2 DMA_CHROMA_ONLY
0= Follow DMA_DCTL_YC settings
1= Keep Chroma Only, Drop Luma
if DMA_DCTL_YC is
00 = Reserved
01 = Reserved
10 = Y/C 4:2:2 -> Y/C 4:2:2 Drop Y, Keep all C
11 = Reserved

r/w X

April 17, 1997 69

3 DMA_DCTL_HPEN
0= Normal DMA, Ignore HP(9:8) bit settings.
1= Some attempt here to leave the span/stride settings alone whether
or not Half-Pel Horiz/Vertical is detected for each axis. Not sure this
will work. Better if DMA Descriptors are programmed with correct
count!

r/w X

6:4 DMA_DCTL_LOC
DMA location inside of VICE. NOT IMPLEMENTED but no
adverse affect for programming these fields. Address inside of
VICE is derived from DMA_VMEM_Y and DMA_VMEM_C
descriptor fields.
000= Data RAM A Width = 64
001= Data RAM B Width = 64
010= Data RAM C Width = 64
011= MSP Instruction RAM Width = 16
100= BSP Instruction RAM Width = 64
101= BSP Table RAM Width = 32
110= BSP Compressed Bits Fifo

Width = 16 BSP_OUT_FIFO 0x7000
Width = 32 BSP_IN_FIFO 0x7800

111= DMA TLB RAM Width = 32

r/w X

7 DMA_DCTL_ILV
0= Block Mode MUST BE SET TO BLOCK MODE
1= Interleave Mode

r/w X

9:8 DMA_DCTL_YHF
Luma Half Flags NOT IMPLEMENTED DO NOT USE
00= Full Pel Vertical Full Pel Horizontal
01= Full Pel Vertical Half Pel Horizontal
10= Half Pel Vertical Full Pel Horizontal
11= Half Pel Vertical Half Pel Horizontal

r/w X

11:10 DMA_DCTL_YC
00= Block Mode No Y/C split
01= Y/C 4:2:2 mode to Y/C 4:2:0 split into separate components
10= Y/C 4:2:2 mode to Y/C 4:2:2 split into separate components
11= Y/C 4:2:2 mode to Y only. All Chroma is dropped. Valid in DMA
read mode only.

r/w X

12 DMA_DCTL_FILL
0= Use system memory as one terminal for this transfer
1= Use DMA_DATA register as system memory for this transfer

r/w X

13 DMA_DCTL_RW
0= DMA Write (Vice Internals -> System Memory)
1= DMA Read (System Memory -> Vice Internals)

r/w X

TABLE 43. DMA_CTL_CHX_DY Register Format

Bits Function
Read/
Write

Reset
Value

April 17, 1997 70

14 DMA_DCTL_SKIP
0= Use this descriptor
1= Do not used this descriptor, go to next descriptor.

r/w X

15 DMA_DCTL_HALT
0= Do not halt after this descriptor, go to next descriptor when done.
1= Stop DMA after completing this descriptor

r/w X

TABLE 43. DMA_CTL_CHX_DY Register Format

Bits Function
Read/
Write

Reset
Value

April 17, 1997 71

2.9.39 DMA_SMEM_HI_CHX_DY - System Memory Upper Address Pointer

Upper 16 bits of the address that the DMA engine uses to point to system memory. This is interpreted as a
Virtual Address when the DMA engine has been programmed to use the TLB. It is considered a physical
address when the DMA has been programmed to bypass the TLB.I

2.9.40 DMA_SMEM_LO_CHX_DY - System Memory Lower Address Pointer

Lower 16 bits of the address that the DMA engine uses to point to system memory. This is interpreted as a
Virtual Address when the DMA engine has been programmed to use the TLB. It is considered a physical
address when the DMA has been programmed to bypass the TLB.

Address is quad word aligned. for 4:2:2 Y/C split modes. See “DMA Programming Restrictions” on
page 33.

2.9.41 DMA_WIDTH_CHX_DY - DMA Descriptor Width

Length of a memory strip in bytes located in system memory. Total number of bytes to transfer per memory
strip when Y/C split mode selected is quad-word. See“DMA Programming Restrictions” on page 33.

2.9.42 DMA_STRIDE_CHX_DY - DMA Descriptor Stride

Number of bytes from start of first memory strip to second memory strip. For most applications this will be
the count (in bytes) of the image’s horizontal dimension. For example, a 720 pixel wide image in YCrCb
4:2:2 space would have 2 bytes per pixel so the stride should be set to 1440. Normally 2 byte increments.

TABLE 44. DMA_SMEM_HI_CHX_DY Register Format

Bits Function
Read/
Write

Reset
Value

15:0 DMA_SMEM_HI_PT r/w XX

TABLE 45. DMA_SMEM_LO_CHX_DY Register Format

Bits Function
Read/
Write

Reset
Value

15:0 DMA_SMEM_LO_PT r/w XX

TABLE 46. DMA_WIDTH_CHX_DY Register Format

Bits Function
Read/
Write

Reset
Value

15-00 Width of strip to be DMA’d to/from system memory. (Bytes) r/w XX

April 17, 1997 72

Stride must be quad word aligned in Y/C split modes. See “DMA Programming Restrictions” on
page 33

2.9.43 DMA_LINES_CHX_DY - DMA Descriptor Lines

Number of lines to DMA

2.9.44 DMA_VMEM_Y_CHX_DY - Vice Address Y

Starting address (8-byte granularity and 8 byte aligned) of luma channel of DMA. This is an address of a
source or destination inside of VICE. In the normal block mode only this address is valid and the C address
is ignored.

2.9.45 DMA_VMEM_C_CHX_DY - Vice Address C

Starting address (8-byte granularity and 8 byte aligned) of chroma channel of DMA. This is an address of a
source or destination inside of VICE. In the normal block mode this address is ignored and only the Y
address is used.

TABLE 47. DMA_STRIDE_CHX_DY Register Format

Bits Function
Read/
Write

Reset
Value

15-00 Stride to next strip to be DMA’d to/from system memory.
(Bytes)

r/w XX

TABLE 48. DMA_LINES_CHX_DY Register Format

Bits Function
Read/
Write

Reset
Value

15-00 Number of lines to DMA r/w XX

TABLE 49. DMA_VMEM_Y_CHX_DY Register Format

Bits Function
Read/
Write

Reset
Value

15-00 Starting address for DMA transfer internal to VICE r/w XX

TABLE 50. DMA_VMEM_C_CHX_DY Register Format

Bits Function
Read/
Write

Reset
Value

15-00 Starting address for DMA transfer internal to VICE r/w XX

April 17, 1997 73

3.0 System Interface

VICE is implemented on the 64-bit SysAD processor bus. For a complete description of the R4K bus refer to
MIPS Microprocessor R4000 User’s Manual, Chapter 12 (See Bibliography).VICE can respond as a slave to
bus transactions initiated by either the Unix processor or the CRIME ASIC. VICE can request mastership of
the SysAD bus through handshake signals, with CRIME, which, in turn, requests that the Unix processor
release the SysAD bus. Once VICE owns the SysAD bus it can perform block pipelined writes and reads
(which is how VICE performs “DMA” transfers). VICE can also perform single read and write transactions
as part of DMA. VICE can only access System Memory address space when it is master of the SysAD bus.

Interrupts to the Unix Processor are communicated with a level sensitive signal that is driven by VICE and
received by CRIME.

While VICE is implemented on the SysAD bus, special characteristics exist in the CRIME chip’s interface
with both VICE and the Unix Processor. For application of VICE to other systems which include a SysAD
bus, these same features would need to exist in whatever device communicates as the primary SysAD bus
interface with the Unix processor. These features are highlighted in the first section below.

The Chip can be reset by the ViceReset_n pin. The MSP, BSP and DMA units internal to VICE can each be
independently reset under software control.

The connections between the Unix processor, CRIME and VICE are shown in Figure 7, “Moosehead SysAD
Bus processor connections,” on page 76

3.1 VICE <-> CRIME SysAD Protocol

Special features in the CRIME ASIC allow the VICE chip to operate on the SysAD bus as both a master and
a slave. These features include special signals as well as an address range that allows VICE to respond to the
Unix Processor while CRIME assists with handshake. In addition, extensions to the SysCMD block transfer
for both reads and writes have been made.

3.1.1 Physical Signals

The signals in Table 51, “VICE <-> CRIME unique connections,” on page 74 exist on the VICE chip. There
is a set of 3 signals for VICE to request the bus from CRIME, receive the bus from CRIME and then notify
CRIME that VICE has released the bus. The VICE ValidIn_n and ViceValidOut_n are signals to indicate
valid data cycles between CRIME and VICE. During these type of transfers, VICE will honor the RdRdy_n
and WrRdy_n signals that CRIME sends to both the processor and VICE.

ViceWrRdy_n is a special signal that allows VICE to control the flow of write data when the processor is
writing VICE address space directly. CRIME uses ViceWrRdy_n to affect the processor WrRdy_n on behalf
of VICE for these types of bus transactions.

The signal on VICE called R4ValidIn_n is connected directly to the processor’s ValidIn_n pin. As CRIME
also drives this same pin on the processor, a protocol for 3-state of the signal allow CRIME and VICE to
alternately drive this signal when the processor is performing reads.

A dedicated pin-to-pin connection between VICE and CRIME allows VICE to drive ViceInt_n, a level sen-
sitive interrupt, into CRIME. CRIME passes this signal to the Unix processor through the normal write
request protocol. VICE itself does not write registers anywhere in the system and is limited to system mem-
ory transactions only, when it is bus master.

April 17, 1997 74

Vice has its own reset pin. In the Moosehead system this pin is driven by CRIME to both the VICE chip and
the RESET* signal of the MIPS processor to conserve pins on CRIME. Vice is ready 1 clock after the de-
assertion of RESET* to accept SysAD transactions. VERIFY THIS in the VHDL

..

3.1.2 Address

No changes from the standard SysAD address bus protocol are implemented by VICE. VICE produces the
full 36 bit physical address on the SysAD bus and will respond to 36 bit addresses.

3.1.2.1 VICE address response

VICE responds to a fixed address range to allow the processor direct access to the internal RAM and regis-
ters of VICE. This fixed address range is also known to CRIME so that CRIME will not respond to bus
transactions to this address space.

The decoding of this address space is kept to 12 bits of address space. This allows the fifos in CRIME and
VICE to qualify stores to the command and data fifos with their respective addresses and still meet the 100
MHz (up-to 120MHz?) SysAD bus speed.

The address range that VICE responds to is 0x0 1700 0000 to 0x0 17FF FFF8.

3.1.2.2 Address Conventions

The address conventions of the SysAD bus are upheld by VICE

• Addresses associated with block requests are aligned to doubleword boundaries.

• Doubleword requests set the low-order 3 bits of address to 0.

• Word requests set the low-order 2 bits of address to 0.

• Halfword requests set the low-order bit of address to 0.

• All other requests use the byte address.

TABLE 51. VICE <-> CRIME unique connections

Signal Name Function
ViceSysRqst_n SysAD bus request output to CRIME
ViceSysGnt_n SysAD bus grant input from CRIME
ViceRelease_n SysAD release output to CRIME
ViceValidIn_n SysAD valid input from CRIME
ViceValidOut_n SysAD valid output to CRIME
ViceWrRdy_n SysAD write ready output to CRIME
R4ValidIn_n Vice output 3-state. Connected to Unix Processor ValidIn_n.

Active when Unix Processor access VICE address space on
read/write. Otherwise Unix Processor ValidIn_n is driven by the
Crime chip.

Reset_n Same reset pin that CRIME drives to the Unix Processor. Not
really a VICE <-> CRIME unique connection.

ViceInt_n VICE level sensitive interrupt output to CRIME

April 17, 1997 75

3.1.2.3 Data Ordering

VICE always expects data to be returned in sub-block order.

3.1.3 Bytes, Words, Cycles

3.1.3.1 Data Word Size Definition

For clarification, the definition of words and double-words, used throughout this section, is listed in
Table 52, “Data Size Name Convention,” on page 75.

3.1.3.2 Words vs. SysAD Block Transfers

A non-block transfer on the SysAD bus can contain 1 valid data cycle. This can contain from 1 to 8 bytes of
valid data.

The SysAD bus is 8 bytes wide. A block transfer on the SysAD bus can contain 2, 3 or 4 valid data cycles.
This correlates to 4, 6 or 8 words transferred. This correlates to 16, 24 or 32 bytes transferred. These are
expected to be the typical cycles for a VICE to CRIME block transfer.

The block transfer protocol allows for 8 valid data cycles. This correlates to 16 words transferred. This cor-
relates to 64 bytes transferred. These cycles may not be implemented in the VICE to CRIME block transfer
protocol.

TABLE 52. Data Size Name Convention

Term Definition
Byte 8 bits
Halfword 2 bytes
Tribyte 3 bytes
Word 4 bytes
Quintibyte 5 bytes
Sextibyte 6 bytes
Septibyte 7 bytes
Doubleword 8 bytes

April 17, 1997 76

FIGURE 7. Moosehead SysAD Bus processor connections

R4600

SysAD(63:00)

ValidIn_n

SysADC(7:0)
SysCmd(8:0)
SysCmdP

ValidOut_n

ExtRqst_n
Release_n

RdRdy_n
WrRdy_n

CRIME

SysAD(63:00)

ValidIn_n

SysADC(7:0)
SysCmd(8:0)

SysCmdP

ValidOut_n

ExtRqst_n
Release_n

WrRdy_n

VICE

SysAD(63:00)

ViceValidIn_n

SysADC(7:0)
SysCmd(8:0)
SysCmdP

ViceValidOut_n

ViceSysGnt_n
ViceRelease_n

RdRdy_n

ViceWrRdy_n

ViceValidIn_n
ViceValidOut_n

ViceSysGnt_n
ViceRelease_n

ViceWrRdy_n

ViceSysRqst_nViceSysRqst_n

WrRdy_n
R4ValidIn_n
R4ValidOut_n

ViceInt_nViceInt_n

Reset_nReset_n

Clocks

SysADClk

SysADClkSysADClk

ViceClk

CrimeClk

ViceReset_n

April 17, 1997 77

3.1.4 SysCMD Extensions

Vice follows the command syntax for System Interface Commands and Data Identifiers with one key differ-
ences. A block read or write request size of 6 words for Interface Commands is supported in place of the 32
word field used by the R4K family.

FIGURE 8. System Interface Command Syntax Bit Definition

Of the seven types of System Interface Commands VICE only supports Read and Write Request

SysCmd(4:0) for Read and Write requests are described in the following sections.

3.1.4.1 Read Requests

FIGURE 9. Read Request SysCmd Bus Bit Definition

TABLE 53. Encoding of SysCmd(7:5) for System Interface Commands

SysCmd(7:5) R4K, R4400 Command VICE Command
0 Read Request Read Request
1 Read-With-Write-Forthcoming Request Reserved
2 Write Request Write Request
3 Null Request Reserved
4 Invalidate Request Reserved
5 Update Request Reserved
6 Intervention Request Reserved
7 Snoop Request Reserved

4 0578

0 Request Type Request Specific

4 0578

0 000

123

Read Request Specific

April 17, 1997 78

TABLE 54. Encoding of SysCmd(4:3) for Read Requests

SysCmd(4:3) R4K, R4400 Read Attributes VICE Read Attributes
0 Coherent block read Reserved
1 Coherent block read, exclusivity requested Reserved
2 Noncoherent block read Noncoherent block read
3 Doubleword, partial doubleword,

word, or partial word
Doubleword, partial doubleword,
word, or partial word

TABLE 55. Encoding of SysCmd(2:0) for Block Read Requests

SysCmd(2) R4K, R4400 Link Address Indication VICE Link Address Ind.
0 Link address not retained Reserved
1 Link address retained Reserved

SysCmd(1:0) R4K, R4400 Read Block Size VICE Read Block Size
0 4 words 4 words
1 8 words 8 words
2 16 words Reserved
3 32 words 6 words * * * Yes 6

TABLE 56. Doubleword, Word, or Partial-word Read Request Data Size Encoding of SysCmd(2:0)

SysCmd(2:0) R4K, R4400 Read Data Size VICE Read Data Size
0 1 byte valid (Byte) 1 byte valid (Byte)
1 2 bytes valid (Halfword) 2 bytes valid (Halfword)
2 3 bytes valid (Tribyte) 3 bytes valid (Tribyte)
3 4 bytes valid (Word) 4 bytes valid (Word)
4 5 bytes valid (Quintibyte) 5 bytes valid (Quintibyte)
5 6 bytes valid (Sextibyte) 6 bytes valid (Sextibyte)
6 7 bytes valid (Septibyte) 7 bytes valid (Septibyte)
7 8 bytes valid (Doubleword) 8 bytes valid (Doubleword)

April 17, 1997 79

3.1.4.2 Write Requests

Write requests mirror the read requests. See the tables below for details.

FIGURE 10. Write Request SysCmd Bus Bit Definition

TABLE 57. Encoding of SysCmd(4:3) for Write Requests

SysCmd(4:3) R4K, R4400 Write Attributes VICE Write Attributes
0 Reserved Reserved
1 Reserved Reserved
2 Block write Block write
3 Doubleword, partial doubleword,

word, or partial word
Doubleword, partial doubleword,
word, or partial word

TABLE 58. Encoding of SysCmd(2:0) for Block Write Requests

SysCmd(2) R4K, R4400 Cache Line Replacement Attr. VICE (No Cache in VICE)
0 Cache line replaced Reserved
1 Cache line retained Reserved

SysCmd(1:0) R4K, R4400 Write Block Size VICE Write Block Size
0 4 words 4 words
1 8 words 8 words
2 16 words Reserved
3 32 words 6 words * * * Yes 6

4 0578

0

123

Write Request Specific010

April 17, 1997 80

3.1.5 Data Identifiers

FIGURE 11. Data Identifier SysCmd Bus Bit Definition

SysCmd(8) is set to 1 for all System interface data identifiers. As VICE does not have a cache, it does not
utilize coherent data identifiers so SysCmd(2:0) are reserved.

VICE acts as both processor and external agent on the SysAD bus. As such there are four modes of data
identifier conditions that involve VICE. The first two modes are when VICE is the external agent and
responds to processor read/write sequences. The other two modes are when VICE has acquired the SysAD
bus and initiates read/write sequences with the CRIME chip.

3.1.5.1 VICE as External Agent

When the Unix processor initiates a write on the SysAD bus, it will indicate a data identifier encoding of
SysCmd(7:3) as shown in Table 60, “Unix Processor Data Identifier Encoding of SysCmd(7:3),” on page 81.
If the processor indicates that the data contains a parity error, VICE will indicate the condition with an inter-
rupt, but the write will complete on the SysAD bus (it has to) and VICE will complete the write internal to
the VICE chip as well.

When the Unix processor initiates a read request on the SysAD bus, it can handle the combination of data
identifiers shown in Table 61, “Vice generated External Data Identifier Encoding of SysCmd(7:3),” on
page 81. As VICE does not have on-board parity or ECC for its internal memory, it will always return an

TABLE 59. Doubleword, Word, or Partial-word Write Request Data Size Encoding of
SysCmd(2:0)

SysCmd(2:0) R4K, R4400 Write Data Size VICE Write Data Size
0 1 byte valid (Byte) 1 byte valid (Byte)
1 2 bytes valid (Halfword) 2 bytes valid (Halfword)
2 3 bytes valid (Tribyte) 3 bytes valid (Tribyte)
3 4 bytes valid (Word) 4 bytes valid (Word)
4 5 bytes valid (Quintibyte) 5 bytes valid (Quintibyte)
5 6 bytes valid (Sextibyte) 6 bytes valid (Sextibyte)
6 7 bytes valid (Septibyte) 7 bytes valid (Septibyte)
7 8 bytes valid (Doubleword) 8 bytes valid (Doubleword)

4 0578

1

23

ReservedErr
Data

Resp
Data

Last
Data

6

Reserved

April 17, 1997 81

indication that the data is error free so SysCmd(5) is driven to logical 0. For Data Checking Enable, VICE
will drive SysCmd(4) according to how the VICE_CFG register is programmed. The power-on default is
that VICE will drive SysCmd(4) a logical 1 so that the processor will be asked to not check the data and
check bits.

TABLE 60. Unix Processor Data Identifier Encoding of SysCmd(7:3)

SysCmd(7) Last Data Element Indicator
0 Last Data Element
1 Not the last data element

SysCmd(6) Response Data Indication
0 Data is response data
1 Data is not response data

SysCmd(5) Good Data Indication
0 Data is error free
1 Data is erroneous

SysCmd(4:3) Reserved

TABLE 61. Vice generated External Data Identifier Encoding of SysCmd(7:3)

SysCmd(7) R4K, R4400 Last Data Element Indicator VICE Last Data Element Ind.
0 Last Data Element Last Data Element
1 Not the last data element Not the last data element

SysCmd(6) R4K, R4400 Response Data Indication VICE Response Data Indication
0 Data is response data Data is response data
1 Data is not response data Data is not response data

SysCmd(5) R4K, R4400 Good Data Indication VICE Good Data Indication
0 Data is error free Vice always indicates error free
1 Data is erroneous Not Used

SysCmd(4) R4K, R4400 Data Checking Enable VICE Data Checking Enable
0 Check the data and check bits Controlled with VICE_CFG register
1 Do not check the data and check bits setting. Default Do Not Check.

SysCmd(3) R4K, R4400 Reserved VICE Reserved

April 17, 1997 82

3.1.5.2 VICE as Processor

When VICE is Master of the SysAD bus it behaves as a processor itself. As VICE has no parity or ECC on
its internal memory, VICE will always indicate “Good Data” on its DMA write sequences. This is shown
inTable 62, “VICE as Processor Data Identifier Encoding of SysCmd(7:3),” on page 82.

With VICE as the processor, the external agent (CRIME) can produce data identifiers identical to those that
it intends for the Unix processor. VICE will monitor SysCmd(5) for Good Data Indication and will set the
interrupt when erroneous data is indicated. VICE will ignore the Check Data bit from the CRIME chip. See
Table 63, “CRIME generated External Data Identifier Encoding of SysCmd(7:3),” on page 82.

TABLE 62. VICE as Processor Data Identifier Encoding of SysCmd(7:3)

SysCmd(7) Last Data Element Indicator
0 Last Data Element
1 Not the last data element

SysCmd(6) Response Data Indication
0 Data is response data
1 Data is not response data

SysCmd(5) Good Data Indication
0 VICE always indicates data is error free
1 Not Used

SysCmd(4:3) Reserved

TABLE 63. CRIME generated External Data Identifier Encoding of SysCmd(7:3)

SysCmd(7) R4K, R4400 Last Data Element Indicator VICE Last Data Element Ind.
0 Last Data Element Last Data Element
1 Not the last data element Not the last data element

SysCmd(6) R4K, R4400 Response Data Indication VICE Response Data Indication
0 Data is response data Data is response data
1 Data is not response data Data is not response data

SysCmd(5) R4K, R4400 Good Data Indication VICE Good Data Indication
0 Data is error free Data is error free
1 Data is erroneous Data is erroneous

SysCmd(4) R4K, R4400 Data Checking Enable VICE Data Checking Enable
0 Check the data and check bits VICE ignores this bit
1 Do not check the data and check bits

SysCmd(3) R4K, R4400 Reserved VICE Reserved

April 17, 1997 83

3.2 Unix Processor read/write of VICE

VICE (and CRIME) have knowledge of a specific system physical address in which VICE will respond to
the Unix Processor and generate the necessary handshake signals. Only non-block read/write access is sup-
ported. A block read or write to VICE address space will behave how?

1. Ignore cycle - Unexpected SysAD bus will time out per CRIME?

2. Single transaction - Block Write acts like single write w/ first data word stored, Block-Read returns same
data in block? But this requires ValidIn_n and ValidOut_n to work properly, and there must be space in the
command and data fifos. On reads, the data should be repeated by VICE, on writes, only the first doubleword
on the bus is taken by VICE.

3. Interrupt and Die - Assert ViceInt_n and ignore the bus cycle.

When the Unix Processor issues a write to this VICE address space, it is decoded by both CRIME and VICE
to determine that it is a VICE access by the Unix Processor. The Unix Processor obeys the normal WrRdy_n
flow control on the pin driven by CRIME. If VICE cannot accept additional writes, then it de-asserts
ViceWrRdy_n to the CRIME chip which in turn passes it to the Unix Processor on the WrRdy_n pin with a
two flop delay. VICE must have sufficient buffering to accept two potential writes that could occur between
the time that VICE de-asserts ViceWrRdy_n and the time the Unix Processor sees WrRdy_n de-asserted
from the CRIME chip. VICE must monitor ValidOut_n from the Unix Processor for writes to detect the
write cycle.

Reads by the Unix Processor from VICE address space are similar for address decode requirements. VICE
however will directly drive its output called R4ValidIn_n which is tied directly to the Unix Processor
ValidIn_n input. For this read, CRIME will 3-State its ValidIn_n output and allow VICE to perform the
handshake directly with the Unix Processor.VICE must monitor ValidOut_n from the Unix Processor for
reads to detect the start of a read cycle.

April 17, 1997 84

3.3 VICE read/write of System Memory

VICE must arbitrate for the SysAD bus by asserting ViceSysRqst_n and waiting for assertion of
ViceSysGnt_n. VICE will receive ViceSysGnt_n after the CRIME chip has successfully obtained ownership
of the bus from the Unix Processor processor. This can take from 4 to 24 Unix Processor PClock cycles.

Once VICE has the bus it may perform a SysAD transaction by using ViceValidIn_n, ViceValidOut_n and
ViceRelease_n as communication signals with CRIME. VICE also adheres to the WrRdy_n and RdRdy_n
signals from CRIME for these transactions as well.

3.3.1 VICE DMA Read

For a DMA read sequence, VICE will first request the SysAD bus. The handshake for this activity is shown
in Figure 17, “VICE Bus Request,” on page 90. VICE can then request a sequence of block reads from sys-
tem memory. These block reads will be aligned on double word (8 byte) boundaries so as to simplify the
SysAD bus protocol. Extensions to the Block Read Request Block Size field [SysCMD(1:0)] are detailed in
Table 55, “Encoding of SysCmd(2:0) for Block Read Requests,” on page 78. This information coupled with
the starting address on the SysAD bus will allow for block reads of 8, 16, 24 or 32 bytes. This equates to 2,
4, 6 or 8 words on the SysAD bus. Note that a read of 2 words (8 bytes) is really a single bus access and will
follow the non-block protocol format of the SysCMD fields. These requests can be mixed with block
requests in order to accomplish efficient DMA transfers.

Each block read request from VICE will reside within a 32 byte, moosehead system, memory word. If the
span requested crosses these 32 byte boundaries, VICE will break the request into multiple requests.

After requesting up to 8 block reads (a maximum of 32 bytes per block read for a total of 256 bytes), VICE
will then release the SysAD bus. Once the CRIME memory controller has completed the DMA read from
System Memory, it will perform a read response to the VICE chip. Each block read that was requested by
VICE will contain its own NEOD marker. Note that each block read response can be from 1 to 4 cycles on
the SysAD bus.

Since VICE processors expect to have 4 byte granularity for reads across an 8 byte bus, VICE will be
responsible on reads to store a queue of which part of each read response double word is valid (upper, lower
or entire). The SysCMD protocol does not include a designation of valid words as part of a read response as
only doublewords are defined for block transfers. For Double-word and smaller access, the full SysCMD
protocol is followed to allow single byte resolution on both reads and writes. It is not anticipated that VICE
will use these sub-word designations as part of the DMA engine.

This protocol is designed to carve rectangular regions from the wide 32 byte System Memory. These rectan-
gular regions can have line skips in them as well. VICE will break spans down into physical System Mem-
ory addresses, each requesting no more than 32 bytes. As an example of how the VICE DMA read can read
a rectangular region in system memory while skipping lines see Figure 12, “MPEG-2 Field Predictor DMA
Read - System Memory to MSP Data RAM,” on page 85.

The figure illustrates that a strip of 18 pixels wide data stored as 4:2:2 Y,Cr, Cb data in System Memory can
be read Then 17 pixels are selected and these 17 pixels can be horizontally and/or vertically modified to cal-
culate the 16 pixels that represent a half-pixel spacial position in the picture. Finally the DMA engine can
separate the pixels into two components of Y and CrCb and place the data into VICE Data RAM.

For more information on the modes supported by the DMA Read operation refer to Section 4.3.1 on
page 110.

April 17, 1997 85

FIGURE 12. MPEG-2 Field Predictor DMA Read - System Memory to MSP Data RAM

Unix System Memory 32 bytes wide
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Line 1 Field 0
45 entries at
32 bytes each

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Line 1 Field 1
45 entries at
32 bytes each

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Line2 Field 0
45 entries at
32 bytes each

MSP Data RAM Memory16 bytes wide

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YPredictor Field 0 Line 1
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Predictor Field 0 Line 2

Predictor Field 0 Line 8

Predictor Field 0 Line 7

Predictor Field 1 Line 1

Predictor Field 1 Line 2

Predictor Field 1 Line 8

Predictor Field 1 Line 7

Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb

Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb
Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb

Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb

Predictor Field 0 Line 1,2
Predictor Field 1 Line 1,2

Predictor Field 0 Line 7,8
Predictor Field 1 Line 7,8

April 17, 1997 86

3.3.2 VICE DMA Write

For a DMA write sequence, VICE will also arbitrate for the SysAD bus. When owner of the bus, VICE will
perform pipelined SysAD block write cycles which will be to the address of the memory locations in system
memory. Each address of each block write may be followed by 1 to 4 double words on the SysAD bus.

Writes are expected to be packed aligned with system memory so the burden will be on the VICE code to
ensure this. The DMA write engine will be able to pull components of luma and color separately and it will
be able to deal with 4:2:0 to 4:2:2 interleaving by replication of the Cr and Cb components.

For DMA writes that are not aligned to system memory (not aligned on 8 byte boundaries), the DMA engine
will correctly align the data. The performance degradation will be minimized by the DMA engine causing
alignment to be re-established at the next 8 byte boundary.

An example of a DMA Write is shown in Figure 12, “MPEG-2 Field Predictor DMA Read - System Mem-
ory to MSP Data RAM,” on page 85. The picture information is stored into separate Y and CrCb compo-
nents in the VICE Data RAM. The DMA engine can merge the Y and CrCb components and interleave them
into 4 byte words in the System Memory.

The DMA engine can also perform a DMA write of a packed field in VICE Data RAM and place it within a
Frame of data in System Memory. An example of this operation is shown in Figure 12, “MPEG-2 Field Pre-
dictor DMA Read - System Memory to MSP Data RAM,” on page 85.

For additional details on the DMA Write modes refer to Section 4.3.1 on page 110.

April 17, 1997 87

FIGURE 13. MPEG-2 Frame Picture DMA Write - VICE Data RAM to System Memory

Unix System Memory 32 bytes wide
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Line 1 Field 0
45 entries at
32 bytes each

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Line 1 Field 1
45 entries at
32 bytes each

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Line2 Field 0
45 entries at
32 bytes each

MSP Data RAM Memory16 bytes wide

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YPicture Field 0 Line 1
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Picture Field 0 Line 2

Picture Field 0 Line 8

Picture Field 0 Line 7

Picture Field 1 Line 1

Picture Field 1 Line 2

Picture Field 1 Line 8

Picture Field 1 Line 7

Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb

Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb
Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb

Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb

Picture Field 0 Line 1,2
Picture Field 1 Line 1,2

Picture Field 0 Line 7,8
Picture Field 1 Line 7,8

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Line2 Field 1
45 entries at
32 bytes each

April 17, 1997 88

FIGURE 14. MPEG-2 Field Picture DMA Write - MSP Data RAM to System Memory

Unix System Memory 32 bytes wide
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Line 1 Field 0
45 entries at
32 bytes each

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Line 1 Field 1
45 entries at
32 bytes each

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Line2 Field 0
45 entries at
32 bytes each

MSP Data RAM Memory16 bytes wide

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YPicture Field 0 Line 1
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Picture Field 0 Line 3

Picture Field 0 Line 15

Picture Field 0 Line 13

Picture Field 0 Line 2

Picture Field 0 Line 4

Picture Field 0 Line 16

Picture Field 0 Line 14

Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb

Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb
Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb

Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb Cr Cb

Picture Field 0 Line 1,2
Picture Field 0 Line 3,4

Picture Field 0 Line 13,14
Picture Field 0 Line 15,16

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y
Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr Y Cb Y

Line2 Field 1
45 entries at
32 bytes each

April 17, 1997 89

3.4 VICE SysAD Protocol Timing Diagrams

Protocol sequences for SysAD bus transactions involving VICE are covered in the following pages.

FIGURE 15. Unix Processor Write to VICE Address Space

FIGURE 16. Unix Processor Read from VICE Address Space

SCycle
SClock

1 2 3 4 5 6 7 8 9 10

SysAD Addr Data0

SysCmd Write NEOD

ValidOut_n

WrRdy_n

SCycle
SClock

1 2 3 4 5 6 7 8 9 10

SysAD Addr0

SysCmd Read

ValidOut_n

ValidIn_n

ExtRqst_n

Data0

NEOD

Release_n

R4ValidIn_n

R4K Master Vice Master R4K Master

ValidIn_n(Crime)

April 17, 1997 90

FIGURE 17. VICE Bus Request

FIGURE 18. VICE Bus Release

SCycle
SClock

1 2 3 4 5 6 7 8 9 10

SysAD

SysCmd

ValidIn_n

ExtRqst_n

Release_n

R4K Master Vice Master

ViceSysRqst_n

ViceSysGnt_n

ViceRelease_n

SCycle
SClock

1 2 3 4 5 6 7 8 9 10

SysAD

SysCmd

ValidIn_n

ExtRqst_n

Release_n

Vice Master R4K Master

ViceSysRqst_n

ViceSysGnt_n

ViceRelease_n

Crime Master

Unsd

SINull

April 17, 1997 91

FIGURE 19. VICE DMA read request to CRIME, VICE already owns SysAD bus

FIGURE 20. VICE-CRIME DMA Read Response, CRIME already owns SysAD bus

FIGURE 21. VICE - CRIME DMA Block Write

SCycle
SClock

1 2 3 4 5 6 7 8 9 10

SysAD Addr0 Addr1

SysCmd BlkRd BlkRd

ViceValidOut_n

RdRdy_n

ViceRelease_n

VICE Master

Addr2 Addr3 Addr4 Addr5

BlkRd BlkRd BlkRd BlkRd

Addr6 Addr7

BlkRd BlkRd

SCycle
SClock

1 2 3 4 5 31 32 33 34

SysAD Data0 Data1

SysCmd BlkRd BlkRd

ViceValidIn_n

ViceRelease_n

CRIME Master

Data2 Data3 Data29

BlkRd NEOD BlkRd

Data30 Data31

BlkRd NEOD

SCycle
SClock

1 2 3 4 5 25 26 27 34

SysAD Addr0 Data2

SysCmd BlkWr Ndata

ViceValidOut_n

ViceRelease_n

VICE Master

Data3 Addr1 Data0

NEOD BlkWr Ndata

Data1 Data2

Ndata NEOD

WrRdy_n

April 17, 1997 92

3.5 Clock Interface

VICE will receive SClock. The Unix processor will produce its PClock from SClock in multiples of 2, 3 and
4. This will allow VICE and CRIME to always receive SClock and not have to divide it down. Furthermore,
because VICE and CRIME are not generating SClock from MasterClock (R4K and R4600 style) they do not
need to phase SClock with the edge of ColdReset_n.

One backward compatible mode exists in this implementation. For lab bring-up and verification the R4K or
R4600 processor can be used as long as that processor’s internal PClock to SClock divisor is set at 2. In this
mode MasterClock will be fed to the processor and VICE and CRIME. The processor will multiply Master-
Clock by 2 to produce PClock. PClock will be divided by 2 inside the processor and will match the external
MasterClock in phase and frequency. Since VICE and CRIME also receive MasterClock and will use PLLs
to create their internal clocks as the same phase and frequency, everything is hunky-dory. Note that any divi-
sor other than 2 for the R4K or R4600 processor will not work in this mode.

Both CRIME and VICE have secondary clocks. This second clock is slower than the SClock and is used to
clock most of the processing logic in these two chips. As such, a clock domain is crossed between the
SysAD interface Fifos and the remainder of the logic inside both CRIME and VICE.

TABLE 64. Unix Processor PClock - SClock Relationship

SClock
Provided
to Unix
Processor

SysAD
Transactions

Unix Processor internally
synthesized PClock

90 MHz 90 MHz 180 MHz
80 MHz 80 MHz 240 MHz

April 17, 1997 93

FIGURE 22. SysAD Clock Distribution

Unix Proc.

Osc

x2,3,4PClock
PLL

SClock x1

SysAD

VICE

PLL
SClock x1

CRIME

PLL
SClockx1

Secondary

SClock

x1

Cache

Osc

Clock to rest of Logic
Clock to rest of Logic

Osc

April 17, 1997 94

3.6 Error Checking

VICE will create even parity for the SysAD and SysCmd bus during all address cycles. Parity will be gener-
ated on data values. VICE will set bit4 of the SysCmd field for data identifiers depending on whether data
check enable is selected in the VICE_CFG register. The default will be set to no check so that things work
OK at power up.

It is not determined at this time if VICE needs to check parity on any received address or data cycles. My
inclination is not to support this.

3.7 JTAG Interface

VICE implements the IEEE 1149.1 JTAG Boundary Scan standard with some modifications to handle tim-
ing constraints assciated with the SysAD bus. There are 5 pins associated with the JTAG interface which are
listed in Table 64.

VICE uses the BS1CONA0 Test Access Port(TAP) library model available from Compass. Refer to Com-
pass Boundary Scan User Guide for details. The VICE JTAG design supports the EXTEST, SAMPLE,
BYPASS, and IDCODE instructions. Table 65 lists the supported instructions and the associated opcodes.

The VICE BSR register contains 99 register cells. This includes a combination of input, output, bidir, and
control cells. The 3 control cells in the BSR chain provide I/O control capability of bidir ports through the
JTAG interface. The Boundary Scan Description Language(BSDL) of VICE provides a complete description
of the JTAG design including the order of the BSR chain.

TABLE 65.

Signal I/O Functionality
TDI input Test Data In (Serial Input)
TCK input Test Clock
TMS input Test Mode Select for TAP controller
TRST input Asynchronous Reset of TAP controller
TDO output Test Data Out (Serial Output)

TABLE 66.

Instruction Register Opcode
EXTEST BSR 000
SAMPLE BSR 010
BYPASS BYPASS 111
IDCODE ID 001

April 17, 1997 95

4.0 Architectural Description

The VICE chip functionality can be broken into several major blocks. These consist of the Media Signal
Processor, the Bitstream Processor, the DMA unit, the Host Interface and the Arbiter.

See Figure 23, “VICE block diagram,” on page 96 for the major blocks of the chip.

April 17, 1997 96

FIGURE 23. VICE block diagram

SuVuRW(63:00)
SuVuRW(127:64)

DMA(63:00)

Com_Data(31:00)

C C

128x64 128x64

MSP D_RAM

B B

128x64 128x64

MSP D_RAM
A A

128x64 128x64

MSP D_RAM

X-bar

Register
Block

Scalar
Unit

Bit Stream
Processor

Fifo

Table
Mem

1280
x
22

BSP

Instruction

1024 x 16

MSP

Memory

Instruction
Memory

512 x 64

Vector
Unit

Host/DMA Interface

DMA

TLB

16

16

16

64

SysAD
Fifos

Register
Block

Descr
RAM

Control

Addr Calc
&

32

Register
Block

SU Access.

VuW(127:00)
VuR(127:00)SuR(31:00)

SuW(31:00)

DMA(63:00)

Arbitration

BSP
16

32

16 x 32

16

32

64 64 64

64

April 17, 1997 97

4.1 Host Interface

The VICE chip communicates with other resources in the workstation through a MIPS R4K like SysAD bus
connection. Chapter 3 contains details of this protocol and the deviations from the R4K standard. VICE acts
as both a processor AND an external agent.

The Host Interface (the term SysAD Interface is used interchangeably in this document) consists of high
speed fifos to capture and produce command and data cycles on the SysAD Interface. Special synchroniza-
tion techniques are employed to deal with the difference in speed between the SysAD Interface (~100 MHz)
and the internal VICE clock (66 MHz) to maintain valid fifo flags.

4.1.1 Host Access

The Unix Processor can perform single write/read accesses to VICE address space. VICE will internally
arbitrate between its internal processors (MSP, BSP, DMA engine) accessing registers and the Unix Proces-
sor accessing the internal VICE registers.

4.1.1.1 Host Write to VICE internals

The Wrdy_n signal needs to come on when there is still some number of entries in the command/data fifo to
allow for the 2 clock delay through VICE and any uncertainty in the on-board VICE flags that deal with the
100 to 66 MHz synchronization. This may be as high as 6 entries.

Writes from the Unix processor can come in while a DMA write is being queued up, while a DMA read is
being queued up or while VICE is waiting for a DMA read response from a “launched” DMA.

As the command and write data buffer is being emptied, the SysAD Interface decodes the address and
requests a cycle on the Common Bus internal to VICE so that the write will complete. No provisions are
made to watch for a Unix processor read to this same internal VICE location so that coherency is main-
tained. However, this can be controlled because read/write commands use the same fifo and are retired in
order.

4.1.1.2 Host Read from VICE internals

Any outstanding reads by the Unix processor will be satisfied before VICE requests the bus for a DMA
transaction. This is important for bus ownership control between the processor, CRIME and VICE.

Reads must be serviced to the Unix Processor when VICE is preparing to perform a DMA read or write and
when VICE is expecting a DMA read response from CRIME.

4.1.2 DMA

VICE initiates block write/read transfers between internal VICE memory resources and the CRIME chip
which in turn accesses workstation system memory. VICE is not allowed to access system I/O address space.

4.1.2.1 DMA Write to System Memory

A sequence of write commands and data are queued up in a fifo inside of the SysAD Interface. A non-empty
fifo in the SysAD interface causes a SysAD bus request, and writes are sent to the CRIME chip in sets of up
to 10. The address buffer in CRIME is limited to 16 entries. The data buffer is limited to 256 bytes. This
should guarantee that Wrdy_n does not have to be asserted by CRIME during these pipelined block writes,
however the protocol will be honored regardless. At the end of this set of addresses (up to 8), the VICE chip

April 17, 1997 98

will release the SysAD bus. CRIME can then refuse to grant it again until it’s buffer has sufficient space to
handle the next set of addresses and data.

4.1.2.2 DMA Read from System Memory

DMA reads are similar except that only the command fifo in the SysAD Interface is loaded by the DMA
unit. The SysAD interface will only request the bus from CRIME if the SysAD read buffer is ready to accept
a full 256 bytes of data that this read may produce. Should the SysAD interface, internal to VICE, wait for
the DMA to tell it “go” so that the full 8 to 10 requests are in the fifo and ready to go onto the SysAD bus?

4.1.3 Host/DMA interaction

When a VICE initiated DMA is in progress, the Host is still able to access the internal state of the VICE
chip. The Host can perform a read or write of some internal resource of VICE only when the Unix Processor
owns the bus.

In the case of DMA writes by VICE, VICE has requested the bus and is writing Address/Data pairs to
CRIME. VICE can write as many as 8 block transfer cycles without releasing the SysAD bus. This is a total
of 40 SysAD clock cycles. When complete, VICE will release the bus.The Unix processor may subsequently
perform single read or write cycles between these atomic block write bursts from the VICE chip. This partic-
ular case requires separate buffering between the DMA channel and Unix processor transactions so that read
responses produce the correct data to the Unix Processor and do not get mixed with the buffer in VICE that
is writing data to the CRIME chip.

In the case of DMA reads by VICE, Response data from CRIME must be differentiated from write data
coming from the Unix Processor. This is indicated by the Data Identifier provided by CRIME to VICE dur-
ing read response cycles.

April 17, 1997 99

4.2 Arbiter/Internal Bus Sharing

There are 4 requesting devices internal to VICE that the arbiter handles; the Host interface, the DMA unit,
the Bitstream Processor and the Media Signal Processor (Scalar Unit). At any time any of these devices
might want to perform a read or write transaction of some resource inside the VICE chip.

The arbiter is of fixed priority as follows:

1. Media Signal Processor (MSP)

2. Host Interface

3. Bit Stream Processor (BSP)

4. DMA engines

This priority is designed to support the Media Signal Processor which is not designed to stall under normal
operation. In addition it is designed to satisfy read/writes by the Unix Processor when they collide with the
DMA engine’s use of the internal bus.

There are three buses internal to VICE that need be arbited. The MSP has a dedicated address and data bus to
access the three banks of Data RAM. This is referred to as the SuVuRW data bus. The BSP and Host/DMA
blocks share a 64 bit data bus that can also be used to access the three banks of Data RAM. This is referred
to as the DMA bus. The arbiter controls access to the Data RAM deciding between the SuVuRW bus and the
DMA bus. The arbiter also controls access to the DMA bus by the Bit Stream Processor (BSP) and the Host
DMA Interface (H/DMA). The third bus inside of vice is known as the common bus. It is the path to all other
memory and registers inside of VICE except the Data RAM and MSP Instruction RAM.

The goal of these three buses is to allow two clients access to the Data RAM simultaneously (if the requested
banks are different). A further goal is to allow access by any client to the common bus while still allowing
transactions to occur on one or more of the two memory buses.

An overview of the address and control paths inside of VICE is covered in Figure 24, “Internal Address/
Control Flow,” on page 102.

A list of datapaths is given in Table 67, “VICE Datapath Flow,” on page 101. In the table is a list of any data
bus width mis-matches. In the case of Unix Processor access through the VICE Host Interface, it is possible
to force alignment in most cases. However for DMA to/from these same mismatched data paths, alignment
must be performed in hardware as the DMA data will be packed.

This table also helps to highlight where stacking and de-stacking logic should be placed. It also helps to
show that from a data flow viewpoint, the DMA engine data path is readily extended to reside inside the
Host Interface Block. The term “Force Alignment” in the table indicates that the Memory/Register expects
the source processor to align the data on it’s 16/32/64/128 bit wide bus and provide the correct byte enables
to store the data correctly. The host interface will be able to perform 64 bit write/read to the 64 bit internal
common bus. For any resource that is 64 bits wide this is an exact match. For any resource smaller than 64
bits, such as registers and various BSP rams, the smaller data width will still take the full 64 bit address
range (i.e. least significant address bits will be dropped). This forces the processor to correctly align the data
for the register/memory target.

The Bitstream Processor is a special case in that it has a 16 bit wide data path. The transceivers from the BSP
will drive all 32 bits of the common bus with the address from the BSP used to control valid byte informa-
tion.

April 17, 1997 100

4.2.1 Rules for Access to Internal VICE buses

MSP will be able to access its resources inside of VICE without waiting. The arbiter will look at the instruc-
tion stream from the MSP to detect load/store instructions. Other devices that may be using a particular
resource, will be suspended in order to service the MSP. The arbiter qualifies all load/store operations to the
Data RAMs (A,B or C). MSP Co-processor Move instructions are used to access the Register Block, the
DMA descriptor RAM and the mailboxes to the Bit Stream Processor. The MSP Co-processor instructions
use the internal VICE Common Bus which is shared between the MSP, BSP, Host and DMA blocks.

4.2.1.1 MSP Access

The MSP can access the Data RAM, bank A, B or C. It uses it’s Scalar Unit bus and the X-bar to do this. If
the MSP is accessing a memory that is not being used by the BSP, DMA or Host, then these devices are not
required to wait. If the MSP collides with any of these resources, they are forced to suspend their access to
allow the MSP to continue with no stalls. Any access by the MSP onto the common bus to access the DMA
descriptor RAM or the VICE registers will also preempt the BSP, DMA or Host interfaces on the common
bus but should allow them to continue if they are using the DMA memory bus to access Data RAM.

4.2.1.2 Host Access

The Host has second priority behind the MSP. This is to keep the SysAD bus as efficient as possible. The
Host can access the Data RAM bank A, B or C at any time. It can access the Register Block at any time. It
can write to any of the following RAMs at any time as the write port to that resource is either unused by its
respective processor or is shared between the DMA engine and the Host Interface which have knowledge of
each others state.

The Host can access the MSP Instruction RAM only after halting the MSP.

4.2.1.3 BSP Access

The BSP owns the read port of its Instruction RAM, its Table RAM and its Decode Fifo. That resource can
be revoked with a control bit that also assumes the BSP is stalled. This is anticipated to be a context switch
mode or diagnostic.

The BSP can access Data RAM A, B or C through the arbiter and the DMA bus. If the Scalar Unit or Host is
not presently using that resource there is no waiting. If DMA is using that resource, DMA will be suspended
to allow the BSP to use the DMA bus for its transaction

The BSP can access the DMA Descriptor RAM for writes and the Register Block for reads or writes. If the
common bus is utilized the BSP will have to wait to access that resource.

4.2.1.4 DMA Access

The DMA block can access Data RAM A, B or C through the arbiter and the DMA bus. It can access the
read port of the DMA Descriptor RAM and the TLB without dynamic arbitration. The DMA can be pre-
vented from accessing the read port of those memories by a mode bit that will allow the host to access them
for diagnostic reasons.

The DMA can load any of the memories in the VICE chip. Data RAM A, B or C are loaded using the DMA
bus. The MSP Instruction RAM is accessed using the DMA Bus. All other memories are accessed using the
common bus.

April 17, 1997 101

TABLE 67. VICE Datapath Flow

Data Transfer Path Data Alignment
Where is
steering?Processor Memory/Register Single Transfer DMA

Host I/F BSP Table Memory Force Alignment 32 to 16 Host I/F
Host I/F BSP Instruction Memory Force Alignment 32 to 16 Host I/F
Host I/F BSP FIFO Force Alignment 32 to 32 Host I/F
Host I/F MSP Instruction Memory Aligned 64 to 64 At MSP

Instr Mem-
ory

Host I/F MSP Data Memory - Aligned Force Alignment 64 to 128 Host I/F
Host I/F MSP Data Memory - Y/C Mode Not supported don’t ask Host I/F
Host I/F MSP - SU/VU Register File Not supported Not supported
Host I/F VICE Register Block Force Alignment Not supported Not needed
Host I/F DMA Descriptor Memory Force Alignment Not supported
Host I/F DMA TLB Force Alignment 32 to 32 Host I/F

BSP MSP Data Memory Force Alignment N/A BSP drivers?
BSP VICE Register Block 16 to 32 Not supported BSP or

REG?
BSP DMA Descriptor Memory 16 to 16 Not supported BSP or

DMA Descr
Block.

MSP MSP Data Memory 32 to 128 &
128 to 128
unaligned

N/A X-Bar

MSP-SU VICE Register Block Aligned Not supported Not needed
MSP-SU DMA Descriptor Memory 32 to 16 Not supported Not needed

April 17, 1997 102

FIGURE 24. Internal Address/Control Flow

Data Ram A

Wr_Addr
Rd_Addr

Data Ram B

Wr_Addr
Rd_Addr

Data Ram C

Wr_Addr
Rd_Addr

MSP (Su/Vu)

PC Su_Addr Su_Addr
Com_Addr

MSP Instr. RAM

Rd_Addr

Wr_Addr

BSP

PC
BSP Instr. RAM

Rd_Addr

Wr_Addr

Table_Ptr
BSP Table RAM

Rd_Addr

Wr_Addr

Fifo_Addr
BSP Decode Fifo

Rd_Addr

Wr_Addr

Descr_Ptr
DMA Descr RAM

Rd_Addr

Wr_Addr

TLB_Addr
TLB

Rd_Addr

Wr_Addr

Host/DMA

Registers

Rd/Wr_Addr

Arbiter/Bus Control

Rd_En_C
WE[15:0]_C

Address Decode

Data Ram A
Data Ram B
Data Ram C

MSP Instr RAM

BSP Instr RAM
BSP Table RAM
BSP Decode Fifo

DMA Descr RAM
TLB RAM

Vice Registers
BSP, MSP Mailboxes?

Wr_En
BE[3:0]

WE[3:0]

Req
Gnt_n/Preempt
Req
Gnt_n/Preempt

SU_Ctl

BSP_Addr
BSP_Ctl

Su_Ctl

H/DMA_Addr
H/DMA_Ctl

Req_Mem

Req_Com
Gnt_n/Preempt

Gnt_n/Preempt

Rd_En_B
WE[15:0]_B

Rd_En_A
WE[15:0]_A

WE[7:0]
DMA and SuVuRW

Comm. Bus Arb

Req
Gnt_n/Preempt
Req
Gnt_n/Preempt

Req_Mem
Gnt_n/Preempt

Req_Com
Gnt_n/Preempt

BSP_Addr

BSP_Addr

H/DMA_Addr

SU_Addr

BSP_Ctl

H/DMA_Ctl

Com_Valid

April 17, 1997 103

FIGURE 25. Host/DMA Block Diagram

Addr/Cmd Fifo Out

Address

Host State Machine

Com. Bus S.M.

Req_Mem
Gnt/Preempt

Dir

Rd_En

Wr_En

Addr_Parity
Command

Com_Parity

Data/Ident. Fifo Out

Data

Data_Parity
Identifier

Ident_Parity

32 deep

10 deep
SysAD[63:00]

Addr/Cmd Fifo In

Address
Addr_Parity
Command

Com_Parity

Data/Ident. Fifo In

Data

Data_Parity
Identifier

Ident_Parity

32 deep

16 deep

SysCmd[8:0]

SysADC[7:0]
Fifo Bypass Out

Data

Data_Parity
Identifier

Ident_Parity

1deep

DMA Address Calc.

TLB_Addr
TLB_Data

TLB_Rd_En

TLB_Wr_En

Parity

Parity

Com. Bus DMA
Address Fifo

SysCmdP

DMA[63:00]

Parity

H/DMA_Addr[15:00]

Zero Register

Descr_Addr
Descr_Data

Descr_Rd_En

Descr_Wr_En

Flags

Control

Flags

Control

RdRdy_n

R4ValidIn_n

WrRdy_n

R4ValidOut_n

ViceValidOut_n

ViceWrRdy_n

ViceValidIn_n

ViceSysGnt_n

ViceSysRqst_n

ViceRelease_n

Data Interleaver

Data Packer
Byte Steering

Byte Steering

H/DMA_BE[7:0]

Com_Data[31:00]

Com_Addr[15:00]

Comm_BE[3:0]

Req_Com
Gnt/Preempt

Internal VICE Clock Domain
~66MHz

SysAD Bus Clock
~100MHz

April 17, 1997 104

4.2.2 Common Bus Arbiter Protocol

A device wishing to use the internal Common bus of VICE asserts it’s Common bus request line to the arbi-
ter. There is a separate request line for the BSP and the H/DMA blocks. The arbiter will grant a device the
bus if the Scalar Unit is not using the common bus. The request can be preempted at any time as the Scalar
Unit may issue a common bus cycle while the device that owns the bus is attempting to perform a cycle.

The Scalar Unit does not need a grant from the Common bus. The arbiter will ensure the bus is available to
the MSP as demanded.

4.2.2.1 Signal List

The MSP, BSP and H/DMA blocks will have a request and a grant signal to arbitrate for the Common Bus.
The BSP and H/DMA blocks will have a grant_preempt signal from the arbiter.

4.2.2.2 SU - BSP transactions on Common Bus

Each slave device on the common bus is responsible for decoding its address and driving its Data Output
Enable signal. Each master device on the common bus is responsible for driving its Address onto the com-
mon bus. The WE signals will be muxed onto the common bus by the arbiter to ensure glitchless operation
of these control signals.

A transaction by a master on the Common bus is basically a three clock cycle. The first clock requires the
master to assert its request and wait for a grant. The cycle after a grant is received, the Master drives its
address onto the Common Bus along with the Address_OE signal for its buffers. Slave devices will register
the address and use it in the next cycle to select the register or memory location that corresponds to that

TABLE 68. List of Signals on Common Bus

Signal Name
Type for
Master

Type for
Slave Signal Description

Com_Addr(15:00) Output Input Common Bus Address, Available 1 Cycle
before the Data Bus Information is Valid.

Com_Valid Input Input Common Bus Valid. Address Bus contains
valid information. Looks like this should be
a logical “or” of all the Common Bus
Address OE signals.

Com_Data(31:0) I/O I/O Common Bus Data
Com_WE(3:0) Output Input Common Bus Write Enables, Used to differ-

entiate read/write and serves as byte enables
on write cycles.

BSP_COM_RQ Output N/A Bit Stream Processor Common Bus Request
BSP_COM_GNT_PRE Input N/A Bit Stream Processor Common Bus Grant

and Pre-empt.
H_DMA_COM_RQ Output N/A Host/DMA Common Bus Request
H_DMA_COM_GNT_PRE Input N/A Host/DMA Common Bus Grant and Pre-

empt.
MSP_COM_RQ Output N/A Media Signal Processor Common Bus

Request

April 17, 1997 105

address AND to drive the Output Enable (In the case of a bus read). Read is determined by lack of any
asserted WE signals.

FIGURE 26. MSP (Scalar Unit) Access on Common Bus

SCycle
Clk

1 2 3 4

SuVu(Addr)

SuVuRW(Data)

Su_IF

SU_A_OE

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SU_D_OE

MTCP Ld Ld

Ad

D0

Com_We

Ld Ld

Ad

D1

Ad

D2

Ad

D3

Reg0
MTCP
Reg1

MTCP
Reg2

MTCP
Reg3

ComA

ComD

Ad

D0

Ad

D1

Ad

D2

Ad

D3

SU_Com_Req

SU_Com_Gnt

Ad

D0

MTCP Ld Ld Ld LdReg0
MTCP
Reg1

MTCP
Reg2

MTCP
Reg3

MTCP Ld Ld Ld LdReg0
MTCP
Reg1

MTCP
Reg2

MTCP
Reg3

MTCP Ld Ld Ld LdReg0
MTCP
Reg1

MTCP
Reg2

MTCP
Reg3

MTCP Ld Ld Ld LdReg0
MTCP
Reg1

MTCP
Reg2

MTCP
Reg3

Su_RD

Su_EX

Su_LS

Su_WB

SU_Com_WE

SuVu(Pre_Addr) Ad Ad Ad Ad

MFCP
Reg0

MFCP
Reg0

MFCP
Reg0

MFCP
Reg0

MFCP
Reg0

D0

Ad

REG_D_OE

Ad

Comm_Valid

April 17, 1997 106

FIGURE 27. Bit Stream Processor Access on Common Bus

4.2.3 DMA Bus Arbiter Protocol

The BSP and H/DMA blocks of VICE share the DMA bus as a pathway to access the internal Data RAM
banks of the chip. A device wishing to use this DMA bus of VICE asserts it’s DMA bus request line to the
arbiter. The arbiter will grant a device the bus if the Scalar Unit is not using the Data RAM bank to be
accessed, or if the Scalar Unit has been denied access to the Data RAM bank by use of the MSP_CFG regis-
ter. The arbiter will determine which bank is to be accessed because of two address bits that will be sent
along with the request to indicate which bank of RAM is requested. Once the bus is granted, the request can
be preempted at any time as the Scalar Unit may issue a Load/Store to the same RAM bank that is granted to
the BSP or H/DMA blocks.

For an MPEG decode application, the Scalar Unit will be assigned memory C permanently and will alter-
nately be assigned memory A or B. Since the DMA will be accessing the other bank of A or B that the Scalar
Unit is NOT using, we will be able to get significant memory bandwidth overlap. The Bit-Stream Processor

SCycle
Clk

1 2 3 4

Bsp_Addr

BSP_Data

BSP_IF

BSP_A_OE

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

BSP_D_OE

ST Ld Ld

Ad

D0

Com_We

Ld Ld

Ad

D1

Ad

D2

Ad

D3

Reg0
ST
Reg1

ST
Reg2

ST
Reg3

ComA

ComD

Ad

D0

Ad

D1

Ad

D2

Ad

D3

BSP_Com_Req

BSP_Com_Gnt

Ad

D0

ST Ld Ld Ld LdReg0
ST
Reg1

ST
Reg2

ST
Reg3

ST Ld Ld Ld LdReg0
ST
Reg1

ST
Reg2

ST
Reg3BSP_RD

BSP_EX

BSP_Com_WE

LD
Reg0

LD
Reg0

LD
Reg0

D0

Ad

REG_D_OE

Comm_Valid

April 17, 1997 107

will be able to access memory A, B or C and the arbiter will delay it based on conflicts with the Scalar Unit.
If the Bit-Stream Processor and the DMA are both trying to access a memory not assigned to the Scalar Unit,
they will not have to wait for the Scalar Unit, however they will have to wait for each other as they share the
DMA bus for data.

4.2.3.1 Signal List

The DMA bus resembles the Common Bus. There are however two additional bits per requestor to allow the
arbiter to predict which Data RAM is to be accessed. Because the data bus is 64 bits on the DMA bus, there
are 8 WE lines and 64 data lives vs. the 4 WE and 32 data lines for the Common Bus. The address and WE
lines on the DMA bus are dedicated lines for each accessing processor (MSP, BSP, H_DMA) that are multi-
plexed to the address and WE lines of the Data RAM.

The arbiter for the DMA bus chooses between the BSP and the H/DMA units. At the Data RAM itself, there
is an arbiter that chooses between the MSP and the DMA bus. This second level of arbitration requires that
the MSP provide a Request and a BANK(1:0) ID. These signals are not listed below as part of the DMA bus.

4.2.3.2 BSP Access on DMA Bus

The Bitstream Processor access on the DMA Bus is shown in Figure 28, “Bit Stream Processor Access on
DMA Bus,” on page 108.

TABLE 69. List of Signals on DMA Bus

Signal Name
Type for
Master

Type for
Slave Signal Description

DMA_Addr(15:00) Output Input DMA Bus Address, Available 1 Cycle
before the Data Bus Information is Valid.

DMA_Data(63:0) I/O I/O DMA Bus Data
DMA_WE(7:0) Output Input DMA Bus Write Enables, Used to differen-

tiate read/write and serves as byte enables
on write cycles.

BSP_DMA_RQ Output N/A Bit Stream Processor DMA Bus Request
BSP_DMA_BANK(1:0) Output N/A BSP Data RAM Bank Request

00- Bank A
01- Bank B
10- Bank C
11- MSP IRAM

BSP_DMA_GNT_PRE Input N/A Bit Stream Processor DMA Bus Grant and
Pre-empt.

H_DMA_DMA_RQ Output N/A Host/DMA DMA Bus Request
H_DMA_BANK(1:0) Output N/A Host/DMA Data RAM Bank Request

00- Bank A
01- Bank B
10- Bank C
11- MSP IRAM

H_DMA_DMA_GNT_PRE Input N/A Host/DMA DMA Bus Grant and Pre-empt.

April 17, 1997 108

FIGURE 28. Bit Stream Processor Access on DMA Bus

4.2.3.3 H/DMA Access on DMA Bus

Access by the Host/DMA block onto the DMA Bus is shown in Figure 28, “Bit Stream Processor Access on
DMA Bus,” on page 108.

SCycle
Clk

1 2 3 4

BSP_Addr

BSP_Data

BSP_IF

BSP_A_OE

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

BSP_D_OE

Ad

D0

BSP_DMA_We

Ad

D1

Ad

D2

Ad

D3

BSP_DMA_Addr

DMA_Data

Ad

D0

Ad

D1

Ad

D2

Ad

D3

BSP_DMA_Req

BSP_DMA_Gnt

Ad

D0

ST Ld Ld Ld LdDram0

BSP_RD

BSP_EX

BSP_DMA_WE

D0

Ad

BSP_Bank(1:0) Ad Ad Ad Ad Ad

ST
Dram1

ST
Dram2

ST
Dram3

LD
Dram0

ST Ld Ld Ld LdDram0
ST
Dram1

ST
Dram2

ST
Dram3

LD
Dram0

ST Ld Ld Ld LdDram0
ST
Dram1

ST
Dram2

ST
Dram3

LD
Dram0

RAM_We

RAM_Addr

RAM_Data

Ad

D0

Ad

D1

Ad

D2

Ad

D3
Ad

D0

RAM_TO_DMA_OE

April 17, 1997 109

FIGURE 29. Host/DMA Access on DMA Bus

4.3 DMA

The DMA unit consists of the TLB and DMA engine. All VICE initiated Moosehead system memory trans-
actions are handled by the DMA unit. There are two channels to the DMA unit. A channel can be pro-
grammed by the Host, the Bitstream Processor or the Media Signal Processor. To initiate a DMA transfer the
registers or the memory descriptor list must be programmed. The DMA engine can interrupt the Host on
completion of DMA if so desired by the settings in the VICE_INT_EN register and the Interrupt enable bit
in each channels control register. The DMA engine can interrupt the Bitstream Processor on completion of a
DMA? The DMA engine cannot interrupt the MSP as the MSP does not have interrupts.

Ownership of a DMA channel is not monitored by the DMA subsystem, it assumes others know that they
own a DMA channel as a resource. If two users simultaneously utilize a DMA channel by concurrently pro-

SCycle
Clk

1 2 3 4

H/DMA_Addr

H/DMA_Data

H/DMA_A_OE

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H/DMA_D_OE

Ad

D0

H_DMA_We

Ad

D1

Ad

D2

Ad

D3

H_DMA_Addr

DMA_Data

Ad

D0

Ad

D1

Ad

D2

Ad

D3

H/DMA_DMA_Req

H/DMA_DMA_Gnt

Ad

D0

H/DMA_DMA_WE

D0

Ad

RAM_TO_DMA_OE

H/DMA_Bank(1:0) Ad Ad Ad Ad Ad

RAM_We

RAM_Addr

RAM_Data

Ad

D0

Ad

D1

Ad

D2

Ad

D3
Ad

D0

April 17, 1997 110

gramming its registers or descriptor list, the resulting behavior of the DMA engine will probably produce
unexpected results if the registers or memory descriptor list is mixed between the two requestors.

DMA is controlled by writing the DMA Descriptor table which contains four (4) groups of entries that can
operate in a ring or as a sequence of DMA transactions that terminate when the last valid Descriptor is pro-
cessed. There is a Control and Status register per DMA channel (not per descriptor) that further defines the
behavior of the DMA.

4.3.1 DMA Descriptors

DMA descriptors can be written by any device that can become master of the Common Bus. This includes
the Host Interface, the Bit Stream Processor and the Media Signal Processor (Scalar Unit).

Descriptors are used to define starting addresses of the DMA. They also define the mode (Read/Write, Y/C
split) and span and stride settings. Descriptors are 16 bits wide to accommodate the Bit Stream Processor.

There is a set of 8 entries in the descriptor table that make up a DMA transaction. Descriptors will automati-
cally chain to the next descriptor in the list. A descriptor can also be set to halt the dma engine when the
DMA for that descriptor has been completed. A descriptor can be skipped over.

The Y/C bit field defines three modes of DMA. For block dma this field is set to 00 and the VICE DMA
engine will not separate the YC components and hence the Internal Vice Address C is not needed and is
ignored. Only the Y Vice Address is used by the DMA engine as an internal Vice address pointer in this
mode. The other two modes separate Y/C when performing a DMA read and re-interleave Y/C when per-
forming a DMA write. For mode 01 the C component is decimated for dma reads and expanded for dma
writes. For mode 10 the C component is left at full bandwidth on reads and writes.

For transactions not using the Y/C mode, only the VICE_MEM_Y register need be programmed and not the
VICE_MEM_C register. Also for any of the following destinations, the VICE_MEM_C register is ignored
by the hardware:

MSP Instruction RAM
BSP Instruction RAM
BSP Table RAM
BSP Decode FIFO
DMA TLB RAM

In the Y/C mode it is legal to have the VICE_MEM_Y register and the VICE_MEM_C register point to dif-
ferent banks of Vice DATA RAM. As a programming convention, the LOC bits (6:4) should reflect the Data
RAM bank of the VICE_MEM_Y register.

April 17, 1997 111

FIGURE 30. DMA Descriptor Format

15 0

Virtual System Address (31:16)
Virtual System Address (15:00)
Span (15:00) (Line Length)
Stride (15:00)
Line Count (15:00)
Internal Vice Address Y (15:00)
Internal Vice Address C (15:00)

Halt(15) Skip(14) RW(13) Fill(12) YC(11:10) HP(9:8) ILV(7) LOC(6:4) HPEN(3) RESV(2:0)

LOC(6:4) Vice location for source/destination
000 - Data RAM A
001 - Data RAM B
010 - Data RAM C
011 - MSP Instruction RAM

YC(11:10)
00 - Block DMA, VICE side treated as continuous block Internal Vice Addr C ignored.
01 - Y/C 4:2:2 mode to Y/C 4:2:0 split
10 - Y/C 4:2:2 mode to Y/C 4:2:2 split
11 - NEW! Y/C 4:2:2 mode to Y only - Works for DMA Read only

100 - BSP Instruction RAM
101 - BSP Table RAM
110 - BSP Decode Fifo
111 - DMA TLB RAM

HP(9:8) (Do these modes have intelligence to override descriptor data counts?)
00 - Full Pel Vert Full Pel Horiz
01 - Full Pel Vert Half Pel Horiz
10 - Half Pel Vert Full Pel Horiz
11 - Half Pel Vert Half Pel Horiz

Halt(15)
0 - Process this Descriptor and continue to the next when complete.
1 - Halt DMA After Processing this descriptor.

Skip(14)
0 - Process this Descriptor and continue to the next when complete.
1 - Skip this Descriptor and continue to the next.

RW(13)
0 - This Descriptor is a read System Memory -> VICE.
1 - This Descriptor is a write System Memory <- VICE.

Fill(12)
0 - DMA is a System Memory <-> VICE transaction.
1 - DMA is a Write to VICE from VICEDMA_DATA register.

ILV(7)
0 - Process Descriptors Individually.
1 - Process Descriptors as Pairs and Interleave them w/Half Pel into VICE memory.

RESV(2:0) Reserved, Set to 000 for now.

HPEN(3)
0 - Half Pel Mode Disabled, Ignore HP(9:8)
1 - Half Pel Mode Enabled, Use HP(9:8) to set mode

April 17, 1997 112

4.3.2 DMA Registers

There are six software visible DMA registers per DMA channel.

VICEDMA_CTL_CHX - Control to Set up the DMA.
VICEDMA_STAT_CHX - Status Register of DMA.

VICEDMA_DATA_CHX - Data Register for DMA fill operation (D15-D00).

VICEDMA_MEM_PT_CHX - 32 bit register to read present system address pointed to by DMA address
calculation block.
VICEDMA_VICE_PT_CHX - 16 bit register to read present VICE address pointed to by DMA address cal-
culation block.
VICEDMA_COUNT_CHX - 32 bit register to read remaining count of current DMA descriptor.

Only the VICEDMA_CTL_CHX register must be programmed for DMA to occur. The
VICEDMA_STAT_CHX register can be used to analyze various halt conditions that the DMA engine may
produce. It is also useful for feedback to see which descriptor the DMA engine is presently processing.

The VICEDMA_DATA register must be programmed for the DMA engine to fill an area of on-chip VICE
memory with the data contained in this register. Note that the 16 bit value in this register limits the data pat-
tern choices in memory but this should be adequate since most MSP operations are expected to be on 8 or 16
bit integers or fractions.

The registers MEM_PT, VICE_PT and COUNT are intended primarily for diagnostic reasons to see where
the DMA address calculators and transaction counts are. This is especially useful if DMA has terminated
prematurely.

For a more detailed list of these DMA registers refer to Chapter 2.

April 17, 1997 113

4.4 Media Signal Processor Overview

The Media Signal Processor consists of two programmable execution units:

• A scalar execution unit
• A vector execution unit

The two programmable units execute instructions from the MSP Instruction RAM and act on operands con-
tained in the Data RAM. The scalar unit performs control flow operations, scalar integer arithmetic opera-
tions and 32 bit logical operations. The vector unit performs SIMD vector integer arithmetic operations and
vector logical operations. Programs are stored in the MSP Instruction RAM. The scalar unit and the vector
unit are tightly coupled. They execute instructions out of the same Instruction RAM and act on the same
Data RAM. A block diagram of the MSP is shown ig Figure 31, “Media Signal Processor Block Diagram,”
on page 114. The instruction fetch mechanism fetches instructions from the Instruction RAM and channels
the appropiration instruction to either the vector or scalar unit. The XBar does data formatting for vector/sca-
lar loads and stores. For further description about the XBar and what the load/store mechanism is, refer to
“Load Store Mechanism” on page 132

The MSP exception handling is limited and is different from MIPS 1 exception handling. For a fuller
description of this topic, please refer to “MSP Exception Processing” on page 27

The MSP can access VICE registers using Scalar Unit Co-Processor 1 and 3 instructions. These registers
control the DMA engine internal to VICE, configuration of the VICE Data RAM and communication and
control between the MSP and the Bitstream Processor (BSP).

April 17, 1997 114

FIGURE 31. Media Signal Processor Block Diagram

Vector
Unit

Vice Data RAM

XBar

Scalar Execution Unit

Instruction Fetch Control

Vice Instruction RAM

VuInst[31:0]

SuInst[31:0]

Inst0[31:0] Inst1[31:0]PC[15:0] PC+4[15:0]

SuVuRW[127:0]

SuW[31:0]SuR[31:0]

VuR[127:0]

VuW[127:0]
SuVuA[31:0]

DMA[63:0]
DMA_A[31:0]

COM_ADR
COM_DATA

April 17, 1997 115

4.4.1 Instruction Fetch Mechanism

4.4.1.1 MSP Instructions

Instructions can be of scalar type or of vector type. The distinction between scalar type and vector type is
contained in every instruction. Scalar instructions are a subset of instructions in the MIPS1 ISA. Vector
instructions correspond to coprocessor-two instructions of the MIPS1 instruction set. For further description
of the instruction set supported, please refer to Section 4.5.2 on page 122 and Section 4.6.5 on page 144

2 instructions are always fetched from the instruction ram. The instruction pair may contain any combination
of scalar and vector instructions, i.e two scalar instructions, two vector instructions, the first scalar and the
second vector, or the first vector and the second scalar.

4.4.1.2 MSP Instruction RAM

The instruction memory is a dual port read write memory. It needs to be accessible at VICE clock rate. It can
be accessed by only one unit at a time: the MSP (scalar unit and vector unit) or the VICE DMA controller.
The MSP has only read access to the MSP Instruction RAM. The VICE DMA has both read and write access
to the MSP Instruction RAM. DMA or Unix Processor PIO is able to write to the MSP Instruction RAM
anytime. DMA or Unix Processor PIO is able to read from the MSP Instruction RAM when the MSP is in
HALT state. DMA access to the MSP instruction RAM must be on a 64 bit aligned data transfer. The scalar
unit and the vector unit receive instructions out of this memory. During a DMA transfer read, the scalar unit
and the vector unit will idle.

The instruction RAM is organized in two banks of 32 bits each, into even and odd words. This gives us the
flexibility to fetch any 2 subsequent instructions from the instruction RAM.

The instruction fetch control produces PC[31:0] and PC+4[31:0]. If 2 instructions are issued, the program
counter will be incremented by 8. However, if only 1 instruction is issued, the program counter is only incre-
mented by 4.

The 2 instructions (Inst0[31:0], Inst1[31:0]) read from the Instruction RAM are sent to the Instruction Fecth
Control where it is sufficiently decoded enough to route them to either the scalar or vector unit as
SuInst[31:0] and VuInst[31:0] respectively. An instruction valid signal (SuInstVld, VuInstVld) is also sent
along with the instruction to indicate that the data on SuInst[31:0] and VuInst[31:0] is a valid instruction.

Figure 32, “Instruction RAM and Instruction Fetch Control,” on page 116 shows how the Instruction Fetch
Control is connected to the Instruction RAM.

Figure 33, “Fetching 2 Instructions from the Instruction Ram,” on page 116 shows the fetching of 2 instruc-
tions, when PC is an even word address and the scenario when PC is an odd word address.

April 17, 1997 116

FIGURE 32. Instruction RAM and Instruction Fetch Control

FIGURE 33. Fetching 2 Instructions from the Instruction Ram

PC[31:0]

PC+4[31:0]

SuInst[31:0]

VuInst[31:0]

SuInstVld

VuInstVld

Inst0[31:0]Inst1[31:0]

of
Instruction

Ram

Bank1
of

Instruction
Ram

Bank0

Instruction
Fetch

Control

PC = 0x08

PC = 0x1c

0x00

0x08

0x10

0x18

0x20

0x28

Bank 0 Bank1

Instruction
Ram

Address

April 17, 1997 117

4.4.1.3 Instruction Issue

 The MSP can execute up to 2 instructions per clock cycle in a 2-instruction group. An instruction group
consists of one or no scalar instruction and one or no vector unit instruction in any order. A one instruction
group is issued when the next 2 pending instruction fetched from the Instruction RAM are for the same exe-
cution unit. LWCz/SWCz, MTCz/MFCz, CTCz/CFCz can be issued in the same instruction group with vec-
tor unit computational instruction, i.e., these instruction group with scalar unit instructions.

The branch delay slot instruction is always a one instruction group, consisting of the instruction immediately
following the branch. The branch instruction itself may be part of a 2 instruction group if it is immediately
preceded by a vector unit computation instruction.

4.4.1.4 Instruction PC

The instruction PC is 32 bits wide with bits [31:16] and [1:0] grounded to 0. This means that the hardware
will not be able to detect an exception in the following scenario

• jr $2

If $2 contains an address that is not aligned on a word boundary, this address error won’t be detected because
$2[1:0] is dropped off before latching into the PC. Also if bits [31:16] of $2 fall outside valid MSP instruc-
tion RAM address space, this error will also not be detected.

• beq $0,$0,xffff

Since the 16 bit offset is shifted by 2 giving 18 bits, the 2 high order bits of the shifted offset will not be seen
by the hardware. So, if the resulting address should reside fall outside VICE instruction RAM address space,
it will not be detected by the hardware.

See “Instruction Fetch Address Exception(7)” on page 29.

April 17, 1997 118

4.4.2 Common Bus Interface

The Media Signal Processor communicates with the Bitstream Processor, the DMA engines and the general
purpose VICE chip registers, across a bus called the Common bus.

The Scalar Unit Processor of the MSP can access the general purpose registers inside VICE by using CTC1
and CFC1 instructions. The Scalar Unit Processor can access the DMA Descriptors for the channel 1 DMA
engine using MTC3 and MFC3 instructions. The Scalar Unit Processor can access DMA Descriptors for the
channel 2 DMA engine using CTC1 and CFC1 instructions.

These register and DMA descriptors are accessed with Co-Processor instructions so that the Scalar Unit can
determine the address of the transaction early in the pipeline. The Scalar Unit cannot be stalled. If accesses
to registers and DMA descriptors was performed with Load/Store operations, the Scalar Unit would halt all
activity on all buses inside of VICE with any Load/Store instruction. The separation of register access to the
Co-Processor 1 & 2 Op-Codes allows the Scalar Unit to determine which bus is to be accessed.

April 17, 1997 119

4.4.3 Shared Memory

The MSP, BSP, DMA and Host Interfaces internal to VICE all have access to the VICE Data RAM. This
RAM is the primary communication path between the Unix System Processor, the BSP and the MSP.

4.4.3.1 VICE Data RAM

The Media Signal Processor utilizes the VICE Data RAM as its Data storage area. All MSP Load/Store
commands use the VICE Data RAM as either a Source or Target.

The VICE Data RAM is also used by the Bitstream Processor as it’s primary Data storage area.

The VICE Data RAM can also be accessed by the DMA engine and by the Unix System Processor.

The Data RAM is organized into 3 separate banks. These Banks are called Bank A, B & C. There are two
separate buses that can access each bank. This allows for two devices to access different banks of VICE Data
RAM simultaneously.

The Media Signal Processor cannot be stalled. If the MSP has been allowed to access a Bank of Data RAM,
it must be allowed to access it without waiting. The programmer may give “clues” to the arbiter of the VICE
Data RAM by dis-allowing the MSP access to a particular bank of VICE Data RAM. This will allow the
DMA or BSP to access that Data RAM. The arbiter will not stall the DMA or BSP when the Scalar Unit per-
forms a Load/Store operation because the arbiter will know that the MSP is not going to access that Data
RAM.

For example; the MSP tells the arbiter that it will not access VICE Data RAM B. The arbiter now knows that
all access by the BSP or DMA engine can proceed without regard to MSP Load/Store activity because the
MSP will not access Data RAM B.

The MSP has the option of requesting access to all three banks of VICE Data RAM. This will result in lower
data throughput for the BSP and DMA engine when those units attempt to access VICE Data RAM.

4.4.3.2 Mail Boxes

The Media Signal Processor has access to a special set of registers to communicate with the Bitstream Pro-
cessor. These registers contain a “magic” bit that is reset when a processor “reads” it’s mail. These mail-
boxes are designed to make synchronization tokens between the MSP and BSP be fast and efficient. For
more information on these registers, refer to Chapter 2 and Section 4.6.

April 17, 1997 120

4.5 MSP Scalar Unit

The scalar unit is an embedded, pipelined, risc processor, designed to implement a subset of the MIPS 1
ISA. It contains:

• Program counter
• Instruction pipeline
• Branch adder
• ALU
• Shifter
• Register file
• Instruction decode logic
• Miscellaneous control logic

The Scalar Unit connects with the MSP Instruction RAM and VICE data RAM. The MSP Instruction RAM
and the VICE data RAM can be loaded through the VICE DMA controller. The MSP Instruction RAM is
addressed by the Program counter. The program counter can be initialized by the host CPU. The scalar unit
can perform load operations (from VICE data RAM to the register file) and store operations (from register
file to VICE data RAM). The ALU can receive two operands from the register file or one from the register
file and one from an immediate field in the instruction. It performs integer arithmetic or logical operations,
and stores the result into the register file. The shifter can be used, instead of the ALU, to perform left and
right shift operations by an arbitrary number of bits on an operand. Internal vice registers are accessed
through MTCz/MFCz/CTCz/CFCz instructions. See “Register Address Map Summary” on page 39.

RE
G

IS
TE

R
FI

LE

I. RA
M

IR
’

IR
’’

RE
SU

LT
RE

SU
LT

’

RE
G

 S

RE
G

 T

sig
n

ex
te

nd
er

sig
n

ex
te

nd
er

rD
A

rS
A

rT
A

RE
G

. R
EA

D
 a

nd
 IN

ST
 D

EC
O

D
E

(R
D

 S
ta

ge
)

A
LU

 (E
X

 S
ta

ge
)

M
EM

 (L
S

St
ag

e)
W

rit
e

Ba
ck

 (W
B

St
ag

e)
IN

ST
. F

ET
CH

 (I
F

St
ag

e)

of
fs

et
,

im
m

ed
ia

te
or

 K

rT
, r

D

16
PC

rT
, r

D
To

 c
op

ro
ce

ss
or

Su
Vu

A
[3

1:
0]

Su
W

[3
1:

0]

al
u

sta
ge

 b
yp

as
s

m
em

or
y

sta
ge

 b
yp

as
s

w
rit

e
ba

ck
 st

ag
e

by
pa

ss

[3
1:

2]

+4
, +

8

PC
[3

1:
28

] ,
 0

I SE
P

Vu
In

st[
31

:0
]

rT
, r

D
rD

Su
R[

31
:0

]

de
co

de
lo

gi
c

IR
’’’

co
nt

ro
l

sig
ns

ls
co

nt
ro

l
sig

na
ls

co
nt

ro
l

sig
na

ls
co

nt
ro

l
sig

na
ls

rT
, r

D

+4
I. RA

M

Vu
In

stV
ld

CO
M

_D
AT

A
[3

1:
0]

PC
+4

SH
IF

TE
R

In
str

uc
tio

n
an

d
Co

nt
ro

l P
ip

el
in

e

in
str

uc
tio

n

IN
ST

 A
D

D
R

CA
LC

 (I
A

 S
ta

ge
)

CO
M

_D
AT

A
[3

1:
0]

CO
M

_A
D

R

April 17, 1997 122

4.5.1 Scalar unit instructions format

Instructions of the scalar unit consists of 32 bits which are grouped in several fields. A description of some
typical instructions of the MIPS architecture is given in Figure 34, “Scalar Unit Instruction Format,” on
page 122. Since the scalar unit implements a subset of the MIPS R300 instruction set, the format of each
instruction is not specified in this document. Only a list of the instructions supported and a list of those not
supported are given here. .

FIGURE 34. Scalar Unit Instruction Format

4.5.2 Scalar Unit Instruction Set

The scalar unit implements the following instruction set:

ADD Add
ADDI Add immediate
ADDIU Add Immediate Unsigned
ADDU Add Unsigned
AND And
ANDI And Immediate

BEQ Branch on equal
BNE Branch on not equal
BGEZ Branch on greater than or equal to zero
BGEZAL Branch on greater than equal to zero and link
BGTZ Branch on greater than zero
BLTZAL Branch on less than zero and link
BLEZ Branch on less than or equal to zero
BLTZ Branch on less than zero

BREAK Break. See “Breakpoint Exception (2)” on page 27.

CFCz Move control from coprocessor
CTCz Move control to coprocessor

000000 functionrs rt rd sa

opcode rs rt immediate

opcode base rt offset

000000 functionrs rt rd 00000

6 5 5 5 5 6

April 17, 1997 123

MFCz Move from coprocessor (Vector Unit)
MTCz Move to coprocessor

J Jump
JAL Jump and link
JR Jump register
JALR Jump and link register

LB Load byte
LBU Load byte unsigned
LH Load half word
LHU Load half word unsigned
LUI Load upper immediate
LW Load word

NOR Nor
OR OR
ORI OR immediate
XOR Exclusive or
XORI Exclusive or immediate

SB Store Byte
SH Store halfword
SW Store word

SLL Shift left logical
SLLV Shift left logical variable
SLT Set on less than
SLTI Set on less than immediate
SLTIU Set on less than immediate unsigned
SLTU Set on less than unsigned

SUB Subtract
SUBU Subtract unsigned

SRA Shift right arithmetic
SRL Shift right logical
SRAV Shift right arithmetic Variable
SRLV Shift right logical variable

Vector unit load stores instructions are overloaded to coprocessor two
loads and stores.

LAV Load alternate to vector unit
LBV Load byte to vector unit
LSV Load short word to vector unit
LLV Load long word to vector unit
LDV Load double word to vector unit
LQV Load quad word to vector unit

April 17, 1997 124

LRV Load rest to vector unit
LPV Load packed signed to vector unit
LUV Load packed unsigned to vector unit
LHV Load half words to vector unit
LFV Load fourths to vector unit
LXV Load extended to vector unit
LZV Load zero to vector unit
LTWV Load transpose and wrap to vector unit

SAV Store alternate from vector unit
SBV Store byte from vector unit
SSV Store short word from vector unit
SLV Store long word from vector unit
SDV Store double word from vector unit
SQV Store quad word from vector unit
SRV Store rest from vector unit
SPV Store packed signed from vector unit
SUV Store packed unsigned from vector unit
SHV Store half words from vector unit
SFV Store fourths from vector unit
SXV Store extended from vector unit
SZV Store zero from vector unit
STV Store transpose from vector unit
SWV Store wrap from vector unit

4.5.3 Instructions not supported

The following MIPS1 instruction are not supported by the MSP scalar unit.

BCzF Branch On Coprocessor z False
BCzT Branch on Coprocessor z True
SYSCALL System call
MULT All Multiplies must use the vector unit
DIV No Divides supported on VICE

4.5.4 Pipeline

4.5.4.1 Instruction Execution
The Scalar Unit uses a 5-stage instruction pipeline to process its instructions. Figure 35, “Su Instruction
Pipeline,” on page 125 shows how instructions flow through the pipeline.

April 17, 1997 125

FIGURE 35. Su Instruction Pipeline

• IF : Instruction Fetch

• RD : Register File Read and Instruction Decode

• EX : Execute Stage

• LS : Memory Load/Store stage

• WB : Write Back Stage

FIGURE 36. Visualization of the various pipeline stages

4.5.4.2 Branch Pipeline

4.5.4.2.1 Branch Taken

The target address is computed during the RD stage of the branch instruction. During the EX stage, the tar-
get instruction is fetched while the branch condition is determined. If the branch is taken, there is no penalty.

IF RD EX WBLS
IF RD EX WBLS

IF RD EX WBLS
IF RD EX WBLS

IF RD EX WBLS

Current
SU

Cycle

SU Instruction Pipeline

I.R.
Reg.
File

D.R
Reg.
File

Instruction fetch Register read Execution Data RAM access Register write

April 17, 1997 126

FIGURE 37. Illustration of Branch Taken

4.5.4.2.2 Branch Not Taken

The target address is computed during the RD stage of the branch instruction. During the EX stage, the tar-
get instruction is fetched while the branch condition is determined. If the branch is not taken, there is a 1
cycle penalty to refetch the in-line instruction stream.

FIGURE 38. Illustration of Branch Not Taken

4.5.4.2.3 Jumps

The pipe timing for jumps is similar to branches which are taken.

RD EX LSbeq $0,$0,tgt

RD EX LS WBDly Slot Instruction

WB

RD EX LS WBTgt Instruction

Tgt
Address
Calc

Branch
Condition
Calc

IA IF

RD EX LSbeq $0,$0,tgt

RD EX LS WBDly Slot Instruction

WB

RD EX LS WBTgt Instruction

Tgt
Address
Calc

Branch
Condition
Calc

IA IF

RD EX LS WBDly Slot + 1 Inst IA IF

Discarded

RD EX LSj tgt

RD EX LS WBDly Slot Instruction

WB

RD EX LS WBTgt Instruction

Tgt
Address
Calc

IA IF

April 17, 1997 127

4.5.4.3 Interlocks

4.5.4.3.1 MFCz/CFCz/LW and SU instruction (RAW Hazard)

MFCz, CFCz, and Scalar Loads have a 2 cycle load delay slot. The hardware interlocks this dependency.

Implementation Details and false interlocks :

To detect this interlock, the harware compares dest of the LW/MFCz/CFCz with the strict RS and RT field of
a valid Scalar instruction. i.e. bits [25:21] for RS and [20:16] for RT. Table 70, “Dependency check for 2
cycle load delay slots,” on page 127 lists what are the RS and RT fields for different Scalar Instructions. A
“*” marks that the corresponding RS or RT field is valid and should be used to do in this interlock detection
while a non “*” indicates what other information these bit fields contain.

To simplify the detection logic and to not create a critical path in it, the dest is compared with the RS for all
valid Scalar Instructions and the RT for all valid Scalar Instructions except LWC2, SWC2, or Immediate
Instructions.

This may cause false stalls. A “*” above marks a valid check. A non “*” means that this could cause a false
stall. Generally this should not be a problem except for LWC2 & SWC2 because the frequency of LWC2/
SWC2 followed by SU instructions is high. This is why the dest of the LWC2/MFCz/CFCz is compared with
the RS for all Scalar Instruciont and also with the RT for all valid Scalar instructions except LWC2, SWC2,
or Immediate Instructions.

TABLE 70. Dependency check for 2 cycle load delay slots

RS[25:21] RT[20:16] Instruction
* Dest LW
* * SW
* Vu Reg LWC2, SWC2
4 * MTCz
6 * CTCz
* Imm, Tgt Immediate,JR,JALR
Tgt Tgt J, JAL
0 Dest MFCz
2 Dest CFCz
* * All others

RD EX LSmfc2 $3,$v2

RD EX LS WBadd $2,$3,$3 stall stall

WB
Result is bypassed to ALU

LS : Data read from VICE Data RAM or Vector Unit

April 17, 1997 128

For e.g. the following code fragment

mfc2 $4, $v2
mtc2 $0, $v8

will cause a 2 cycle load delay slot even though there is no real dependency. This is because we compare the
dest of the mfc2 instruction, which is $4, with bits[25:21] of the mtc2 instruction which is also $4. Since,
there is a match, a false interlock occurs.

April 17, 1997 129

4.5.5 Scalar unit operation

The scalar unit can be thought as a machine capable of implementing the instructions that have been
described. A detailed operation of each pipeline stage is shown in the following tables. The SU generates an
address for the VICE instruction RAM. This address can come from two different sources: the DMA con-
troller, to pre-load the VICE Instruction RAM; the program counter, to step through the execution of a pro-
gram. The program counter increments at every clock cycle and can be initialized by: the system, an operand
contained in a jump instruction, the content of a register.

The register file is a three port RAM. It receives three addresses: two read addresses and on write address.
The purpose for this organization is to be able to perform operations like (c = a + b) in one cycle. The
machine is pipelined, so in effect a and b get read in one cycle and c gets written in a subsequent cycle, but
in any given cycle there can be two reads and one write, which don’t belong to the same instruction.

4.5.5.1 Load operations

Load operations are transfers of data from the VICE data RAM to the register file. Load instructions contain
the address of a “base” register in the register file and an offset address. To implement the load operations
first the content of the “base” register is read; then the ALU computes the addresses for the VICE data RAM.

128 bits of data is read from the VICE data RAM at every read. In order to handle LB, LH, LBU, LHU and
LW, the 128 bits is rotated and formatted in the XBar to suit the necessary data size. 32 bits is then sent to the
Scalar Unit via the SuR[31:0] bus. The XBar also handles sign extension for LB, LH and zero extension for
LBU, LHU

Refer to “Load Store Address Error Exception (0,1)” on page 27 for unaligned load/store addresses.

4.5.5.2 Store operations

Store operations are transfers of data from the register file to the VICE data RAM. Store instructions contain
the address of a “base” register in the register file and an offset address. One of the read ports of the register
file is used to read the “base” address and the other read port is used to read the data that needs to be stored
in the VICE data RAM. The ALU computes the destination address for the VICE data RAM, places the des-
tination address on the SuVuA (data RAM address) bus, and the data to be stored on the SuW[31:0] (data
bus write).

Store data is sent to the XBar via the SuW[31:0] bus where it is again formatted to suit the 128 bit bus inter-
face of the Vice Data RAM.

See “X-Bar” on page 136. for more information regarding the XBar.

4.5.5.3 ALU operations

The ALU performs operations on the data read from two registers or from one register and an immediate
operand supplied in the instruction.

4.5.5.4 Jump operations

Jump operations cause the program counter to continue execution from an arbitrary address in the VICE
instruction RAM. There are two kinds of jump instructions: Jump and Jump register.

For the Jump instruction the destination address is provided directly with the instruction;

April 17, 1997 130

For the Jump Register instruction the destination address is contained in a register specified by the instruc-
tion.

4.5.5.5 Jump and Link

Jump and link operations are similar to jump instructions, with the difference that the content of the program
counter before executing the jump is saved in a register that can be specified in the instruction. Later the pro-
gram can resume execution to where it was before the jump, by executing a jump register instruction, to the
register in which the program counter was stored.

4.5.5.6 Branch Operations

Branch operations are similar to jumps with the difference that in the case of a branch instruction the jump
occurs conditionally, depending on the result of a logic or arithmetic operation. Branch instructions therefore
require two operations: the evaluation of the condition based on which to jump or not to jump, and the calcu-
lation of the address to jump to. The ALU evaluates the condition, whereas a second adder, the branch adder,
calculates the address to jump to.

4.5.5.7 Coprocessor loads

Coprocessor loads are loads to the vector unit. Coprocessor loads are assisted by the scalar unit. The scalar
unit generates the address of the first byte of the quad word to be loaded into one of the 32 registers of the
register file of the vector unit.

4.5.5.8 Coprocessor stores

Coprocessor stores are stores to the vector unit. Coprocessor stores are also assisted by the scalar unit. The
scalar unit generates the address of the first byte of memory where the content of one of the registers of the
vector unit register file needs to be stored.

4.5.5.9 Interrupts

See “Interrupts/Exceptions” on page 27.

4.5.5.10 Debugging capabilities

See “Debug Operations” on page 30.

4.5.5.11 Resolving data hazards

Due to the depth of the pipeline, data hazards may exist. For example when doing
c = a + b;
d = c + f;
the new value of c will not be available from the register file yet, when it is needed for the second instruction.
Instead of stalling the pipeline, data hazards are solved by the technique of forwarding. Although c is not
available yet from the register file, its value is still in the pipeline, and can be utilized by the ALU. Two mul-
tiplexers exist in front of the inputs of the ALU for this purpose.

April 17, 1997 131

The forwarding logic can detect the fact that the a required operand is still in the pipeline, by comparing the
address of the operands of the current instructions with the address of the destination of previous instruc-
tions.

4.5.5.12 Resolving branch hazards

A second kind of hazard that could affect our processor is a branch hazard. This hazard can occur because
when we execute a branch instruction, the decision on whether to branch or not to branch depends on the
value of condition codes which are available only after the execution stage: two cycles after the instruction
fetch. Potentially then, the two instructions following the branch could need data generated by the previous
two instructions, which is not in the register file yet. This problem is solved in the following way:

For the instruction immediately following the branch, the “delay slot”, we require the programmer to use an
instruction that does not have any dependency on the previous two; if no useful instruction that does that is
available, the programmer will insert a NOP. For the other instruction, instead of stalling the pipeline, we
continue execution of the program assuming that the branch is taken and we nullify it later if we discover
that it should not have been taken. This mechanism allows us not to lose any cycles during the execution of a
loop, and it forces us to lose one when the program exits the loop.

4.5.6 Scalar Unit Blocks

4.5.6.1 Instruction and control pipeline

The flow of data through the data path is controlled by multiplexers, which in turn are controlled by the
instructions. Each mux gets controlled by the instruction whose level of execution reached the pipeline stage
which the mux is in. Instructions are completely decoded as soon as they are received: in the register read
stage; and the decoded signals are sent though a control pipeline to match the delays in the data pipeline.

4.5.6.2 Register File

The register file consists of 32 registers of 32 bits each. It contains two read ports and one write port. The
two read ports and the write port can be accessed simultaneously.

4.5.6.3 ALU

The ALU performs arithmetic and logic operations. The operands are supplied by the register file. They get
registered in a pipeline register before being presented to the inputs of the ALU. One of the operands may
alternatively be supplied by the immediate field in instructions. Results of operations get stored in a pipeline
register before being written into the register file.

4.5.6.4 Shifter

The shifter performs and left and right shift operations by a number of bits varying from zero to 31. It can
shift the bits coming from register t, by a number contained in a 5-bit field in the instruction or in the low-
order five bits of register rs referenced by the instruction. A multiplexer in front of the shifter selects the
source that indicates how many bits to shift. Left shifts cause insertion of zeros into the low order bits. Right
shifts can cause introduction of zeros (logical shifts) or of the sign bit (arithmetic shift) on the high order
bits. The shift operation is performed during the ALU cycle. When performing shift instructions, during the
ALU cycle the scalar unit utilizes the shifter instead of the ALU. Depending on the type of instruction, a
multiplexer selects the output of the shifter or that of the ALU.

April 17, 1997 132

4.5.7 Registers

See “Register Address Map Summary” on page 39.

The MSP registers that are in the scalar unit are

MSP_CTL_STAT
MSP_ExcpFlag
MSP_PC
MSP_BadAddr
MSP_EPC
MSP_Cause
MSP_WatchPoint

4.5.8 Load Store Mechanism

4.5.8.1 Data RAM

The are 3 different data memory banks: Banks A, B, C. Each memory bank is comprised of 16 8-byte blocks
giving a total width of 128 bits. This was done so that we could have byte write capability of the RAM. In
this implementation, they are composed of 16 128x8 RAMs, giving a total memory size of 2 KBytes for
each memory bank.

4.5.8.2 Data Formats

In order to understand the memory organization it is convenient to think of the content of the memory as
consisting of several “data elements”. Each data element can be one byte or a group of bytes. If it is a group
of bytes, the bytes can be: two consecutive bytes, four consecutive bytes, eight consecutive bytes, sixteen
consecutive bytes, every other byte, every fourth byte. The memory can be accessed with a byte resolution;

128

16 bytes

8 bits

April 17, 1997 133

data elements can start at any byte in memory. (Alternates are supported. Please refer to MIPS Media Engine
Sketch)

The names of these organizations are:

Byte One byte only Example: 00000000 00000001
Short Two consecutive bytes Example: 00000000 00000011
Long Four consecutive bytes Example: 00000000 00001111
Double Eight consecutive bytes Example: 00000000 11111111
Quad Sixteen consecutive bytes Example: 11111111 11111111

Packed Eight consecutive bytes Example: 00000000 11111111
Halves Every other byte Example: 01010101 01010101
Fourths Every fourth byte Example: 00010001 00010001

In addition, if the accessed data element (which is smaller than a quad word) crosses a quad word boundary,
the VICE data RAM will be supplied an address + 8 so that the complete data is provided in one access. This
is not possible for a quad word, therefore the LRV instruction is used,

FIGURE 39. Illustration of wrap-around access

4.5.8.3 Big Endian

Only Big Endian is supported on vice. The following diagram illustrates this concept. Hence
Addr[3:0]=”0000” will access byte 0, and Addr[3:0]=”1111” will access byte 15.

FIGURE 40. Big Endian Mode

4.5.8.4 Byte marks

To allow memory to be accessed with a byte granularity and support all the modes described above, the sca-
lar unit produces a double word address and byte marks, for the bytes that need to be accessed. The byte
marks are a function of the four least significant bits of the load/store address and of the load/store opcode
(such as Half, Fourth, Zero, Xtend, ...) , which is specified by the instruction.

Data read from VICE Data RAM

Data in memoryAddr
Addr+8

0 1 2 3 4 5 6 7 8 9 1110 1312 1514

127 0

Addr[3:0] = “0000”

April 17, 1997 134

April 17, 1997 135

TABLE 71. Memory byte marks

ADR[3:0] sbv ssv slv sdv sqv

0 10000000 00000000 11000000 00000000 11110000 00000000 11111111 00000000 11111111 11111111
1 01000000 00000000 01100000 00000000 01111000 00000000 01111111 10000000 01111111 11111111
2 00100000 00000000 00110000 00000000 00111100 00000000 00111111 11000000 00111111 11111111
3 00010000 00000000 00011000 00000000 00011110 00000000 00011111 11100000 00011111 11111111
4 00001000 00000000 00001100 00000000 00001111 00000000 00001111 11110000 00001111 11111111
5 00000100 00000000 00000110 00000000 00000111 10000000 00000111 11111000 00000111 11111111
6 00000010 00000000 00000011 00000000 00000011 11000000 00000011 11111100 00000011 11111111
7 00000001 00000000 00000001 10000000 00000001 11100000 00000001 11111110 00000001 11111111
8 00000000 10000000 00000000 11000000 00000000 11110000 00000000 11111111 00000000 11111111
9 00000000 01000000 00000000 01100000 00000000 01111000 10000000 01111111 00000000 01111111
10 00000000 00100000 00000000 00110000 00000000 00111100 11000000 00111111 00000000 00111111
11 00000000 00010000 00000000 00011000 00000000 00011110 11100000 00011111 00000000 00011111
12 00000000 00001000 00000000 00001100 00000000 00001111 11110000 00001111 00000000 00001111
13 00000000 00000100 00000000 00000110 10000000 00000111 11111000 00000111 00000000 00000111
14 00000000 00000010 00000000 00000011 11000000 00000011 11111100 00000011 00000000 00000011
15 00000000 00000001 10000000 00000001 11100000 00000001 11111110 00000001 00000000 00000001

ADR[3:0] spv, suv, sxv, szv shv sfv sav

0 11111111 00000000 10101010 10101010 10001000 10001000 00110011 00110011
1 01111111 10000000 01010101 01010101 01000100 01000100 INVALID ADRS
2 00111111 11000000 00100010 00100010 11001100 11001100
3 00011111 11100000 00010001 00010001 INVALID DRS
4 00001111 11110000 00110011 00110000
5 00000111 11111000 INVALID ADRS
6 00000011 11111100 11001100 11000000
7 00000001 11111110 INVALID
8 00000000 11111111 00110011 00000000
9 10000000 01111111 INVALID
10 11000000 00111111 11001100 00000000
11 11100000 00011111 INVALID
12 11110000 00001111 00110000 00000000
13 11111000 00000111 INVALID
14 11111100 00000011 11000000 00000000
14 11111110 00000001 INVALID

April 17, 1997 136

4.5.8.5 Vector unit register file byte marks

The bytes of the registers are also controlled by byte marks. By analyzing the tables below, we notice that
there are many addresses which are considered invalid. This is because these addresses would cause data ele-
ments to be split.

IR[10:7] lbv lsv llv ldv, lfv lqv, lpv, luv, lxv, lzv,
lhv, ltwv

0 10000000 00000000 11000000 00000000 11110000 00000000 11111111 00000000 11111111 11111111
1 01000000 00000000 INVALID INVALID INVALID INVALID
2 00100000 00000000 00110000 00000000 INVALID INVALID INVALID
3 00010000 0000000 INVALID INVALID INVALID INVALID
4 00001000 00000000 00001100 00000000 00001111 00000000 INVALID INVALID
5 00000100 00000000 INVALID INVALID INVALID INVALID
6 00000010 00000000 0000001100000000 INVALID INVALID INVALID
7 00000001 00000000 INVALID INVALID INVALID INVALID
8 00000000 10000000 00000000 11000000 00000000 11110000 00000000 11111111 INVALID
9 00000000 01000000 INVALID INVALID INVALID INVALID
10 00000000 00100000 00000000 00110000 INVALID INVALID INVALID
11 00000000 00010000 INVALID INVALID INVALID INVALID
12 00000000 00001000 00000000 00001100 00000000 00001111 INVALID INVALID
13 00000000 00000100 INVALID INVALID INVALID INVALID
14 00000000 00000010 00000000 00000011 INVALID INVALID INVALID
15 00000000 00000001 INVALID INVALID INVALID INVALID

Byte marks for lqv, lrv depends on SuVuA[3:0]

4.5.8.6 X-Bar

The X-Bar is the structure of the load-store mechanism that does the data reformating and rotation to suit the
different load store formats and instructions.

All Scalar/Vector loads and stores go through the X-Bar. Thre are 2 main parts of the X-Bar. Data rotation
and data formatting.

4.5.8.6.1 Loads

Data rotation is done in the LS pipe stage. The result is then clocked into a flip-flop and formatted in the WB
pipe stage after which it is then written into the Scalar or Vector Unit Register File.

April 17, 1997 137

4.5.8.6.2 Stores

For stores, the store data is 1st formatted and then rotated before it is sent and written into the VICE Data
RAM

lqv WB

Load Data Latched into Register File

Load Data Latched in X-Bar

LSEX

Address Calculation Data
RAM
Access

Data
Rotation

Data
Formating

sqv --

Store Data Latched in the VICE Data RAM

LSEX

Address Calculation Data
Rotation

Data
Formating

April 17, 1997 138

4.5.8.7 Detailed Operation of the Scalar Unit

INSTRUCTION
FETCH

REGISTER
FILE
READ

ALU

DATA
RAM
ACCESS

ACCESS

REGISTER
WRITE

ALUInstruction

type
Cycle
type

LOAD STORE

IR <- instr(!2)

PC <- PC + 4

regT <- rT(!2)

regS <- rS(!2)

imm <- IR[IMM]

result <- regT op RegS

(immediate)

result’ <- result

rD <- result’

IR <- instr(!2)

PC <- PC + 4

regS <- rS(base)

regT <- OFFSET

(sign extended
or
zero extended)

m.a.r <- regS + OFFSET

m.d.r. <- MEM(addr)

rt <- m.d.r

(byte h
byte l
hw h)

IR <- instr(!2)

PC <- PC + 4

regS <- rs(base)

regT <- rT

m.a.r. <- regS + OFFSET

m.w.r <- regT

MEM(m.a.r.) <- m.w.r.’

(deal with data type)

NOP

T_port_of_ALU <- OFFSET

April 17, 1997 139

INSTRUCTION
FETCH

REGISTER
FILE
READ

ALU

DATA
RAM
ACCESS

ACCESS

REGISTER
WRITE

Instruction

type
Cycle
type

JUMP JUMP AND LINK JUMP REGISTER

J JAL JR

IR <- instr(!2)

PC <- PC + 4

PC’ <- PC + 4

PC <- PC31:28 || target || O2

IR <- instr(!2)

PC <- PC + 4

PC’ <- PC + 4

PC<- PC31:28 || target || O2

PC’’ <- PC’

result <- PC” + 4

link address

result’ <- result

r31 <- result’

IR <- instr

PC <- PC + 4

tempPC <- rS

PC <- tempPC

wire, no cycle delay

BRANCH ADDER

April 17, 1997 140

INSTRUCTION
FETCH

REGISTER
FILE
READ

ALU

DATA
RAM
ACCESS

ACCESS

REGISTER
WRITE

Instruction

type
Cycle
type

JUMP REGISTER
AND LINK

JRL

IR <- instr

PC <- PC + 4

PC’ <- PC + 4

PC <- tempPC

tempPC <- rS

wire, no cycle delay

PC’’ <- PC’

result <- PC’’ + 4

result’ <- result

rD <- result’

IR <- instr

BRANCH

PC <- PC + 4

PC’ <- PC + 4

regS <- rS

regT <- rT

target <- PC’ + OFFSET

ALU:

result <- rS - rT

if(condition) PC <- target

branch address

PC ADDER

BRANCH
AND
LINK

IR <- instr

PC <- PC + 4

PC’ <- PC + 4

target <- OFFSET”||OFFSET||O2

BRANCH ADDER

PC <- PC + target

PC” <- PC’

BRANCH ADDER:

result <- PC” + 4 /* link address */

MAIN ALU:

IF (CONDITION) NULLIFY

IF STAGE
(stuff NOOP)

result’ <- result

r31 <- result’

April 17, 1997 141

MOVE
TO
COPROCESSOR

COPROCESSOR
LOAD

COPROCESSOR
STORE

IR <- instr

PC <- PC + 4

m.w.r. <- regT

RegAddr’ <- RegAddr

m.w.r.’ <- m.w.r.

cop(reg) <- m.w.r.

IR <- instr

PC <- PC + 4

regS <- rs(base)

m.a.r. <- regS + K

(K is OFFSETT << (1, 2, 3, 4)

cop(M.D.R.) <- MEM(m.a.r)

IR(rT) data type

N.B. Control between vector unit
and scalar unit needs to be

defined
NB. Extended load !?

IR <- instr

PC <- PC + 4

regS <- rs(base)

m.a.r. <- regS + K

MEM(m.a.r.) <- cop(IR”(rt))

IN THE ALU

INSTR.
FETCH

REGISTER
FILE
READ

ALU

DATA
RAM
ACCESS

ACCESS

REGISTER
WRITE

Instruction

type

Cycle
type

MOVE
FROM
COPROCESSOR

IR <- instr

PC <- PC + 4

result’ <- cop(Reg)

via DB

rD <- result’

IR’ <- IR

IR’’ <- IR’

coprocessor <- IR’’(rD)

Enable

depending on the data type)

(K is OFFSETT << (1, 2, 3, 4)

depending on the data type)

April 17, 1997 142

MOVE CONTROL
FROM

MOVE CONTROL
TO

IR <- instr

PC <- PC + 4

IR <- instr

PC <- PC + 4

MWR <- regT

cop(reg) <- MWR’

INSTR.
FETCH

REGISTER
FILE
READ

ALU

DATA
RAM
ACCESS

ACCESS

REGISTER
WRITE

Instruction

type

Cycle
type

COPROCESSOR COPROCESSOR

rD <- cop(reg)

April 17, 1997 143

4.6 MSP Vector Unit

4.6.1 Functional Overview
The Vector Unit (VU) of the Media Signal Processor (MSP) acts as a coprocessor to the MSP Scalar Unit.
The standard MIPS instruction set has been extended with a set of VU instructions to allow it to perform
arithmetic and logical operations on individual data elements within a data word using the fixed-point format
described below. Data words are treated as vectors of Nx1elements, where N is either 8 or 16. The VU is
organized as a Single Instruction, Multiple Data (SIMD) compute engine where each instruction performs
the same operation on each element within a vector in parallel. The Vector Unit is organized as 8 identical
slices, each 16 bits wide, which are connected in parallel. Figure Appx-B.1 is a RTL block diagram of the
hardware contained in a single slice of the VU. Figure Appx-B.2 shows how the individual slices are con-
nected to form a complete VU.

4.6.2 VU Features
• Very Wide data path

The Vector Unit can operate on data that is the full width of the local on-chip memories, up to 128-bits. This
allows parallel operations on 8 or 16 vector elements in one cycle where each element is 16-bits or 8-bits
respectively.

• 32 General Purpose Registers

The VU has 32 128-bit general purpose vector registers which are visible to the programer and can be used
to store intermediate results. Within each register, data may be written, or read, as bytes (8-bits), short-words
(16-bits), words (32-bits), double-words (64-bits) or quad-words (128-bits). In this document, data elements
containing 16 bits are also referred to as “halfwords”, instead of shortwords. The two terms are interchange-
able.

• Special Purpose Registers

In addition to the vector registers, the Vector Unit has four control registers which are visible to the program-
mer as well, the Vector Compare Code Register, the Vector Carry Out Register, the Vector Compare Exten-
sion Register, and the Vector CLamp Register. The VCCR, VCOR and VCER save state from the results of
previously executed instructions for use with subsequent instructions. The VCLR is set when an instruction
generates a saturated result that requires clamping before being stored into the VRegister File. The Vector
Unit also features an Accumulator with Vector Unit instructions specifically designed to use it. The Accu-
mulator can be used as both a source and a destination in consecutive cycles without causing pipe stalls for
data hazards, as would normally be the case with the VRegister File. It can be thought of as a register with
data-forwarding.

• Load/Store Instruction Set Architecture

Like the Scalar Unit (SU), the VU features a Load/Store architecture in which memory data being read or
stored must first be placed into a Vector Register (VR). Loads to and stores from the VRs take one cycle to
execute and have a 2-cycle delay slot associated with them. VRegister Loads and stores may be overlapped
with other vector operations.

• Tightly Coupled Interface

The Vector Unit resides on the same chip as the rest of the MSP and has tightly coupled connections with the
Scalar Unit as well as both of the on-chip memories, the D-RAM and I-RAM.

• Overlapped Execution of Instructions with Scalar Unit

For maximum performance, the Vector Unit can execute instructions in parallel with the execution of
instructions on the Scalar Unit.

April 17, 1997 144

4.6.3 VU Programming Model
The Vector Unit has three groups of registers available to the programmer; 32 general-purpose Vector Regis-
ters, organized as a register file, 4 Control Registers, and an Accumulator.

The Vector Registers are read or written only through the use of Vector Unit instructions. Vector Registers
are used as sources of operands and the destination of the results of Vector Unit instructions.

The Control Registers, VCCR, VCOR, VCER, and VCLR are written as a result of a VU computational
instruction. For each of the 8 halfwords in the VU, there are 2 bits of VCC Register, 2 bits of VCO Register,
1 bit of VCE Register and 2 bits of VCL Register. The lower 8 bits of the VCCR are used to store the results
of vector Select instructions for use in a follow-on Vector Merge instruction. The lower 8 bits of the VCOR
are used to store a carry-out or borrow-out for use as an carry-in or borrow-in to a follow-on add or subtract
instruction. The higher 8 bits of the VCOR are set if the operands are not equal. Once set, the VCOR bits are
‘sticky’, they will remain set unless a subsequent instruction explicitly resets them.

In addition to the general-purpose Vector Registers and the Control Registers, there is also a 48-bit Accumu-
lator. As the name implies, this register is mostly used to store intermediate add, or subtract, results gener-
ated by one instruction with the intermediate add, or subtract, results generated by either previous or
successive instructions. Certain instructions specify that the Accumulator is to be used, either as a source or
a destination, or both. How the Accumulator is used is defined by the instruction. For those instructions
which do not specifically call for the use of the Accumulator, the contents of the Accumulator are unmodi-
fied by the instruction. Some instructions only modify a portion of the Accumulator, leaving the rest of the
bits unmodified.

4.6.4 Binary Fixed-Point Format
The VU treats all operands as binary fixed-point data, either bytes (8 bits) or halfwords (16 bits). Byte oper-
ands are interpreted as unsigned quantities with a range, r, of 0 <= r <= 255. Halfword operands may be
treated as one of three data types; signed integer with a range, r, of -32768 <= r <= 32767, unsigned integer
with a range, r, of 0 <= r <= 65536, or signed fraction with a range, r, of -1.0 <= r <= .99996948.

Each instruction has an implied data type associated with it. If the results of an instruction are outside of the
defined range for that instruction, the results stored back into the Vector Registers are forced to the nearest of
the max or min value for the range associated with the instruction. See the section on Clamping and Round-
ing for more explanation.

4.6.5 Instruction Set Overview
All the Vector Unit instructions are 32 bits long and are word aligned. They can be classified into the follow-
ing groups.

• Load/Store Instructions for moving data between the Vector Unit register file and on-chip local mem-
ory.

• Move Instructions for moving data between the Vector Unit register file and the Scalar Unit register file.

• Move Control Instructions for moving data between the Vector Unit control registers and the Scalar
Unit register file.

• Computational Instructions for performing calculations.

Note that there are no VU instructions for controlling the flow of programs. The Scalar Unit performs this
function for the Vector Unit. In this sense, the Vector Unit can be thought of as a ‘slave’ of the Scalar Unit.

April 17, 1997 145

4.6.5.1 Load Instructions

Load instructions move data between the on-chip data RAM and the Vector Unit’s Register File. All the load
Instructions for the Vector Unit are mapped into the MIPS opcode for Load Word Coprocessor 2, lwc2.
Although these instructions move data between the VU Register File and memory, they actually execute in
the Scalar Unit pipeline. The Scalar Unit has its own read/write ports into the Vector Unit’s Register File.
This allows for the overlapping of data movement and computations in the VU. There are many types of load
instructions, depending on the size, distribution and alignment of the data in memory.

All of the load instructions, except for the Rest and Transpose instructions, operate in the same general man-
ner. The general operation of the load instructions is as follows: The contents of the SU register specified by
the base field of the instruction are added to the offset field to generate an effective byte address in memory.
The contents of the base register represent a byte address in memory. Offset is an index based on the size of
the data item to be moved and is required to be properly weighted before adding to the contents of the base
register. If the data item to be moved is not a single byte, offset will be shifted left 1, 2, 3 or 4 bit positions to
achieve the proper weighting. The data item starting at the effective byte address in memory is loaded into
the vector register specified by the vt field. A read from the data RAM accesses 2 double-word elements,
address and address+8. With this addressing scheme, any data read requiring less than a quad-word of data
will always return the requested data. In some cases where the data size is a quad-word, the combination of
the byte address and item size can cause some portion of the desired data to be in the next higher double-
word in memory than that addressed by address+8. In this case, only the portion of the data in the currently
accessed memory double-words is fetched. The remaining data that is not fetched, can be accessed with a
second instruction using the Load Rest instruction. The element field specifies the alignment for storing the
data in the vector register. The element field is treated as a byte address within the vector register. For byte
loads, the element field can be any number between 0 and 15. For larger data items, the element field is
restricted to values that will result in all the data to be moved being stored into the vector register specified
by vt.

The operation of the Load/Store Rest instructions is slightly different from the other Load/Store instructions.
In memory, all the other Load/Store instructions operate on the bytes between the effective byte address and
byte 15 of the accessed quadword (doubleword pair), inclusive. The Rest instructions move the bytes in
memory between byte 0 of the accessed quadword and the effective byte address, inclusive. The operation of
the Load/Store Rest instruction is similarly different from the other Load/Store instructions with respect to
the VRegister File. All the other Load/Store instructions operate on the elements slices left-justified. The
Rest instructions operate on the element slices right-justified.

LBV, Load Byte To Vector Unit (coprocessor 2)
LBV vt[element], offset(base)
The byte at the effective address in memory is loaded into the byte of vector register vt as specified by ele-
ment.

LSV, Load Shortword To Vector Unit (coprocessor 2)
LSV vt[element], offset(base)
The halfword at the effective address in memory is loaded into the halfword of vector register vt as specified
by element.

LLV, Load Longword To Vector Unit (coprocessor 2)
LLV vt[element], offset(base)
The longword at the effective address in memory is loaded into the longword of vector register vt as speci-
fied by element.

31 2625 2021 1615 1011 67 0

base vt elemLWC2 LD op offset

April 17, 1997 146

LDV, Load Doubleword To Vector Unit (coprocessor 2)
LDV vt[element], offset(base)
The doubleword at the effective address in memory is loaded into the doubleword of vector register vt as
specified by element.

LQV, Load Quadword To Vector Unit (coprocessor 2)
LQV vt[element], offset(base)
The quadword at the effective address in memory is loaded into vector register vt.

LPV, Load Pack Signed To Vector Unit (coprocessor 2)
LPV vt[element], offset(base)
The 8 consecutive bytes starting at the effective address in memory are loaded into the most significant byte
of each halfword of vector register vt. The least significant byte of each halfword of vector register vt is
zeroed.

LUV, Load Pack Unsigned To Vector Unit (coprocessor 2)
LUV vt[element], offset(base)
Each byte of the 8 consecutive bytes starting at the effective address in memory is padded with a leading
zero. The padded bytes are loaded into the most significant bits of each halfword of vector register vt. The
least significant bits of each halfword of vector register vt are zeroed.

LXV, Load Sign Extended Byte To Vector Unit (coprocessor 2)
LXV vt[element], offset(base)
The 8 consecutive bytes starting at the effective address in memory, with each byte sign-extended to become
a full 16-bit shortword element, are loaded into each halfword of vector register vt.

LZV, Load Zero Extended Byte To Vector Unit (coprocessor 2)
LZV vt[element], offset(base)
The 8 consecutive bytes starting at the effective address in memory, with each byte zero-extended to become
a full 16-bit shortword element, are loaded into each halfword of vector register vt.

LHV, Load Alternate Bytes To Vector Unit (coprocessor 2)
LHV vt[element], offset(base)
The 8 alternating bytes, starting at the effective address in memory, are each padded with a leading zero. The
padded bytes are loaded into the most significant bits of each halfword of vector register vt.

LFV, Load Fourths To Vector Unit (coprocessor 2)
LFV vt[element], offset(base)
Every fourth byte, starting at the effective address in memory is padded with a leading zero. The padded
bytes are loaded into the most significant bits of each halfword of vector register vt as specified by element.

LAV, Load Alternate Shortwords To Vector Unit (coprocessor 2)
LAV vt[element], offset(base)
The 4 alternating halfwords starting at the effective address in memory are loaded into the most significant
bits of the halfwords of vector register vt specified by element.

April 17, 1997 147

LTV, Load Transposed To Vector Unit (coprocessor 2)
LTV vt[element], offset(base)
The 8 halfwords starting at the effective address in memory are loaded into 8 consecutive vector registers,
starting with the vector register specified by vt. The actual register number for each slice is a function of
physical slice number and element. This instruction takes a single horizontal line of data in memory and
loads it into a block of vector registers on a diagonal.

LTWV, Load Transposed Wrapped To Vector Unit (coprocessor 2)
LTWV vt[element], offset(base)
The 8 halfwords starting at the effective address in memory are loaded into 8 consecutive vector registers,
starting with the vector register specified by vt. The actual register number for each slice is a function of
physical slice number and element. This instruction takes a single horizontal line of data in memory and
loads it into a block of vector registers on a diagonal. The bits of vt that are written are also a function of the
physical slice number and element. In this useage, the element field can be thought of as specifying a left-
shift of the data in memory by that number of elements.

4.6.5.2 Store Instructions

All the store Instructions for the Vector Unit are mapped into the opcode for Store Word Coprocessor 2,
swc2. Like the VU load instructions, these instructions actually execute in the Scalar Unit pipeline. For each
load instruction, there is a corresponding store instruction.

The operation of the store instructions is the same as the load instructions except that the flow of data is from
the VU Register File to the data RAM. The data item in the vector register specified by vt and starting at the
element specified by element is loaded into memory, starting at the effective byte address. Memory accesses
to the data RAM are double-word aligned. A write to the data RAM can access 1 or 2 double-word elements.
Any data write that modifies less than a quad-word of data will always write all the data in memory. In some
cases where the data size is a quad-word, the combination of the byte address and item size can cause some
portion of the data to be written in the next higher double-word in memory than that addressed by address+8.
In this case, only the portion of the data that fit in the currently accessed memory double-words is written.
The remaining data that is not written, can be stored with a second instruction using the Store Rest instruc-
tion. The element field specifies the alignment for reading the data from the vector register. For byte stores,
the element field can be any number between 0 and 15. For larger data items, the element field is restricted to
values that will result in all the data to be moved being read from the vector register specified by vt.

SBV, Store Byte From Vector Unit (coprocessor 2)
SBV vt[element], offset(base)
The byte of vector register vt, as specified by element, is stored into the byte in memory at the effective byte
address.

SSV, Store Shortword From Vector Unit (coprocessor 2)
SSV vt[element], offset(base)
The halfword of vector register vt, as specified by element, is stored into the halfword in memory at the
effective address.

SLV, Store Longword From Vector Unit (coprocessor 2)

31 2625 2021 1615 1011 67 0

base vt elemSWC2 ST op offset

April 17, 1997 148

SLV vt[element], offset(base)
The longword of vector register vt, as specified by element, is stored into the longword in memory at the
effective address.

SDV, Store Doubleword From Vector Unit (coprocessor 2)
SDV vt[element], offset(base)
The doubleword of vector register vt, as specified by element, is stored into the doubleword in memory at the
effective address.

SQV, Store Quadword From Vector Unit (coprocessor 2)
SQV vt[element], offset(base)
The vector register vt is stored into the quadword in memory at the effective address.

SPV, Store Pack Signed From Vector Unit (coprocessor 2)
SPV vt[element], offset(base)
The most significant byte of each halfword of vector register vt is stored into 8 consecutive bytes in memory,
starting at the effective address.

SUV, Store Pack Unsigned From Vector Unit (coprocessor 2)
SUV vt[element], offset(base)
Bits 14:7 from each halfword of vector register vt are stored into 8 consecutive bytes in memory, starting at
the effective address.

SXV, Store Sign Extended Byte From Vector Unit (coprocessor 2)
SXV vt[element], offset(base)
The least significant byte of each halfword of vector register vt is stored into 8 consecutive bytes starting at
the effective address in memory.

SZV, Store Zero Extended Byte From Vector Unit (coprocessor 2)
SZV vt[element], offset(base)
The least significant byte of each halfword of vector register vt is stored into 8 consecutive bytes starting at
the effective address in memory.

SHV, Store Alternate Bytes From Vector Unit (coprocessor 2)
SHV vt[element], offset(base)
Bits 14:7 from each slice of vector register vt are stored into 8 alternating byte in memory, starting at the
effective address.

SFV, Store Fourths From Vector Unit (coprocessor 2)
SFV vt[element], offset(base)
Bits 14:7 from each of either the 4 high-order, or the 4 low-order, slices of vector register vt, as specified by
element, are stored into memory at every fourth byte, starting at the effective address in memory.

SAV, Store Alternate Shortwords From Vector Unit (coprocessor 2)

April 17, 1997 149

SAV vt[element], offset(base)
Four halfwords from either the 4 high-order, or the 4 low-order, slices of vector register vt, as specified by
element, are stored into 4 alternating halfwords in memory, starting at the effective address in memory.

STV, Store Transposed To Vector Unit (coprocessor 2)
STV vt[element], offset(base)
Single elements from 8 consecutive vector registers, starting with the vector register specified by vt are
stored into 8 the halfwords in memory starting at the effective address in memory. The actual register num-
ber for each slice is a function of physical slice number and element. This instruction takes data from a block
of vector registers on a diagonal and stores it into a single horizontal line in memory.

SWV, Store Transposed Wrapped To Vector Unit (coprocessor 2)
SWV vt[element], offset(base)
Single elements from 8 consecutive vector registers, starting with the vector register specified by vt are
stored into 8 the halfwords in memory starting at the effective address in memory. The actual register num-
ber for each slice is a function of physical slice number and element. This instruction takes data from a block
of vector registers on a diagonal and stores it into a single horizontal line in memory. The bits of vt that are
read from are also a function of the physical slice number and element. In this useage, the element field can
be thought of as specifying a left-shift of the data in memory by that number of elements.

4.6.5.3 Load/Store Rest Instructions
The operation of the Load/Store Rest instructions is slightly different from the other Load/Store instructions.
In memory, all the other Load/Store instructions operate on the bytes between the effective byte address and
byte 15 of the accessed quadword (doubleword pair), inclusive. The Rest instructions move the bytes in
memory between byte 0 of the accessed quadword and the effective byte address, inclusive. The operation of
the Load/Store Rest instruction is similarly different from the other Load/Store instructions with respect to
the VRegister File. All the other Load/Store instructions operate on the elements slices left-justified. The
Rest instructions operate on the element slices right-justified.

LRV, Load Rest To Vector Unit (coprocessor 2)

LRV vt[element], offset(base)
The contents of the scalar register base, added to the offset (offset is shifted left four bit positions before add-
ing), form the effective byte address in memory. The bytes between the effective address and byte 0, inclu-
sive, of the quadword-aligned address in memory are loaded into vector register vt. Element is restricted to a
value of 0.

SRV, Store Rest From Vector Unit (coprocessor 2)

SRV vt[element], offset(base)
The contents of the scalar register base, added to the offset (offset is shifted left four bit positions before add-
ing), form the effective byte address in memory. The vector register vt is stored into the bytes between the
effective address and byte 0, inclusive, of the quadword-aligned address in memory. Element is restricted to
a value of 0.

31 2625 2021 1615 1011 67 0

base vt elemLWC2 LRV offset

31 2625 2021 1615 1011 67 0

base vt elemSWC2 SRV offset

April 17, 1997 150

4.6.5.4 Move Instructions

The various Move instructions move data between the VRegister File, or the Vector Control Registers, and
the Scalar Unit’s Register File. For the MFC2 and MTC2 instructions, the element field is used to specify
which 16-bit element of the vector register, vs, is used as the source or destination. For the CFC2 and CTC2
instructions, vs is used to specify which one of the four Vector Control Registers is being used and the ele-
ment field is ignored. When moving from the VRegister File to the SU Register File, data is sign extended.

MFC2, Move From Vector Unit (coprocessor 2)
MFC2 rt, vs
Scalar register rt is loaded with the contents of vector register vs. The actual 16-bit slice of vs that is loaded
is specified by element. The 16-bit value is sign extended to 32 bits as it is loaded into the scalar register.

MTC2, Move To Vector Unit (coprocessor 2)
MTC2 rt, vs
The lower 16 bits of scalar register rt are stored into the vector register vs. The actual 16-bit slice of vs that is
stored into is specified by element.

CFC2, Move Control Word From Vector Unit (coprocessor 2)
CFC2 rt, VCC
CFC2 rt, VCO
CFC2 rt, VCE
Scalar register rt is loaded with the contents of the Vector Control Register specified by vs.

CTC2, Move Control Word To Vector Unit (coprocessor 2)
CTC2 rt, VCC
CTC2 rt, VCO
CTC2 rt, VCE
The lower 16 bits of scalar register rt are stored into the Vector Control Register specified by vs.

4.6.5.5 Computational Instructions
Computational instructions perform arithmetic operations on data stored in the VRegister File. The data for-
mat is binary fixed-point. All the Vector Unit computational instructions are mapped into the MIPS opcode
for Coprocessor Operation 2. They use a three operand format with two sources, specified by vt and vs, and
a destination, usually specified by vd. The contents of the vector register specified by vs are always inter-
preted as vector elements. The contents of the vector register specified by vt may used as array of vector ele-
ments or they may used as a scalar value, depending on the value of the element field. The results of a
computational instruction are treated as an array of vector elements.

31 2625 2021 1615 1011 67 0

MF,MT rt elemCOP2 vs 0

0
31 2625 2021 1615 1011 0

CF,CT rtCOP2 vs

April 17, 1997 151

4.6.5.5.1 Element Selection

The use of the element field to select the elements of vt to be used as operands is shown in the table below.

To illustrate with an example, let element[3:0] = 0011. From vector elements 0 and 1 of vs, element 1 will be
selected and applied across both elements 0 and 1 of vt. From vector elements 2 and 3 of vs, element 3 will
be selected and applied across both elements 2 and 3 of vt. From vector elements 4 and 5 of vs, element 5
will be selected and applied across both elements 4 and 5 of vt. From vector elements 6 and 7 of vs, element
7 will be selected and applied across both elements 6 and 7 of vt.

4.6.5.5.2 Rounding and Clamping

Depending on the instruction operation, and its implied data type, various rounding modes and saturation
clamping ranges are applied to the calculated results of an instruction. In the case of multiplication for quan-
tization, the rounding mode applied is dependent on the sign of the results. Saturation clamping, when
applied, clamps to one of several different ranges. When saturation clamping does occur, a bit is set in the
VCL Register. For some instructions, rounding is applied to results being stored into the Accumulator as
well as to results being stored into the VRegister File. Clamping is only applied to results being stored into
the VRegister File.

4.6.5.5.3 Vector Control Registers VCO, VCC and VCE

The Vector Control Registers VCO and VCE are used as inputs into certain of the computational intructions
to support double-precision operations. Control Registers VCO and VCC are set as part of the output of
some of the computational instructions to record some important state about the operation of the instruction
than can be examined later on, usually with a MFC2 instruction. The figures below show the bit definitions
for each register how they are use by each instruction.

4.6.5.5.3.1 Adds/Subtracts

Each slice of the Vector Unit contributes an Equal/Not_Equal bit(1=Not_Equal) and a Carry/Borrow
bit(1=Operation results in Carry/Borrow) to the VCO Register. The 8 Equal bits are grouped into the high-
order bits of the register and the 8 Carry bits are grouped into the low-order bits. Slice 0 generates/uses bits
[15,7] while slice 7 generates/uses bits [8,0]. VADDC and VSUBC set the bits based on the results of the
operation. VADD, VACC, VSUB, VSUC and VSUT use the Carry bits as inputs and clear all the VCO bits
on its output. To use this feature for double-precision, first perform the VADDC/VSUBC on the lower half of
the operands to set the VCO, then perform the VADD/VSUB on the upper half of the operand. Note that this
will clear the VCO after both halves have been processed so that subsequent VADDs on single precision
operands will operate correctly.

TABLE 72. Element Selection for Computational Instructions

Element[3:0] Vector Elements of vt Selected
0000 Operand is a vector, all 8 elements of vt are used with corresponding 8 elements of

vs.
001X Operand is a scalar, 1 of 2 elements is selected from each quarter-group of elements

of vt. Element selected is only applied across quarter of vs from which it is selected.
01XX Operand is a scalar, 1 of 4 elements is selected from each half-group of elements of

vt. Element selected is only applied across half of vs from which it is selected.
1XXX Operand is a scalar, 1 of 8 elements is selected from vt. Element selected is applied

across all 8 elements of vs.

15 8 7 0

EqualVCO Carry
VADDC, VSUBC
VADD, VACC, VSUB, VSUC, VSUT

April 17, 1997 152

4.6.5.5.3.2 Compares

The VCC register is also 16 bits. The compare instructions only use the 8 low-order bits of the VCC..Slice 0
generates bit [7] and slice 7 generates bit [0]. For single precision compares, VLT, VGE, VEQ and VNE set
their respective Compare bits for each slice if the comparison is true. The 8 high-order bits of VCC are all-
ways cleared by a compare instruction. VMRG does not set the VCC, it only used the bits as set by a previ-
ous compare instruction as input into its selection operation.

For double-precision compares, VLT, VGE, VEQ and VNE also use the VCO register as an input into the
decision process. For this to work properly, the VCO must have been previously set by a VSUBC instruction
which operated on the upper half of the operands. The comparison instruction completes the double-preci-
sion operation.

Whether the comparison is a single precision or a double-precision operation, the compare instructions all-
ways clear the VCO register.

4.6.5.5.3.3 Clips, Clamps, Crimps and Cramps

To perform a single-precision clip, use either VCL or VCR. VCL clips to a 2’s complement range, while
VCR clips to a 1’s complement range. For the clip instructions, the VCC have a different meaning. The 8
high-order bits now represent the clip condition. They are set if vs is outside of the range of vt and cleared if
vs is inside the range of vt. The 8 low-order bits represent the direction of the clip indicated by the high-order
bits. This can also be thought of as sign(vs). VCL and VCR set VCC on output based on the result of the clip
operation.

For double-precision clips, VCH is performed first on the upper-half of the operands. As part of its output,
VCH sets the VCO register based on the results of it’s operation, but in this case, the 8 low-order bits of
VCO have a different meaning. These Sign bits now represent the status of the sign bits of the two operands.
They are set if the signs of vs and vt are opposite and cleared if the signs are equal. A new register is used
with VCH, the VCE register. It is only 8 bits. Bits in VCE are set if the signs of vs and vt are not equal and
the clip comparison generates a result of -1. The second half of a double-percision clip is performed with
VCL. It uses VCO and VCE as inputs to determine the final result of the clip operation and sets VCC
accordingly.

Whether the clip is a single precision or a double-precision operation, VCL and VCR always clear the VCO,
and VCE registers on output.

4.6.5.5.4 Add/Subtract Halfwords Instructions

These Add and Subtract Instructions operate on halfword elements. These instructions do not perform
rounding. The results, clamped to the range r, -32768 <= r <= 32767, are stored into the VRegister File.
Unclamped results are stored into the Accumulator(with and without accumulation on the results currently
in the Accumulator). During the accumulation stage, the partial results that were generated during the EX1
stage are aligned with bits [31:16] of the Accumulator before being stored there.

15 8 7 0

0VCC Compare VLT, VGE, VEQ, VNE, VMRG

15 8 7 0

EqualVCO Sign VCH, VCL, VCR
15 8 7 0

ClipVCC P/N

7 0

ExtendedVCE

31 26 2425 2021 1615 1011 6 5 0

Add op1 vsCOP2 vt vdelem

April 17, 1997 153

The Accumulators for each Vector Unit slice contain 48 bits. Because the Add/Subtract Halfword Instruc-
tions align partial results with ACC[31:16], bits [47:32] of the Accumulator are available for data growth
while accumulating data. Up to 216 - 1 consecutive additions can be performed before results overflow
occurs.

VADD, Vector Add
VADD vd, vs, vt[element]
The halfword element(s) of vector register vt, as specified by element, is added to each halfword element of
vector register vs. The result is stored into the Accumulator and from there, it is stored into vector register
vd.

VACC, Vector Add Halfwords and Accumulate
VACC vd, vs, vt[element]
The halfword element(s) of vector register vt, as specified by element, is added to each halfword element of
vector register vs. The result is accumulated and the accumulated result is then stored into vector register vd.

VSUB, Vector Subtract
VSUB vd, vs, vt[element]
The halfword element(s) of vector register vt, as specified by element, is subtracted from each halfword ele-
ment of vector register vs. The result is stored into the Accumulator and from there, it is stored into vector
register vd.

VSUC, Vector Subtract Halfwords and Accumulate
VSUC vd, vs, vt[element]
The halfword element(s) of vector register vt, as specified by element, is subtracted from each halfword ele-
ment of vector register vs. The result accumulated and the accumulated result is stored into vector register
vd.

VSUT, Vector Scalar Subtract
VSUT vd, vs, vt[element]
Each halfword element of vector register vs is subtracted from the halfword element(s) of vector register vt,
as specified by element. The result is stored into the Accumulator and from there, it is stored into vector reg-
ister vd.

VABS, Absolute Value of Vector
VABS vd, vs, vt[element]
The halfword element(s) of vector register vt, as specified by element, is conditionally negated, based on the
sign of each halfword element of vector register vs, and stored into the Accumulator and from there, it is
stored into vector register vd.

4.6.5.5.5 Byte Instructions

Byte Instructions operate on byte elements from the VRegister File. They store results into the Accumulator
(with and without accumulation on the results currently in the Accumulator) during the EX2 stage and from

31 26 2425 2021 1615 1011 6 5 0

Byte op1 vsCOP2 vt vdelem

April 17, 1997 154

there, into the vector register specified by vd during the WBack stage. Vector element operands are always
interpreted as unsigned integers with a range r, 0 <= r <= 255.

The byte Add/Subtract instructions treat the contents of vector register specified by vt as vector elements,
therefore, the MSB of the element field must be 0. The remaining bits of element, depending on the instruc-
tion, may be used to specify the right-shift amount applied to the results as they are passed from the Accu-
mulator to the VRegister File. The byte Multiply instructions use the element field as described in the section
on element selection. The programmer should remember that element selection selects a 16-bit item, while
the byte multiplies operate on a pair of 8-bit items. If the intent is to multiply 16 vector byte elements by the
same scalar value, that value will have to be set in both the high and low bytes of the the register being
selected as the scalar.

The byte Accumulators for each Vector Unit slice contain 18 bits. This allows for the growth of accumulated
data from 8 bits up to a maximum of 18 bits before results overflow occurs. Up to 1024 consecutive addi-
tions can be performed without any loss of accuracy. Bits [17:16] of each of the Byte Accumulators are ini-
tialized when one of the following instructions is executed : VADDB, VSUBB, VMULB or VMULBN.
Although these two high-order bits are available for calculations, they are not directly readable when byte
results are stored into the VRegister File. They may be indirectly observed if the byte operation involves
scaling (arithmatic shifting) of the Accumulator results on the way back to the VRegister File, as these bits
will be shifted into the high-order bits of each byte during the shift.

After shifting, clamping is performed on the results as they are passed from the Accumulator to the VRegis-
ter File. The clamping range, r, is 0 <= r <= 255. Some byte instructions perform rounding on the results as
they are stored into the Accumulator. The value added to the results for rounding is 2**(element - 1). The
VCOR is ignored.

In this implementation of the MSP ISA, the Byte Accumulators are shared with main Accumulator for 16-
bits operations. The Vector Unit Programmer should note that the contents of the any and all of the Accumu-
lators will be undefined if 16-bit accumulate instructions are mixed with byte accumulate instructions and
that either type of instruction will overwrite the previous contents of the accumulators.

VADDB, Vector Add Bytes
VADDB vd, vs, vt
Each byte element of vector register vt is added to each byte element of vector register vs. The results are
stored into the Accumulator and from there, they are stored into vector register vd. Element is used both for
rounding results stored into the Accumulator as well as for right-shifting results passed from Accumulator to
VRegister File. Element is restricted to values e <= 7.

VACCB, Vector Add Bytes and Accumulate
VACCB vd, vs, vt, element
Each byte element of vector register vt is added to each byte element of vector register vs. The results are
accumulated and the accumulated results are then stored into vector register vd. Element is used only for
right-shifting results passed from Accumulator to VRegister File. Element is restricted to values e <= 7.

VSUBB, Vector Subtract Bytes
VSUBB vd, vs, vt, element
Each byte element of vector register vt is subtracted from each byte element of vector register vs. The results
are stored into the Accumulator and from there, they are stored into vector register vd. Element is used both
for rounding results stored into the Accumulator as well as for right-shifting results passed from Accumula-
tor to VRegister File. Element is restricted to values e <= 7.

VSUCB, Vector Subtract Bytes and Accumulate

April 17, 1997 155

VSUCB vd, vs, vt, element
Each byte element of vector register vt is subtracted from each byte element of vector register vs. The results
are accumulated and the accumulated results are then stored into vector register vd. Element is used only for
right-shifting results passed from Accumulator to VRegister File. Element is restricted to values e <= 7.

VSAD, Vector Sum of Absolute Differences

VSAD vd, vs, vt
Each byte element of vector register vt is subtracted from each byte element of vector register vs. For each
slice, the absolute values of the high byte difference and the low byte difference are added together. The
result of the addition is stored into the Accumulator. The vector register vs is written to vector register vd.
Element is not used.

VSAC, Vector Sum of Absolute Differences and Accumulate

VSAC vd, vs, vt
Each byte element of vector register vt is subtracted from each byte element of vector register vs. For each
slice, the absolute values of the high byte difference and the low byte difference are added together. The
result of the addition is accumulated into the Accumulator. The vector register vs is written to vector register
vd. Element is not used.

VSUMB, Vector Sum of Bytes

VSUMB vd, vs, vt, element
Each byte element of vector register vt is added to each byte element of vector register vs. Each pair of addi-
tion results, the high and low bytes of each slice, are then added together. The result of the addition is stored
into the Accumulator and from there, it is stored into vector register vd. Element is used only for right-shift-
ing results passed from Accumulator to VRegister File. Element is restricted to values e <= 7.

VSACB, Vector Sum of Bytes and Accumulate

VSACB vd, vs, vt, element
Each byte element of vector register vt is added to each byte element of vector register vs. Each pair of addi-
tion results, the high and low bytes of each Vector Unit slice, are then added together. The results of the addi-
tion are stored into the Accumulator with accumulation. Element is used only for right-shifting results
passed from Accumulator to VRegister File. Element is restricted to values e <= 7.

VMULB1, Vector Multiply Bytes and Load Positive

31 26 2425 2021 1615 1011 6 5 0

VSAD1 vsCOP2 vt vd0

31 26 2425 2021 1615 1011 6 5 0

VSAC1 vsCOP2 vt vd0

31 26 2425 2021 1615 1011 6 5 0

VSUMB1 vsCOP2 vt vdelem

31 26 2425 2021 1615 1011 6 5 0

VSACB1 vsCOP2 vt vdelem

31 26 2425 2021 1615 1011 6 5 0

VMULB1 vsCOP2 vt vdelem

April 17, 1997 156

VMULB vd, vs, vt[element]
The pair of bytes elements of vector register vt, as specified by element, is multiplied by the corresponding
pair of byte elements of vector register vs. The result is loaded into the Accumulator without accumulation.

VMULBN1, Vector Multiply Bytes and Load Negated

VMULBN vd, vs, vt[element]
The pair of bytes elements of vector register vt, as specified by element, is multiplied by the corresponding
pair of byte elements of vector register vs. The result is negated (2’s complement) and loaded into the Accu-
mulator without accumulation.

VMACB2, Vector Multiply Bytes and Add to Accumulator

VMACB vd, vs, vt[element]
The pair of bytes elements of vector register vt, as specified by element, is multiplied by the corresponding
pair of byte elements of vector register vs. The result is added to the contents of the Accumulator.

VMSUCB3, Vector Multiply Bytes and Subtract from Accumulator

VMSUCB vd, vs, vt[element]
The pair of bytes elements of vector register vt, as specified by element, is multiplied by the corresponding
pair of byte elements of vector register vs. The result is subtracted from the contents of the Accumulator.

4.6.5.5.6 Accumulator Instructions

These instructions are more specialized and tend to use the Accumulator as an operand source. Unless other-
wise stated, there is no clamping or rounding performed by these instructions. The VCOR is ignored.

1. This instruction has been conditionally accepted as part of the instruction set. It is thought that it can be
implemented with a slight re-organization of the hardware already included for 16x16 multiplies. If it turns
out to be the case that implementation of this instruction would require major re-work, or that the resulting
multiplier cannot meet timing, this instruction will be deleted from the instruction set. It should be noted that
this instruction generates a 16-bit result which is stored into a 16-bit Accumulator. The programmer is cau-
tioned that accumulation of multiplied bytes can easily cause the results to overflow, resulting in lost data.
1. Ibid.
2. This instruction has been conditionally accepted as part of the instruction set. It is thought that it can be
implemented with a slight re-organization of the hardware already included for 16x16 multiplies. If it turns
out to be the case that implementation of this instruction would require major re-work, or that the resulting
multiplier cannot meet timing, this instruction will be deleted from the instruction set. It should be noted that
this instruction generates a 16-bit result which is stored into a 16-bit Accumulator. The programmer is cau-
tioned that accumulation of multiplied bytes can easily cause the results to overflow, resulting in lost data.
3. Ibid.

31 26 2425 2021 1615 1011 6 5 0

VMULBN1 vsCOP2 vt vdelem

31 26 2425 2021 1615 1011 6 5 0

VMACB1 vsCOP2 vt vdelem

31 26 2425 2021 1615 1011 6 5 0

VMSUCB1 vsCOP2 vt vdelem

April 17, 1997 157

VSUM, Vector Accumulator Sum Reduction

VSUM vd, ACC[element]
Eight Accumulator elements, as specified by element1, are added together to generate a signed 16-bit
result(clamped). This result is stored into the low-order 16 bits of vector register vd. The element field is
restricted to values of 0, 1, or 2, representing the high, middle and low thirds of each Accumulator slice. The
vs, and vt fields are ignored.

VSAW, Vector Save and Write Accumulator

VSAW vd, vs, ACC[element]
The contents of the Accumulator are stored into vector register vd and the contents of vector register vs are
stored into the Accumulator. Vt is ignored. The element field, restricted to values of 0, 1, or 2, representing
the high, middle and low thirds of each Accumulator slice, is used to select low, middle or high 16 bits of the
Accumulator to read and write.

VRNDP, Round Accumulator if Positive

VRNDP vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is added to the Accumulator if the Accu-
mulator currently contains a strictly positive number. If the Accumulator contains zero, or a negative num-
ber, it is not changed. If the vs field has a value of 0x1, then before adding the contents of vt to the
Accumulator, vt is shifted left 16 bit positions. If the vs field has a value of 0x0, then no shifting of vt occurs
before the addition. The resulting sum, clamped to the range r, -32768 <= r <= 32767, is stored into the vec-
tor register specified by vd. Vs is restricted to values of 0 or 1.

VRNDN, Round Accumulator if Negative

VRNDN vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is added to the Accumulator if the Accu-
mulator currently contains a strictly negative number. If the Accumulator contains zero, or a positive num-
ber, it is not changed. If the vs field has a value of 0x1, then before adding the contents of vt to the
Accumulator, vt is shifted left 16 bit positions. If the vs field has a value of 0x0, then no shifting of vt occurs
before the addition. The resulting sum, clamped to the range r, -32768 <= r <= 32767, is stored into the vec-
tor register specified by vd. Vs is restricted to values of 0 or 1.

1. The use of the element field to select which third of the Accumulator is used as the source for the sum
reduction has been conditionally accepted as part of the instruction definition. If this feature causes this
instruction to exceed timing constraints, it will be removed from the instruction definition.

31 26 2425 2021 1615 1011 6 5 0

VSUM1 0COP2 0 vd0, 1, 2

31 26 2425 2021 1615 1011 6 5 0

VSAW1 vsCOP2 0 vd0, 1, 2

31 26 2425 2021 1615 1011 6 5 0

RNDP1 0, 1COP2 vt vdelem

31 26 2425 2021 1615 1011 6 5 0

RNDP1 0, 1COP2 vt vdelem

April 17, 1997 158

VRND, Round Accumulator

VRND vd, vs, vt[element]
The halfword element(s) of vector register vt, as specified by element, is added to the Accumulator. If the vs
field has a value of 0x1, then before adding the contents of vt to the Accumulator, vt is shifted left 16 bit
positions. If the vs field has a value of 0x0, then no shifting of vt occurs before the addition. The resulting
sum, clamped to the range r, -32768 <= r <= 32767, is stored into the vector register specified by vd. Vs is
restricted to values of 0 or 1.

VRND, Round Accumulator Bytes

VRNDB vd, vs, vt, element
The contents of the high-byte and low-byte elements of the each Accumulator are rounded and scaled by ele-
ment. The new Accumulator results are clamped to unsigned 8-bit values, concatenated together to form 16
bits and stored into vector register vd. The rounding factor is defined as 2 ** (element - 1). The scaling factor
is defined as a shift-right by element bit positions, effecting a divide by 2element. The vs and vt fields are
ignored.

4.6.5.5.7 Multiply Instructions

The multiply instructions operate on halfword operands. The results are stored into the Accumulator (with
and without accumulation on the results currently in the Accumulator) during the EX2 stage. From the
Accumulator, they are passed to the VRegister File, to be stored into the register specified by vd, during the
WBack stage. Note that multiplication of two 16-bit operands generates a 32-bit result. All 32-bits are stored
into the Accumulator for maximum precision but only 16 bits of the Accumulator get passed on to the
VRegister File for write back. The determination of which 16 bits of the Accumulator are stored is based on
the instruction being executed.

VMULF, Vector Multiply, Signed Fraction
VMULF vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. Both operands are treated as signed fractions. The resulting product, a fraction, is normal-
ized by shifting right 1 bit position and rounded up by incrementing at bit position 15 before being stored
into the Accumulator without accumulation. Bits 31:16 of the Accumulator, clamped to a 16-bit signed
value, are passed to the VRegister File and stored in vector register vd.

VMACF, Vector Multiply with Accumulation, Signed Fraction
VMACF vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. Both operands are treated as signed fractions. The resulting product, a fraction, is normal-
ized by shifting right 1 bit position and rounded up by incrementing at bit position 15 before being stored
into the Accumulator with accumulation. Bits 31:16 of the Accumulator, clamped to a 16-bit signed value,
are passed to the VRegister File and stored in vector register vd.

31 26 2425 2021 1615 1011 6 5 0

RND1 0, 1COP2 vt vdelem

31 26 2425 2021 1615 1011 6 5 0

RNDB1 0, 1COP2 vt vdelem

31 26 2425 2021 1615 1011 6 5 0

MUL op1 vsCOP2 vt vdelem

April 17, 1997 159

VMULU, Vector Multiply, Unsigned Fraction
VMULU vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. Both operands are treated as signed fractions. The resulting product, a fraction, is normal-
ized by shifting right 1 bit position and rounded up by incrementing at bit position 15 before being stored
into the Accumulator without accumulation. Bits 31:16 of the Accumulator, clamped to a 16-bit unsigned
value, are passed to the VRegister File and stored in vector register vd.

VMACU, Vector Multiply with Accumulation, Unsigned Fraction
VMACU vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. Both operands are treated as signed fractions. The resulting product, a fraction, is normal-
ized by shifting right 1 bit position and before being stored into the Accumulator with accumulation. Bits
31:16 of the Accumulator, clamped to a 16-bit unsigned value, are passed to the VRegister File and stored in
vector register vd.

VMULQ, Vector Multiply, Quantize
VMULQ vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. One operand for this multiply is expected to be a signed fraction, the other a signed inte-
gers. The resulting product is shifted left 16 bits and stored into the Accumulator, without accumulation,
with the LSB at ACC[16]. Rounding is performed on the results in the Accumulator as they are stored into
the VRegister File, depending on the sign of the results in the Accumulator. If and only if the Accumulator
results are negative, then round the results toward zero by adding +2031616 (+31, shifted left by 16 bits)1.
Bits 36:21 of the rounded results, clamped to a 12-bit signed value, are passed to the VRegister File and
stored in vector register vd.

VMACQ, Vector Accumulator Oddification, Quantize
VMACQ vd, vs, vt[element]
This instruction supports 12-bit MPEG quantization by performing oddification on the Accumulator. Vt, ele-
ment and vs are ignored. If ACC[21] is 0, then oddify the Accumulator toward zero by subtracting +2097152
(+32, shifted left by 16 bits) if the Accumulator is positive, and adding +2031616 (+31, shifted left by 16
bits)2. If ACC[21] is 1, or if ACC[47:21] = 0, then add zero to the Accumulator. Bits 36:21 of the Accumu-
lator, clamped to a 12-bit signed value, are passed to the VRegister File and stored in vector register vd.

1. The shifting of the results going into the Accumulator and the round value left by 16 bits, are not required
from an architectural perspective. Rather, it is being done to accommodate the clamping hardware. All the
other clamps take place on ACC[31:16}. Without the shift left by 16 bits, this instruction would require
clamping on ACC[15:0]. With the shift, it clamps on the same ACC bits as all the other instructions.
2. The shifting of the results going into the Accumulator and the round value left by 16 bits, are not required
from an architectural perspective. Rather, it is being done to accommodate the clamping hardware. All the
other clamps take place on ACC[31:16}. Without the shift left by 16 bits, this instruction would require
clamping on ACC[15:0]. With the shift, it clamps on the same ACC bits as all the other instructions.

April 17, 1997 160

4.6.5.5.8 Double-precision Instructions

Double-precision operations are supported with instructions that perform addition, subtraction, comparison
and multiplication on double-precision operands. Double-precision operands occupy two vector registers.
The hi-order 16 bits in one register and the low-order 16-bits in a second register.

4.6.5.5.8.1 Adds, Subtracts and Compares

Support for double-precision for addition, subtraction and comparison is provided through the use of the
Vector Carry Out Register (VCOR). VADDC and VSUBC write the carry out from the operation to the
VCOR. A subsequent VADD, VSUB or VSELXX instruction will use the VCOR as carry/borrow in and
clear the VCOR for use in future operations. Double-precision comparisons are accomplished by performing
a VSUBC on the high-order operands followed by a Select instruction performed on the low-order operands.
No rounding or clamping is performed for these operations.

VADDC, Vector Add with Carry
VADDC vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is added to each halfword element of vec-
tor register vs. The result is stored in vector register vd. The carry out is stored into the VCOR.

VSUBC, Vector Subtract with Carry
VSUBC vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is subtracted from each element halfword
of vector register vs. The result is stored in vector register vd. The borrow out is stored into the VCOR.

4.6.5.5.8.2 Multiplies

Several instructions are provided to support double-precision multiplies. They operate on the principle that a
2N-bit multiply can be implemented with four N-bit multiplies, where the partial product of each N-bit mul-
tiply can be shifted left or right by N-bits to achieve the proper alignment before being added to the other
partial products. A double-precision multiply is a four instruction sequence each instruction taking a single
cycle to complete for a total of 4 cycles. During the first instruction, the low-order partial product is com-
puted, shifted right 16 bits and stored into the Accumulator. The next two instructions compute the two mid-
dle-order partial products and accumulate them with the low-order partial product. Finally, the hi-order
partial product is computed, shifted left 16 bit positions and accumulated with the 3 previous partial prod-
ucts. None of the double-precision multiplies perform rounding on the results and clamping of results is to a
16-bit signed value.

VMUDL, Vector Multiply, Double-Precision Low Partial Product
VMUDL vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. Both operands are treated as unsigned values. The resulting partial product is shifted right
16 bits, to align with ACC[15:0], and stored into the Accumulator without accumulation. The results,
ACC[15:0], are then passed from the Accumulator to the VRegister File and stored in vector register vd.

VMADL, Vector Multiply with Accumulation, Double-Precision Low Partial
Product

31 26 2425 2021 1615 1011 6 5 0

DPrec Op1 vsCOP2 vt vdelem

April 17, 1997 161

VMADL.madl vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. Operands are treated as unsigned values. The resulting partial product is shifted right 16
bits, to align with ACC[15:0], and stored into the Accumulator with accumulation. The results, ACC[15:0],
are then passed from the Accumulator to the VRegister File and stored in vector register vd.

VMUDM, Vector Multiply, Double-Precision Middle Partial Product
VMUDM vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. VS is treated as a signed operand, while vt is treated as an unsigned operand. The resulting
partial product, aligned with ACC[31:0], is stored into the Accumulator without accumulation. The results,
ACC[31:16], are then passed from the Accumulator to the VRegister File and stored in vector register vd.

VMADM, Vector Multiply with Accumulation, Double-Precision Middle Partial
Product
VMADM vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. VS is treated as a signed operand, while vt is treated as an unsigned operand. The resulting
partial product, aligned with ACC[31:0], is stored into the Accumulator without accumulation. The results,
ACC[31:16], are then passed from the Accumulator to the VRegister File and stored in vector register vd.

VMUDN, Vector Multiply, Double-Precision Middle Partial Product
VMUDN vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. VT is treated as a signed operand, while vs is treated as an unsigned operand. The resulting
partial product, aligned with ACC[31:0], is stored into the Accumulator without accumulation. The results,
ACC[15:0], are then passed from the Accumulator to the VRegister File and stored in vector register vd.

VMADN, Vector Multiply with Accumulation, Double-Precision Middle Partial
Product
VMADN vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. VT is treated as a signed operand, while vs is treated as an unsigned operand. The resulting
partial product, aligned with ACC[31:0], is stored into the Accumulator without accumulation. The results,
ACC[15:0], are then passed from the Accumulator to the VRegister File and stored in vector register vd.

VMUDH, Vector Multiply, Double-Precision High Partial Product
VMUL.mudh vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. Both operands are treated as signed values. The resulting partial product is shifted left 16
bits, to align with ACC[47:16], and stored into the Accumulator without accumulation. The results,
ACC[31:16], are then passed from the Accumulator to the VRegister File and stored in vector register vd.

VMADH, Vector Multiply with Accumulation, Double-Precision High Partial
Product
VMADH vd, vs, vt[element]
The halfword element(s) of vector register vt specified by element is multiplied by each halfword element of
vector register vs. Both operands are treated as signed values. The resulting partial product is shifted left 16

April 17, 1997 162

bits, to align with ACC[47:16], and stored into the Accumulator with accumulation. The results,
ACC[31:16], are then passed from the Accumulator to the VRegister File and stored in vector register vd.

4.6.5.6 Vector Select Instructions

The Vector Select Instructions perform element-by-element comparisons between vs and vt and set the Vec-
tor Compare Code Register (VCCR) based on the results. Each element for which the comparison is true, is
stored into vd. Vector Select Instructions clear the VCOR. The resulting VCC bit is available for a
VMERGE instruction in the following cycle without pipeline delays or stalls. The VCC bits may be written
or read by the SU by using a Move Control To/From instruction. The VCC bits are ‘sticky’; once set, they
will remain set unless a subsequent instruction explicitly resets them.

The Select Instructions can also be used to support comparisons of double-precision data. To do so, the VCO
bits are used as part of the comparison. For single-precision comparisons to work properly, the VCO bits for
each slice should be preset to VCO[1:0] = 0. See Section 4.6.5.5.8 on page 160 for more information about
how double-precision compares use VCO as an input and set VCC on output.

VSELLT, Vector Select, Less Than
VSELLT vd, vs, vt[element]
VLT vd, vs, vt[element]
Each halfword element of vector register vs is compared to the halfword element(s) of vector register vt
specified by element. Clear VCC[1] for each slice. If vs is less than vt, set VCC[0] for the slice and store vs
into vd; else clear VCC[0] for the slice and store vt into vd.

VSELLE, Vector Select, Less Than or Equal
VSELLE vd, vs, vt[element]
VLE vd, vs, vt[element]
This instruction has been deleted to make room for VSELCH and VSELCL.

VSELEQ, Vector Select, Equal To
VSELEQ vd, vs, vt[element]
VEQ vd, vs, vt[element]
Each halfword element of vector register vs is compared to the halfword element(s) of vector register vt
specified by element. Clear VCC[1] for each slice. If vs is equal to vt, set VCC[0] for the slice and store vs
into vd; else clear VCC[0] for the slice and store vt into vd.

VSELNE, Vector Select, Not Equal To
VSELNE vd, vs, vt[element]
VNE vd, vs, vt[element]
Each halfword element of vector register vs is compared to the halfword element(s) of vector register vt
specified by element. Clear VCC[1] for each slice. If vs is not equal to vt, set VCC[0] for the slice and store
vs into vd; else clear VCC[0] for the slice and store vt into vd.

VSELGT, Vector Select, Greater Than

31 26 2425 2021 1615 1011 6 5 0

Select Op1 vsCOP2 vt vdelem

April 17, 1997 163

VSELGT vd, vs, vt[element]
VGT vd, vs, vt[element]
This instruction has bee deleted to make room for VSELCH and VSELCL

VSELGE, Vector Select, Greater Than or Equal
VSELGE vd, vs, vt[element]
VGE vd, vs, vt[element]
Each halfword element of vector register vs is compared to the halfword element(s) of vector register vt
specified by element. Clear VCC[1] for each slice. If vs is greater than or equal to vt, set VCC[0] for the slice
and store vs into vd; else clear VCC[0] for the slice and store vt into vd.

VSELCL, Vector Clip Low
VSELCL vd, vs, vt[element]
VCL vd, vs, vt[element]
Each halfword element of vector register vs is compared to the halfword element(s) of vector register vt
specified by element. If vs is greater than or equal to vt, set VCC[0] for the slice and store vs into vd. If vs is
less than vt and greater than -vt (2’s complement), set VCC[1] for the slice and store vs into vd. If vs is less
than, or equal, to -vt, clear VCC[0] for the slice and store -vt into vd. This instruction clears the VCE bit.

VSELCR, Vector Crimp
VSELCR vd, vs, vt[element]
VCR vd, vs, vt[element]
Each halfword element of vector register vs is compared to the halfword element(s) of vector register vt
specified by element. If vs is greater than or equal to vt, set VCC[0] for the slice and store vs into vd. If vs is
less than vt and greater than -vt (1’s complement), set VCC[1] for the slice and store vs into vd. If vs is less
than, or equal, to -vt, clear VCC[0] for the slice and store -vt into vd. This instruction clears the VCE bit.

VMERGE, Vector Merge
VMERGE vd, vs, vt[element]
VMRG vd, vs, vt[element]
For each halfword element of vector register vs and the halfword element(s) of vector register vt specified by
element, the corresponding VCC[0] for the slice selects either vs or vt. If the VCC bit is set, store vs into vd;
else store vt into vd.

VSELCH, Vector Clip High
VSELCH vd, vs, vt[element]
VCH vd, vs, vt[element]
Each halfword element of vector register vs is compared to the halfword element(s) of vector register vt
specified by element. If vs is greater than or equal to vt, set VCC[0] for the slice and store vs into vd. If vs is
less than vt and greater than -vt (2’s complement), set VCC[1] for the slice and store vs into vd. If the signs
of the vs and vt are different and the result of adding the operands is -1 (all ones result), set the VCE bit. If vs
is less than -vt, clear the VCE bit, VCC[0] for the slice and store -vt into vd.

April 17, 1997 164

4.6.5.7 Logical instructions

Logical instructions perform logical bit-wise operations on data stored in the VRegister File.

VAND, Vector And
VAND vd, vs, vt[element]
Each halfword element of vector register vs is bit-wise ANDed with the halfword element(s) of vector regis-
ter vt, as specified by element. The result is stored into the Accumulator and from there, it is stored into vec-
tor register vd.

VNAND, Vector Nand
VNAND vd, vs, vt[element]
Each halfword element of vector register vs is bit-wise NANDed with the halfword element(s) of vector reg-
ister vt, as specified by element. The result is stored into the Accumulator and from there, it is stored into
vector register vd.

VOR, Vector Or
VOR vd, vs, vt[element]
Each halfword element of vector register vs is bit-wise ORed with the halfword element(s) of vector register
vt, as specified by element. The result is stored into the Accumulator and from there, it is stored into vector
register vd.

VNOR, Vector Nor
VNOR vd, vs, vt[element]
Each halfword element of vector register vs is bit-wise NORed with the halfword element(s) of vector regis-
ter vt, as specified by element. The result is stored into the Accumulator and from there, it is stored into vec-
tor register vd.

VXOR, Vector Xor
VXOR vd, vs, vt[element]
Each halfword element of vector register vs is bit-wise XORed with the halfword element(s) of vector regis-
ter vt, as specified by element. The result is stored into the Accumulator and from there, it is stored into vec-
tor register vd.

VXNOR, Vector Xnor
VXNOR vd, vs, vt[element]
Each halfword element of vector register vs is bit-wise XNORed with the halfword element(s) of vector reg-
ister vt, as specified by element. The result is stored into the Accumulator and from there, it is stored into
vector register vd.

31 26 2425 2021 1615 1011 6 5 0

Logic op1 vsCOP2 vt vdelem

April 17, 1997 165

4.6.6 VU Instruction Pipeline

4.6.6.1 Instruction Execution
The Vector Unit uses a 5-stage instruction pipeline to process its instructions. The Figure below shows how
instructions flow through the pipeline.

During the IF stage, the instruction is fetched from the local on-chip Instruction memory (IRAM). The hard-
ware for this stage is shared with the SU. Only the remaining four stages have dedicated hardware for the
VU. During the ID/RF stage, instructions are decoded and register operands are fetched from the VRegister
File. Most instructions require two cycles to execute, EX1 stage and EX2 stage. General ALU two-operand
operations such adds, subtracts, compares and bit-wise logical ops occur during the EX1 stage. The genera-
tion of multiply partial products also takes place during the EX1 stage. The EX2 stage could also be called
the ACC(umulator) stage. During this stage, most instructions load the Accumulator with the results from a
three operand addition, where one of the operands is often the Accumulator. When the Accumulator is not
used as an operand into the addition, a constant of zero is used instead. The other operands in to the three-
input adder are; results from the EX1 stage (such as the partial products of a multiply) and constants for
rounding. During the WB stage, the results of the instruction are written back to the VRegister File.

4.6.6.2 Instruction Data Flow and Pipeline Stage Sequences
The figures on the next several pages show the data flow of each type of instruction through the pipeline.

4.6.6.3 Instruction Execution Times
Figure4-2 shows VU instructions flowing through the pipeline at the rate of 1 instruction/cycle. This accu-
rate assuming that there are no data hazards. Unlike the SU, the VU has no forwarding or by-passing of
results in the pipeline. Therefore, all VU computational instructions have a four-cycle latency when followed
by a second computational instruction when the second instruction uses the destination of the first instruc-
tion as a source. Hardware will detect this condition and stall the second instruction at the ID/RF stage until
the results of the first instruction are written back into the VRegister File. The only exception to this general
rule is when the conflicting destination and source is the Accumulator, VCOR or VCCR. The results written
to any of these registers by a computational instruction are available for use by a second computational
instruction in the following cycle.

4.6.6.4 SU/VU Instruction Scheduling (Dependencies and Interlocks)
Below is a list of the various hazard types and a generic description of how they might occur in the MSP on
VICE. These cases assume that once an instruction has been issued to the ID/RF stage of either pipeline,
there are no subsequent stalls.

IF RF EX1 WBEX2
IF RF EX1 WBEX2

IF RF EX1 WBEX2
IF RF EX1 WBEX2

IF RF EX1 WBEX2

Current
VU

Cycle

Figure 4-2 VU Instruction Pipeline

April 17, 1997 166

There are 3 types of hazards; Read After Write (RAW), also called a true dependency, Write After Write
(WAW), also called an output dependency, Write after Read (WAR), also called an anti-dependency. WAW
and WAR hazards have been included mainly for the sake of completeness. WAR hazards occur mainly as a
result of out-of-order issue to multiple functional units. WAW hazards tend to occur when registers are writ-
ten by different stages of different pipelines. Hazard detection hardware will detect and prevent these kinds
of hazards from actually happening. That is to say hardware will prevent the out-of-order issue of the second
instruction when it would lead to these kinds of hazards.

For load transpose and store transpose vector instructions, the lower 3 bits of the reg field should be masked
out so that comparison is done on 8 register entries rather than on the base reg.

4.6.6.4.1 Stalled Instruction Dependencies

When an instruction gets stalled due to a dependency with a previous instruction, it can cause a WAR hazard
to develope which otherwise would not occur. In these situations, any instruction with dependencies follow-
ing the stalled instruction is stalled as well. The second stalled instruction remains stalled until the initially
stalled instruction has been issued and any dependencies with that instruction have been resolved. In other
words, instructions may be issued out-of-order, if and only if there are no dependencies between any of the
instructions involved.

4.6.6.4.2 Read After Write (RAW) Hazards

4.6.6.4.2.1 MTC2/LWC2/VU and SAW/VU instruction

MTC2, LWC2 and VU Instructions all write data into the VRegister File during the WB stage. Since there is
no bypass mechanism in the VU, a RAW hazard occurs when the VU tries to read the data before the result
data is written into the register file. One such scenario of a MTC2 followed by a VU instruction is shown
below.

4.6.6.4.2.2 MTC2/LWC2/SAW/VU instruction and SWC2/MFC2

SWC2 and MFC2 operations read data out of the VRegister File during the EX stage and pass it to the SU
during the LS stage. VU instructions such as SAW and VADD read the operand from the VRegister
File during the ID/RF stage. Hence, the stall conditions for a MTC2/LWC2/VU followed by a SWC2/
MFC2 are less severe than for a MTC2/LWC2/VU followed by a VU Instruction (Refer to 4.6.6.4.1.1); only
3 stall cycles are necessary.

ID EX LSmtc2 $0,$v2

stall ID EX1 EX2 WBvadd $v2,$v2,$v2 stall stall

WB

stall

ID

EX LS WB

vadd $v2,$v2,$v2

ID

EX1 EX2 WB

mfc2 $1,$v2 stallstall

April 17, 1997 167

4.6.6.4.2.3 CTC2 and VU Add/Select

The CTC2 instruction writes the VCCR during the LS stage, instead of the WB stage as is the case with most
other data transferring instructions in the MSP. VU Add/Subtract and Select instructions read and write the
VCCR during EX1 stage. Hence, 2 stall cycles are required when a CTC2 instruction is followed by a VU
Add/Subtract or Select Instruction.

4.6.6.4.2.4 VU Add/Select and CFC2

A VU Add/Subtract or Select instruction followed by a Move Control From Coprocessor 2 does not cause a
hazard because the VCOR is written by the VU at the end of EX1 stage and read by the SU at the beginning
of the WB stage, which corresponds to the EX2 stage of the VU.

4.6.6.4.3 Accumulator and Vector Register Instructions

The Accumulator, VCOR, VCCR and VCER, are the exceptions to the general statement that the VU has no
feedback paths. There is a feedback path for each one of these registers. Therefore, VU instructions which
use either the Accumulator, VCOR or VCCR do not cause hazards when followed by a second instruction
which also uses one of these registers as a source or a destination.

4.6.6.4.4 Write After Write (WAW) Hazards

4.6.6.4.4.1 LWC2/MTC2 and SAW/VU Instruction

Moves of data to the VRegister File immediately preceded or followed by a VU computational instruction
will cause a WAW hazard. Both the SU Move To /Load and the VU computational instruction write results
back to the VRegister File at the end of the WB stage. To ensure that the correct results are written to the

ID

EX1 EX2 WB

ctc2 $3,VCO

ID

EX LS

vaddc $v2,$v2,$v2 stallstall

WB

ID

EX LS WB

vaddc $v2,$v2,$v2

ID

EX1 EX2 WB

cfc2 $1,VCO

WBID

EX1

vseleq $v1,$v2,$v3

ID

EX1

vseleq $v1,$v2,$v3

EX2

WBEX2

April 17, 1997 168

VRegister File after one of these instruction pair is executed, the assembler must issue the instructions in the
proper order and ensure that these instructions are never issued in the same instruction packet.

4.6.6.4.5 VU Add/Select and CTC2
A VU Add/Select instruction followed by a Move Control To Coprocessor 2 does not cause a hazard because
the VCOR is written by the VU Add/Select instruction at the end of EX1 stage and re-written by the SU at
the end of the LS stage, which corresponds to the EX2 stage of the VU.

4.6.6.4.5.1 CTC2 and VU Add/Select
A Move Control To Coprocessor 2 instruction followed by a VU Add/Select instruction causes a hazard
because the VCOR is written by the VU Add/Select instruction at the end of EX1 stage and re-written by the
SU at the end of the LS stage.

ID EX LSmtc2 $0,$v2

ID EX1 EX2 WBvadd $v2,$v3,$v3

WB

ID

EX LS

vadd $v3,$v2,$v2

ID

EX1 EX2 WB

mtc2 $1,$v3 WB

ID

EX2 WB

mtc2$1,$v2

EX1

EX LS WB

vadd$v3,$v2,$v2 ID

ID

EX LS

vadd $v3,$v2,$v2

ID

EX1 EX2 WB

ctc2 $1,VCO WB

ID

EX1 EX2

ctc2 $1, VCO

ID

EX LS WB

vadd $v3,$v2,$v2 WBstallstall

April 17, 1997 169

4.6.6.4.6 Write After Read Hazard

4.6.6.4.6.1 VU Instruction and MTC2

VU instructions read the VRegister File during the RF/ID stage. MTC2 writes the VRegister File during the
WB stage. If the VU instruction is stalled do to a dependency with a previous instruction, say another VU
instruction, then the MTC2 is stalled as well. The MTC2 instruction is stalled until the VU instruction has
complete the RF/ID stage. In this case, the VU instruction can stall at most by 3 cycles (1 stall cycle will
have already passed).

4.6.6.4.6.2 SWC2/MFC2 and VU Instruction

SWC2 and MFC2 read data out of the VRegister File during the LS stage to be written into a destination
during the WB stage. VU instructions write results back during the WB stage. If the SWC2 instruction is
stalled due to a dependency with a previous instruction, say another VU instruction, then a VU instruction
following the SWC2 will have to stall a cycle to prevent overwriting the source register before the SWC2
instruction can read it. In this case, the SWC2 instruction will stall at most by 1 cycles (1 stall cycle will
have already passed).

4.6.6.5 Illegal Instruction Sequence
The harware interlock logic will detect and automatically stall dependencies between instructions that are
issued in different instruction packets. The interlock detection logic will not, however, do any dependency
checking between SU and VU instructions which are issued in the same packet. Therefore, the programmer
must ensure that hazards do not exist between SU and VU instructions which are issued at the same time.
The next several subsections contain illustrative examples of instruction sequences which the interlock logic
will not detect as hazards and which not generate the intended results.

4.6.6.5.1 Read After Write (RAW) Hazards

4.6.6.5.1.1 MTC2/LWC2 and VU instruction

nop
mtc2 $0, $v2
vadd $vd, $v2, $v2

nop
lwc2 $v2, 0($0)
vadd $vd, $v2, $v2

ID

EX LS

vadd $v3,$v2,$v2

ID

EX1 EX2 WB

mtc2 $1,$v2 WB

stall stall stall

stallstall stall stall

ID EX LSswc2 $0,$v2

ID EX1 EX2 WBvadd $v2,$v3,$v3

stall WB

stall

April 17, 1997 170

4.6.6.5.1.2 VU and SWC2/MFC2

nop
vadd $vd, $v2, $v2
mfc2 $0, $vd

nop
vadd $vd, $v2, $v2
swc2 $vd, 0($0)

4.6.6.5.1.3 CTC2 and VU Add/Select

nop
ctc2 $0, VCO
vadd $vd, $vs, $vt

4.6.6.5.1.4 VU Add/Select and CFC2

In the scenario below, the VEQ is stalled as it waits for $v2 to be written, however, the CFC2 would be
issued before the VEQ is issued, resulting in erroneous sequences.

vadd $v2, $v0, $v0
veq $v1, $v2, $v2
cfc2 $1, VCC

However, the following code sequence is fine. This is because the VEQ instruction is not stalled and since
the VCC is updated during the EX1 stage of the VEQ instruction and the VCC is read during the LS stage of
the cfc2 instruction, there are no dependencies.

vadd $v2, $v0, $v0
nop
nop
nop
nop
veq $v1, $v2, $v2
cfc2 $1, VCC

4.6.6.5.2 Write After Write (WAW) Hazards

4.6.6.5.2.1 MTC2/LWC2 and VU instruction

The following sequences will result in unknown data written into the destination VU reg.

nop
mtc2 $0, $v2
vadd $v2, $v0, $v0

nop
lwc2 $v2, 0($0)
vadd $v2, $v0, $v0

4.6.6.5.2.2 VU and MTC2/LWC2 instruction

The following sequences will result in unknown data written into the destination VU reg.

April 17, 1997 171

vadd $v1, $v0, $v0
vadd $v2, $v0, $v0
mtc2 $0, $v2

vadd $v1, $v0, $v0
vadd $v2, $v0, $v0
lwc2 $v2, 0($0)

4.6.6.5.2.3 VU Add/Select and CTC2

In the scenario below, the VEQ is stalled as it waits for $v2 to be written, however, the CTC2 would be
issued before the VEQ is issued.

vadd $v2, $v0, $v0
veq $v1, $v2, $v2
ctc2 $1, VCC

However, the following code sequence is fine. This is because the VEQ instruction is not stalled and since
the VCC is updated during the EX1 stage of the VEQ instruction and the VCC is written during the LS stage
of the CTC2 instruction, there are no dependencies.

vadd $v2, $v0, $v0
nop
nop
nop
nop
veq $v1, $v2, $v2
cfc2 $1, VCC

4.6.6.5.2.4 CTC2 and VU Add/Select

nop
ctc2 $0, VCO
vadd $vd, $vs, $vt

April 17, 1997 172

4.7 Bitstream Processor

The processing of high bit-rate bit streams in the JPEG (low compression ration) and MPEG-2 compression
standards motivates hardware support for processing these bitstreams since current CPU technology cannot
perform the real-time encode and decode functions for the high bit rates in low-compression JPEG and
MPEG-2.

The bitstream processor is a programmable device which is tailored for processing bitstreams of compressed
data. The bitstream processor has a 16-bit RISC-like load-store architecture. Hence, it has an instruction set
which has familiar register to register operations (such as arithmetic operations), instruction stream control
(jumps and branches) and memory to register transfer of data. In addition, the bitstream processor has
instructions which are specific to manipulating arbitrarily aligned tokens in a bitstream of data. furthermore,
the bitstream processor has instructions which can perform the table lookup operations necessary to decode
variable length tokens in a bitstream. The tables provided to these instructions are programmable. They may
be programmed to support decoding of JPEG, H261 MPEG-1, MPEG-2 bitstreams and encoding of H.261
and JPEG standard bitstreams, and with restrictions, can be programmed for proprietary algorithms.

Refer to Figure 41, “Bitstream Processor in the context of the VICE chip,” on page 173.

April 17, 1997 173

FIGURE 41. Bitstream Processor in the context of the VICE chip

In Figure 42, “Bitstream Processor and Memory,” on page 174, the Bitstream Processor is shown with its
instruction memory and table memory. In addition, the Bistream Processor can access data memories (MEM
A, B and C) on the VICE chip. There is a 64-byte FIFO memory which is used in decode operations. For
decode operations, the bitstream FIFO is the repository from which the bitstream processor fetches bitstream
data. In the decode operation, compressed data if put in the bitstream FIFO by the on-chip DMA controller.

In Figure 43, “BSP Internal Block Diagram,” on page 175, the internals of the Bistream Processor are
shown.

Vector Unit

Scalar Unit

Inst. Memory

MEM A MEM BMEM C

DMA
Controller

I/O &
HOST
I/F

Inst.
Memory

Table
Memory

64

128

128

128
128

3232

32

Scalar Unit

128x128 128x128 128x128

1Kx16

2144 x16

512 x64

DMA-Bus
Arbiter

Bitstream
Processor

April 17, 1997 174

FIGURE 42. Bitstream Processor and Memory

IR IR’

IMM
8

AB

DB

AAU
ADREG

rPA
G
E

rD ALU
rT

rS

IMM8

PC

GPRs

IAB

IB

SM
P
C

(r0-r7)

sta
tu

s_
re

g

ro
ot

_t
bl

_p
tr

tb
l_

pt
r

te
m

p

tb
l_

re
s

bl
oc

k_
da

ta

ac
c_

ru
n

d_
in

ad d_
ou

t
bl

oc
k_

pt
r

bl
oc

k_
ad

dr

DB

AB
mux

Table Memory Multi-cycle Instruction State Machine

4-entry Write Buffer

/* from
alpha

/* byte insertion */

a) BSP RISC Processor

b) BSP Table Memory & Miscellaneous Registers

April 17, 1997 175

FIGURE 43. BSP Internal Block Diagram

cm
p_

h

cm
p_

l

m
as

k_
h

m
as

k_
l

comparator logic

bitstream FIFO

al
ph

a_
h

al
ph

a_
l

be
ta

_h

be
ta

_l

a
b

a

b

a

b

a

b

a

b

byte swallower

“0”

pp
ac

k
da

tu

da
tu

V
LC

10

V
LC

V
LC

Pack Pack Pack Pack

PAC PAC4

4

Run/

Ru
n

Ru
np

Ru
np

p

Ru
np

pp

FL
M

O

EN
C_

D
at

um

EN
C_

D
at

um
p

EN
C_

D
at

um
pp

EN
C_

D
at

um
pp

p

/* absolute value */

EN
C_

D
at

um
q

EN
C_

D
at

um
qq

EN
C_

D
at

um
qq

q

/* Find Leftmost One *//* One’s Complement */Ze
ro

 D
et

ec
t

6 66

ppp pp p q qq qqq qqqq

Lo
ad

 D
at

a
Re

g

/* Cntl ppp */ /* Cntl pp */ /* Cntl p */ /* Cntl */ /* Cntl q */ /* Cntl qq */ /* Cntl qqq */

fDatumIsNegativePPfDatumIsNegativeP

“0”
“16”

“0”
“16”

“0”
“16”

“0”
“16”

D
at

um
le

ng
th

 Q

D
at

um

D
at

um

le
ng

th
 Q

Q

le
ng

th
Q

Q
Q

Ru
nB

/*cntlB */

EN
C_

D
at

um
B

/* gereate tabel address */

B

da
ta

le
ng

th
B

/* VLC Lookup */

/* from ACC_RUN */

DB

c) BSP Bitstream FIFO and Bitstream Buffer Shift Registers

d) BSP Encoding Pipeline

April 17, 1997 176

4.7.1 Bitstream Processor Programming Model

The bitstream processor is a 16-bit load store architecture processor which has multi-cycle instructions used
for handling bitstreams. Instruction processing is pipelined.

The Bitstream Processor has a three stage instruction execution pipeline. The pipeline stages are the Instruc-
tion Fetch (IF)stage, Instruction Decode stage (ID) and instruction execute stage (EX).

Instruction Fetch (IF)

In this pipeline stage, instruction addresses are issued from the program counter and the corresponding
instruction is fetched and latched in the instruction register (IR).

Instruction Decode (ID)

In this pipeline stage the instruction in the IR is pre-decoded and the decoded signals are latched in the IR’
register. General purpose registers are fetched in this stage.

Instruction Execute (EX)

In this pipeline stage the instruction is executed. Operands are operated upon and then stored back to the reg-
ister file. For multi cycle instructions it is this pipeline stage which is extended in duration. Condition codes
for arithmetic/compare/logical operations are set during this pipeline stage.

Figure 44, “BSP Instruction Pipeline,” on page 176, shows the three level instruction pipeline in the bit-
stream processor.

FIGURE 44. BSP Instruction Pipeline

Figure 45, “BSP Instruction Pipeline - Multi-cycle,” on page 177, shows the instruction execution pipeline
when a multi-cycle instruction is executed. When multi-cycle instructions are executing, no new instructions
are issued in the execution pipeline. The execution pipeline is stalled while multi-cycle operations are exe-
cuting.

IF (i) ID (i)

IF(i+1)

EX(i)

ID(i+1)

IF(i+2)

EX(i+1)

ID[i+2)

t

April 17, 1997 177

FIGURE 45. BSP Instruction Pipeline - Multi-cycle

Since the instructions have all their execution in the same pipe stage (namely the EX stage), there are no data
dependent pipeline hazards. The only pipeline hazard in the bitstream processor is caused by a change to the
sequential fetching of instructions. This occurs on jump instructions. Figure 46, “BSP Jump/Branch Instruc-
tion,” on page 177, shows the execution of a jump instruction.

FIGURE 46. BSP Jump/Branch Instruction

Note that by the time the jump instruction can cause a change to the instruction stream by fetching at the
jump’s target address, the subsequent sequential instruction has entered the instruction execution pipeline.
Hence, the instruction following the branch is always executed. This processor has one delay slot following
the jump instruction.

4.7.1.1 Bitstream Processor Registers

The bitstream processor has eight general purpose registers (r0,r1,r2,r3,r4,r5,r6,r7). These registers provide
source operands for arithmetic and logic instructions. These registers also may hold address information for
the load and store instructions. These registers are 16-bits wide.

IF (i) ID (i)

IF(i+1)

EX(i)

ID(i+1)

IF(i+2)

EX(i)

EX(i+1)

ID(i+2)

IF (i) ID (i) EX(i)

BRANCH

ALU inst.

IF(i+1) ID(i+1) EX(i+1)

delay slot
IF(i+2) ID(i+2) EX(i+2)

IF(target)Branch Target ID(target)

NB. Branch has 1 delay slot.

April 17, 1997 178

In addition to the general purpose registers are some function specific registers which are collectively called
the alternate register set. These registers are 32 bit registers which can be accessed 16-bits at a time by the
instruction set of the bitstream processor. These registers are enumerated below:

Compare Registers (CMP_h and CMP_l). These registers are used to hold a 32-bit compare value for
searching the bitstream.

Mask Registers (Mask_h, Mask_l). These registers are used to mask out bits in the compare register so
they don’t take part in the compare operation while searching the bitstream.

Alpha Registers (Alpha_h, Alpha_l). These registers hold the next 32 bits in a bitstream.

Beta Register. This register holds up to 32 bits in the bitstream following the alpha register.

There are two more registers which have important functionality for performing variable length coding.
These are:

Table_Root_Ptr. This register is a pointer to the root table in the decode table tree.

Table_Res. This register gets the data field from the leaf node entry in a table search.

Block_Ptr. This register is used, when decoding a bitstream, as a pointer to the memory location where the
decoded block will be stored. When decoding an MPEG, JPEG or H.261 bitstream, the memory region
where the 8x8 block is to be put is set to zeros so that the bitstream processor can put the decoded tokens in
this zeroed region of memory without also writing the zero tokens.

RPage. This register is used as a base register for loads and stores.

ACC_Run. This register is used when decoding a bitstream, to count the number of zero tokens between
non-zero tokens in the bitstream. This value is used when computing the address, in memory, where the non-
zero token is to be stored. When encoding a bitstream, this register is similarly used to count the number of
zero data values between non-zero data values.

Status and Control. This register holds ALU status flags such as Negative, Zero, Carry and Overflow. In
addition it has three bits which may be set by writing to the status-and-control register and subsequently que-
ried as a control flow condition. The format of the BSP status register is shown in Figure 47, “BSP Status
and Control Register,” on page 178.

FIGURE 47. BSP Status and Control Register

The status and control register bits 15-9 are status bits which form the condition code upon which instruction

N Z C V
E
X
T
0

E
X
T
1

E
X
T
2

P

15 812

S
C
A
N

017

B
R
E
S
E
T

236

F
I
M
A
S
K

S
I
M
A
S
K

W
B
E
M
T

45

I
C
N
T
R

O
C
N
T
R

A
U
T
O
I
N
C

E
M
P
T

April 17, 1997 179

sequence altering instructions (i.e. BRANCH and JR) depend. Bits 15-12 represent status from arithmetic or
logical instructions. N means the result of an ALU operation is negative (except for the ABS instruction
where it represents the sign of the input operand of the ABS instruction). Z when 1 indicates that the result
of an ALU operation is zero. C when 1 indicates that the ALU operation resulted in a carry (or borrow). V
when set indicates that an overflow condition has occurred. These bits are zero upon reset. They may not be
modified by the bitstream processor except by performing an alu operation.

Bits 11-9 are status bits used for modifying the instruction sequence. These bits may be set or cleared by the
bitstream processor (i.e. using a COPYTO instruction) or the VICE scalar unit. These bits are cleared upon
reset.

The SCAN bit controls the scan pattern used for MPEG, JPEG and H.261 compression standards. Each of
these standards uses an 8x8 array of pixels which is fetched in Zig-Zag order (See relevant standards docu-
ment). In addition, MPEG-2 has an alternate scan pattern. Instructions in the bitstream processor such as
block_run_level_parse, zzxlate, block_run_size_parse, which use these unusual memory access patterns
(Zig-Zag and Alternate) require special address translation hardware to convert a “linear” address to the scan
pattern address. When the SCAN bit is 0, the Zig-Zag pattern is used. When the SCAN bit is 1, the alternate
scan pattern is used. This bit is set to zero on reset.

The FIMASK bit is used to mask out the FIFO-Empty-Too-Long Interrupt. When 0, this interrupt is allowed
(i.e. unmasked). When 1, this interrupt is ignored (masked) by the BSP. The reset value of this bit is 1.

The SIMASK bit is used to mask out the Code-Not-Found Interrupt. When 0, this interrupt is allowed (i.e.
unmasked). When 1, this interrupt is ignored (masked) by the BSP. The reset value of this bit is 1.

The WBEMT bit is set to 1 when the BSP Write Buffer is empty (i.e. has no data in it). A zero indicates that
there is data in the BSP’s write buffer. This bit is set to 1 on reset.

The ICNTR bit is used to reset the INPUT bit counter. A 1 to Zero transition of this bit causes the input bit
counter to be reset to zero. The INPUT bit counter is incremented everytime 32-bits are consumed by the bit-
stream processor.

The OCNTR bit is used to reset the OUTPUT bit counter. A 1 to Zero transition of this bit causes the output
bit counter to be reset to zero. The OUTPUT bit counter is incremented whenever 16-bits are produced by
the bitstream processor (post byte-insertion for JPEG application.

The BRESET bit is used to reset the valid-bit counter in the bitstream buffer (alpha and beta registers). A 1
to 0 transition of this bit causes the valid bit counter to be reset indicating that there are no bits in the bit-
stream buffer. The reset value of this bit is 1.

The PEMPT bit is used to determine if the BSP’s encode pipeline has active instructions (PEMPT= 0) or has
been completely emptied)PEMPT = 0.

April 17, 1997 180

There are two ways to cause the Bitstream processor to be reset. 1)Assertion of the VICE RESET signal will
cause the BSP to go into its reset state. All state machines are put in their RESET state when this external
signal is asserted. 2) A zero to 1 transition on the RESET BIT in the HALT RESET register will also cause
the bitstream processor to be reset. All state machines are put into thier RESET state within 4 clock cycles of
the 0 to 1 transition. Note that the reset value of the RESET BIT in the halt-and-reset register is zero. Hence,
this bit is cleared to zero after the 0->1 transition is detected. The 0->1 transition is caused by writing a 1
into the RESET bit in the halt-reset register.

4.7.1.2 Bitstream Processor Instruction Summary

In this section, the bitstream processor’s instruction set is summarized. Full details are given in Section???

Load/Store Instructions:

LOADH:

Load a 16-bit halfword from memory into a general purpose register.

LOADBl

Load a byte from memory into the least significant half (bits 7:0) a general purpose register.

LOADBh

Load a byte from memory into the most significant half (bits 15:8) a general purpose register.

Load Immediate

Load an unsigned immediate into a byte of a general purpose register

StoreH

Store the contents of a general purpose register to memory

StoreBl

Store the least significant byte of a general purpose register to memory

StoreBh

Store the most significant byte of a general purpose register to memory

April 17, 1997 181

Arithmetic/ Logical Instructions

ADD

Triadic addition. Sets condition codes.

ADDC

Triadic addition with carry from previous condition code setting instruction added. Used for double
precision arithmetic.

SUB

Triadic Subtract. Sets condition codes

CMP

Compare. Sets condition codes

AND

Bitwise triadic logical AND. Sets Condition codes

OR

Bitwise triadic logical OR. Sets Condition Codes

LSHIFT

Shift a register left by up to eight bits. Fill with zeros

ARSHIFT

Shift a register right by one bit while preserving the sign of the value being shifted.

MULT

Multiply two general purpose registers together. The low half of the product is stored in a general
purpose register, the high half of the product is stored in the cmp_h alternate register.

ZZXLATE

This instruction will map a a 6-bit number into a “Zig-Zag” number or an “Alternate Scan” num-
ber. This instruction is useful for MPEG, JPEG, and H.261 compression standards. The mapping performed
by this instruction is defined by the SCAN bit in the Status-an-Control register.

XOR

Bitwise exclusive OR. Sets Condition codes

ABS

Absolute value (monadic). Sets Condition codes. The Negative condition code is slightly different
from other instructions in that the N-bit is set based upon the sign of the input to the absolute value instruc-

April 17, 1997 182

tion. This allows on to simultaneously compute and absolute value and to know whether the input was posi-
tive or negative. (This is useful in a number of cases when decoding MPEG bitstreams).

Note about ABS: When taking the absolute value of 0x8000, 0x8000 is returned. This is the anoma-
lous case due to the asymmetry in the 2’s compliment number system. The intended use of this instruction is
for decoding Motion Vectors in H261 and MPEG bitstreams. These Motion vectors will neve be larger than
12 bits, hence this anomalous case is not a problem.

NEG

Negate (2’s complement) a register (monadic). Sets Condition Codes.

Bitstream Instructions:

getBits(q) rD, N

Get N (N =1..16) bits from the bitstream registers (alpha and beta) and put these N bits (right justi-
fied) into a general purpose register. Shift the N bits out of the bitstream registers (i.e. advance the bitstream
search by N bits). If q= 1 then perform JPEG byte swallowing. (See section????)

probeBits rD, N

Copy N (N = 1..16) bits from the bitstream registers (alpha and beta) and put these N bits (right jus-
tified) into the a general purpose register. Do NOT Shift the N bits out of the bitstream registers. Unlike the
getBits(N) instruction, this instruction does not advance the bitstream.

ShiftStream(N.q))

Shift N bits off of the bitstream. This instruction can be used to discard (and ignore) bits in the bit-
stream. User information in the bitstream might be an example of data which may be discarded. Macroblock
stuffing bits may also be discarded. If q = 1, then JPEG byte swallowing is performed. (See Section????)

leaf_run_level_parse(q)

This multi-cycle instruction is used to perform the decoding of variable length coded data in the bit-
stream. In particular, this instruction decodes run-level values pertaining to the H.261 and MPEG-1 and
MPEG-2 compression standards. This instruction performs a table searching algorithm to arrive at a run and
level value. With constraints, this instruction, by changing the programmable tables, can perform decoding
of proprietary codes for the run-level decoding of the pixels in the bitstream. This instruction stops execution
when it finds a run-level value (leaf node) in the bitstream. This is determined by a bit in the search tables. If
q = 1, the decoded token (level) in the bitstream is pre-modified before the VICE MSP performs inverse
quantization. This pre-modification is as follows:

level = 2* level + Sign(level).

This is useful for the H261 inverse quantization operation for inter macroblocks. It is also useful for
MPEG inverse quantization operation for non-intra macroblocks. Note that this pre-inverse quantization step
is optional based upon the q-bit in the instruction. If q = 0, then the pre-inverse quantization step is not per-
formed and the level is passed to memory unmodified.

block_run_level_parse(q)

This multi-cycle instruction is used to perform the decoding of variable length coded data in the bit-
stream. In particular, this instruction decodes run-level values pertaining to the H.261 and MPEG-1 and

April 17, 1997 183

MPEG-2 compression standards. This instruction performs a table searching algorithm to arrive at a run and
level value. With constraints, this instruction, by changing the programmable tables, can perform decoding
of proprietary codes for the run-level decoding of the pixels in the bitstream. This instruction stops execution
when it has completed all run-level searches for an 8x8 block of pixels. Hence this instruction can generate
all run-level values for an 8x8 block of pixels. Each level in the block is written to memory on the VICE
chip. If the q-bit in the instruction is set then the level value is pre modified (see description of leaf-
run_level_parse instruction) before being sent to memory for inverse quantization. If q=0 then the decoded
token is passed to memory unmodified. This instruction behaves the same way as the leaf_run_level_parse
except that it searches the decode tables until all tokens in an 8x8 block have been decoded and sent to mem-
ory.

generic_leaf_parse

This multi-cycle instruction is used to perform the decoding of variable length coded data in the bit-
stream. Unlike the run_level_parse instruction, no semantic meaning is placed upon the data found at the
leaf node of the table search. Hence, this instruction can be used to decode VLC’s other than the run-level
VLC’s in the bitstream. and example is the motion vector VLC’s in the MPEG and H.261 compression stan-
dards. Note that, with restrictions, by modifying the tables used to perform the VLC decoding, proprietary
codes can be supported. Furthermore, this instruction may also be used to walk the run-level tables with
additional code used to make semantic meaning out of the table contents.

block_run_size_parse(q)

This instruction supports the JPEG compression standards’ technique of encoding the 8x8 block of
pixel data. The JPEG bitstream contains a VLC which specifies a run of zeros with a length field which spec-
ifies how many bits follow the VLC to represent the data level of interest. Note that with restrictions, the
table lookup can be modified to support other VLC encoding of this information. The JPEG standard (unlike
the MPEG and H.261 standards) allows modification of these VLC encodings. This instruction enables the
JPEG Byte swallowing mode of operation. The Byte-swallowing Mode removes 0x00 bytes from the input
bitstream if they follow byte aligned 0xFF tokens. Non-Zero bytes followiing the byte aligned 0xff sre not
swallowed. See the JPEG standards document for more details.

code_search(q)

This instruction searches the bitstream one bit at a time until it finds a match with the contents of
the CMP (compare) register). The compare register is 32-bits in length, however, the mask register can be
used to eliminate some bits in the cmp register from participating in the compare. This instruction is useful
for searching for “start” codes up to 32-bits in length. This is useful for passing over “stuffing” bits as well as
for error recovery. This operation also allows for skipping the decode of a picture. This can be achieved by
searching for the next picture start code. Note that only B-pictures in the MPEG standard may be skipped
over.

load_code_pack(q,p) offset

This instruction is used for Huffman encoding of an 8x8 block of data. The instruction fetches data
from the effective address (rPage+offset) and places it in the encoding pipeline. If Q = 1, then JPEG style
byte insertion will be performed. If p = 1 then the instruction performed DC coefficient coding. If p=0, the
instruction performs AC coefficient coding. Data passed through the encoding pipe is modified to JPEG
specifications. Run of Zeros and datum size are computed and a Huffman Table lookup is performed. The
VLC code is then packed (appended) into the bitstream buffer (beta_h). The modified datum is then
appended to the bitstream (JPEG-style).

load_code_packH261

April 17, 1997 184

This instruction is used for Huffman encoding of an 8x8 block of data. This instruction fetches data
from the effective address (rPage + offset) and places it in the encoding pipeline. In this encoding pipeline,
H261 Huffman coding is performed.

generic_lookup_pack rT

This instruction is used to perform Huffman encoding of information other than the 8x8 blocks of
DCT coefficients. This instruction is used for the encoding of H261 macroblock headers. This instruction
gives great flexibility for Huffman coding of many types of data.

pack_bitstream(q) L, rT

This instruction is used for encoding bitstreams. In this instruction, L bits (L<=16) left justified in
general purpose register rT are appended to the end of the outgoing bitstream in the alpha and beta registers.
If q=1, then JPEG-style byte insertion (See section????) will be performed.

byte_align

This instruction forces byte alignment of the bitstream, filling with bits from the CMP register.

Branch and Compare Instructions:

CMPI

Compare Immediate. This instruction is used for comparing the contents of a general purpose regis-
ter with an 8-bit immediate value. The comparison is done without altering the general purpose register. This
can be very useful for acting on contents of the bitstream. The compare is an 8-bit unsigned compare, with
the gpr high byte zeroed.

ANDI:

AND Immediate. This instruction is used for examining bits in a general purpose register. This
instruction performs a bitwise logical AND operation with a general purpose register and an 8-bit immediate
value. (upper 8 bits of gpr are ignored)

ADDI:

ADD and 8-bit immediate value (zero extended) to another GPR.

BRANCH:

Conditional jump. This instruction is used to alter the instruction execution sequence based upon
conditions in the status and control register.

JR.

Jump on condition. This instruction is used to alter the instruction execution sequence. The target
address of this jump can be specified in a general purpose register.

RESUME

April 17, 1997 185

This instruction is used to resume execution of a multi-cycle instruction which has been “inter-
rupted” by some exceptional condition. (An example os such an exceptional condition is while decoding an
MPEG escape code).

BREAK

4.7.1.3 INTERRUPTS

For the purposes of discussion, interrupts in the BSP are a change in execution sequence caused by events
not under direct program control. There are four types of interrupts which may occur in the course of BSP
execution.

1) Escape Code Detection. This interrupt is taken when indicated by the contents of the VLC
decode table (See section 4.7.2). When this interrupt is taken, instruction execution commences at location
0x0010.

2) Bitstream Error Detection. This interrupt is taken in response to an error detection in a decoded
bitstream. This interrupt is taken when indicated by the contents of the VLC decode table (See Section
4.7.2). When this interrupt is taken, instruction execution commences at location 0x00c.

3) Bitstream FIFO Empty Too Long. When fetching from the bitstream FIFO, it may be empty. If
the bitstream FIFO is empty for 2048 (4096) cycles as configured in the Status & Control Register then this
interrupt it taken. When this interrupt is taken, instruction execution commences at location?????.

4) Code Search: CODE NOT FOUND. When fetching a bitstream using the code_search instruc-
tion it may be the case that the code isn’t to be found. When the code search instruction starts executing, a bit
counter starts counting the number of bits removed from the bitstream. When 1024K bits (128K bytes) have
been removed from the bitstream without the code of interest being found, this interrupt is taken. When this
interrupt is taken, instruction execution commences at location????

4.7.2 VLC Decode Table Structure

The tables used for decoding the variable length codes (VLC’s) have three implied formats. The first format
is the “generic” format. The second format is the “run-level” format, and the third format is the “run-length”
format.

4.7.2.1 Generic Format

In the generic format, the decode table entries are shown in Figure 48, “Generic Table Entry Format,” on
page 186.

April 17, 1997 186

FIGURE 48. Generic Table Entry Format

Each generic lookup table consists of sixteen entries. Four bits at a time are taken from the bitstream and
used to perform a table lookup. If the LEAF bit is set then the search stops and the value of the leaf node
entry (bits 10:0) is returned. The NO-of-Bits field specifies how many of the four bits used for the table
lookup must be discarded. If the LEAF bit is not set then the VLC search must continue. The NO-of-Bits
field should specify 4 bits to be discarded and the leaf node entry field will be interpreted as an address of the
next lookup table.

When searching for the table entry for a long VLC, many table lookups may be performed.

The “generic” table format is so-called because there is no semantic meaning associated with the leaf node
entry (bits 10:0).

L NO.
of
BITs

E
A
F

15 14 13 012 11 10

Generic Table Entry Format

Leaf node entry/ pointer to next table

21

Unused

April 17, 1997 187

4.7.2.2 Run-Level Format

In the Run-Level Format, the decode table entries are shown in Figure 49, “Run-Level Table Descriptor For-
mat,” on page 187.

FIGURE 49. Run-Level Table Descriptor Format

The Run-Level table format is used when decoding variable length codes describing run-level encoding of
8x8 blocks of data. In the Run-Level case, the Run represents a a number of zero data values followed by a
single data value. This data value is determined by the Level field as well as the S field. Having determined
the magnitude of the data value from the Level field, the sign of the data value will be derived from the bit in
the bitstream following the VLC. This bit will be queried if the S-field (bit 14) is set.

The Run-Level Format search strategy is the same as the generic format except that rather than stopping the
search when the LEAF bit is set, the Run-Level search continues until the STOP bit is set. This STOP bit
generally indicates that the end of the 8x8 block has been found. Hence the Run-Level format can be used to
acquire a number of leaf nodes in the search until it hits the STOP indication. In this way, multiple searches
are performed until the end-of-block (STOP) is indicated.

The Run-Level Format pertains to the MPEG-1, MPEG-2 and H.261 compression standards. Furthermore,
within constraints, the tables can be generated to decode proprietary VLC’s.

4.7.2.3 Run-Level Escape Codes:

Note that the Run field is only 5 bits in length. This restricts the longest RUN to be 31. Similarly the Level
field is only 6 bits in length. This means that a level magnitude of 63 is the greatest which can be repre-
sented. In the MPEG and H.261 compression standards, these field widths are adequate to perform VLC
decoding. When an escape code is found in the bitstream this is represented by TBD in the lookup table.
When an escape code is detected, the escape code symbol in the bitstream is discarded and the VLC decod-
ing state machine interrupts the bitstream processor. The bitstream processor handles the escape code in an
interrupt service routine. Each of the standards, MPEG-1, MPEG-2, JPEG and H.261 have different escape
code processing requirements.

4.7.2.4 Run-Level Table Programming Restrictions

When creating the Run-Level Tables, one should be sure that the table lookup graph is a-cyclic. Cycles in the
graph can cause the bitstream processor to get into an infinite loop while walking the run-level decode graph.

L
S

S
T
O
P

NO.
of
BITs

E
A
F

15 14 13 05612 11 10

Run Level

Run-Level Table Descriptor Format

Not Used

21

April 17, 1997 188

4.7.2.5 Run-Length Format

The Run-Length format for the VLC lookup tables is shown in Figure 50, “Run-Length Table Descriptor
Format,” on page 188.

FIGURE 50. Run-Length Table Descriptor Format

In the Run-Length format the LENGTH field specifies the length, in bits, that must be extracted from the bit-
stream to obtain the data value which follows the run of zeros implied in the RUN field.

The Run-Length Format is germane to the JPEG compression standard.

4.7.3 VLC Encode Table Structure

4.7.3.1 JPEG Encode Table Structure

JPEG encode table structure consists of 32-bit table descriptors which are 2-byte aligned. That is, two 16-bit
memory locations hold a table descriptor. The following figure shows the format of the JPEG encoding VLC
descriptors:

L S
T
O
P

NO.
of
BITs

E
A
F

15 14 13 05612 11 10

Run Length

Run-Length Table Descriptor Format
21

Not Used

H
IT

/M
IS

S

21 20 16 15 0

CODE
SIZE

VLC Code (Left Justified)

JPEG Encode Table Descriptor Format

April 17, 1997 189

In this descriptor, the HIT/MISS bit indicates a valid table entry. The Code size field indicates how many bits
are to be found in the VLC-Code field. In JPEG, VLC codes have a maximum size of 16 bits.

4.7.3.2 H.261 Encode Table Structure

4.7.4 Programming Restrictions.

In this section we summarize the restrictions placed upon the programmer of the Bitstream Processor:

4.7.4.1 Branch

As previously mentioned, instructions which alter the sequence of instruction fetches have a delayed impact.
The instruction immediately following the BRANCH or JR instruction is always executed. Therefore, nei-
ther a BRANCH instruction nor a JR instruction may be immediately followed by another BRANCH or JR
instruction.

The decision to take a branch is based on the condition codes in the status and control register. These bits are
set by most of the format C instructions, including the CMP instruction

The offset for the conditional branch is an 8 bit signed quantity. Therefore, forward branches of more than
127 instructions or backward branches of more than 128 instructions require the use of the JR instruction.

4.7.4.2 Multiply

The multiply instruction takes two cycles to execute. The results of the multiply are not available until two
instructions later. Since the low half of the 32-bit product is put into a general purpose register, the instruc-
tion following the MULTIPLY instruction cannot store to a general purpose register. The high part of the 32-
bit product is put in the CMP_h register.

The preferred method of getting a 32-bit product to the general purpose registers is shown below:

MULT rD, rS, rT

NOP

COPYFROM rX, CMP_h

The net result is that the multiply takes three cycles to get put into the GPR’s

H
IT

/M
IS

S

21 20 16 15 0

CODE
SIZE

VLC Code (Left Justified)

H261 Encode Table Descriptor Format

April 17, 1997 190

4.7.4.3 Add Immediate

The ADDI instruction is an unsigned compound assignment operator such that ADDI GPRn, imm is equiva-
lent to GPRn = GPRn + imm. The immediate must be in the range 0-255.

4.7.4.4 Absolute Value

The absolute value instruction (ABS) is included in the instruction set architecture to facilitate decoding of
motion vectors, and as such, it has two features programers should note.

 The instruction will report the absolute value of -32768 (0x8000) as -32768. Motion vectors in H.261 and
MPEG are less than 12 bits and should not be effected by this restriction.

The N bit of the status and control register is set based on the original value, not the computed value of the
ABS instruction.

4.7.4.5 BRESET

The BRESET bit of the BSP status and control register is an “edge triggered” event. The bit must be first set
and then cleared for the reset to occur. The following is sample code:

// get current state of status_cntl
COPYFROM $6, STATUS_CNTL
// load the breset bit
LDI_l $7, BRESET_L
LDI_h $7, BRESET_H
// OR in breset
OR $6, $6, $7
COPYTO STATUS_CNTL, $6
// get current state of status_cntl
COPYFROM $6, STATUS_CNTL
LDI_l $5, BRESET_MASK_L
LDI_h $5, BRESET_MASK_H
// clear breset bit
AND $6, $6, $5
// store it back to status_ctrl
COPYTO STATUS_CNTL, $6

The reset does not occur for an additional two cycles.

4.7.4.6 COPYTO Delay Hazard

There is a one cycle delay when copying bits to the status and control register before a branch can be taken
based upon these bits..

April 17, 1997 191

4.7.4.7 Encode Pipe Latency

The encode pipe is an eight stage pipe. Thus, no changes to any of the bitstream encoding resources (bit-
stream buffer, root_tbl_ptr, acc_run, alpha and beta registers, block_data, and block_addr) should be made
for eight cycles following a load_code_pack or a generic_VLC_lookup_pack.

4.7.4.8 “Interrupted” Instructions.

The following multi-cycle instructions may encounter exception conditions which will cause execution of
the instruction to be halted temporarily while a service routine is executed. This may happen, for example,
when a bitstream error is detected (indicated in the VLC decode table) or an MPEG (or H.261) ESCAPE
Code is encountered. Such instructions must be followed by two NOP instructions!

The instructions which must be followed by two NOP instructions are:

• block_run_level_parse
• leaf_run_level_parse

4.7.5 Performance of Bitstream Processor

The performance of the bitstream processor can be characterized in a number of ways depending upon the
task it is programmed to perform. The first performance measure is MIPS. Since the bitstream processor
executes one instruction per cycle (except for the multi-cycle instructions), the bitstream processor can be
thought of as performing approximately 66 MIPS peak rate.

A second performance measure is how many variable length codes can be decoded per second. The current
bitstream processor architecture examines 4 bits at a time. It takes two cycles to perform a table lookup and
discard of these four bits, hence, the maximum rate at which the VLC tables can be parsed is 2bits/cycle or
approximately 133 million bits per second. Now this performance will be de-rated because of a number of
factors. First, there is a dependency on the number of bits per symbol in the VLC’s. Typically the shortest
symbol is two bits. If all symbols were two bits, then it would take two cycles to decode these two bits,
hence the decoding bit rate is 1 bit per cycle or approximately 66 million bits per second. Now this number
must be further de-rated by the duty cycle of the bitstream processor. Assume that one is decoding the
VLC’s about 2/3 of the time then the average decoded bit rate is 2/3*66 = 44 million bits per second. This
represents approximately a 5:1 compression for 27MHz., 4:2:2 sampled images(CCIR.601). Of course this
is statistical in nature and support for 4:1 compression is likely.

MPEG-2 compression is likely in the 8Mbit per second (and lower) range. The current bet estimate is that
the duty cycle for the VLC decoding is approximately. 1/3. Hence the bitstream processor has the capability
of decoding approximately. 22 million bits per second. This is sufficient for MPEG-2 decoder. In the MPEG-
2 decoder, however, larger demand is placed on the bitstream processor to compute motion vector informa-
tion and addresses for the DMA sub unit. This is why the duty cycle of the VLC processing is smaller than
for the JPEG application.

.Include further discussion here on MPEG-2 decode performance requirements????????

April 17, 1997 192

4.7.6 Bitstream Processor Hardware Architecture

4.7.6.1 RISC Processor

The BSP’s “RISC” Processor is a 16-bit processor having a load-store architecture like today’s RISC proces-
sors. There are 8 general purpose registers, one ALU, one Multiplier (pipelined), Shifter as well as some
specific function units used in the parsing of bitstreams and the computation of motion-vector information in
the bitstreams. These special purpose function units perform negation (2’s complement negation), absolute
value and Scan pattern translation (Zig-Zag & ALternate Scan). See the MPEG-2 standards document.

The RISC Processor pipeline is discussed in section 4.7.1.

Figure??? Shows the “RISC” processor section of the BSP.

The rPAGE register is notable because it is the base register used by load and store instructions when form-
ing the effective address of the load and store instruction. An 8-bit immediate value is added to the rPage
register when performing the effective address calculation, hence the need for the AAU (Address arithmetic
Unit). This means that the programmer can load and store from a 128-halfword (16-bits) page of memory. In
addition the long-load (LLOAD) and long-store (LSTORE) instructions can be used to access halfwords
anywhere within the 16-bit memory space of the BSP, however, the effective address for these operations is
absolute, i.e. not formed from base + offset.

The general purpose registers (GPRs) are eight in number and have no special restrictions. Unlike the MSP
scalar unit, register 0 is general purpose (ie not fixed to zero),

IR IR’

IMM
8

AB

DB

A
A
U

A
D
R
E
G

r
P
A
G
E

rD A
L
U

rT

rS

IMM

P
C

GPRs

IAB

IB

S
M
P
C

(r0-r7)
sta

tu
s_

re
g

MULT

ZZ

to cmp_h

April 17, 1997 193

The ALU is a generic ALU. See Appendix??? on BSP instruction set.

The multiplier is a two cycle multiplier (See programming restrictions) with the lower 16 bits of the product
being stored in a GPR and the upper 16 bits of the product being stored in the CMP_h register. The multi-
plier is intended to speed the computation of addresses for the DMA controller for the MPEG decode appli-
cation.

The ZZ block performs inverse Scan translation on the lower six bits of the source GPR and puts a zero-
extended, translated, six bits back into a GPR. This functionality is used in processing of escape codes in the
MPEG and H.261 compression standards.

4.7.6.2 Bitstream Buffer

The bitstream buffer consists of two principle components. The first is a 64 byte (16 x 32) first in first out
(FIFO) which is filled by the VICE DMA controller. It is emptied by the bitstream processor. When the bit-
stream processor requires more bitstream data, the bitstream processor fetches 32-bits at a time from the bit-
stream FIFO. These 32-bits are fetched into the “Beta register” which is part of the other principle
component, the bitstream shifter. The bitstream shifter consists of two 32-bit registers and a 64-bit shifter.
Figure 51, “Bitstream Buffer,” on page 194, shows a block diagram of the bitstream buffer.

April 17, 1997 194

FIGURE 51. Bitstream Buffer

The bitstream buffer keeps the bitstream left justified in the alpha and beta registers. Hence, the bitstream is
read left to right. When the bitstream processor gets bits from the bitstream buffer it gets bits from the left-
most eight bits of the alpha register (alpha[31:24]). When the bitstream processor gets N bits from the bit-
stream (N <=8) the N bits are returned right justified with zero fill to the bitstream processor. These bits are
put into a GPR in the RISC processor. When the N bits are read from the head of the alpha register, the alpha
and beta registers are shifted left by N bits so that the new head of the bitstream is in the most significant part
of the alpha register. Before the shift of the bitstream is performed, the number of valid bits in the beta regis-
ter is queried. If the number of valid data bits in beta is greater than or equal to N, the shift is performed in
one step. In the event that the number of valid bits in beta is less than N, the shift takes place in two steps.
The first step shifts the data by the number of valid bits (vbits). Then the next 32-bits in the bitstream FIFO
are fetched into the beta register. Having fetched the 32-bits into beta, the bitstream is shifted left by (N-
vbits) and the number of valid bits is updated to be 32 - (N - vbits).

(<< 1,2,3,4,5,6,7,8,32)

Bitstream FIFO

Alpha register Beta Register

[31:0]

[31:24]

[31:0]

[31:0]

16x32

031

031031

vbits

/* to code search */
/* to RISC processor */

April 17, 1997 195

This multi-step operation will cause the bitstream processors’ RISC processor to stall operation until the
multi-cycle bitstream fetch is completed. In the event that no bitstream bits are available in the bitstream
FIFO to fill the beta register, the bitstream processor shall----------?????? to be completed.

4.7.6.3 Code Search

The code search section of the bitstream processor allows the bitstream processor to search for codes from
one to 32 bits in the bitstream. This is particularly useful for searching for “start” codes in the MPEG bit-
stream or “markers” in the JPEG bitstream. The codes search section of the bitstream processor contains two
32-bit registers each of which are made up from two 16-bit registers. The compare register (CMP) is used as
a reference. It contains the code one is searching for in the bitstream. The mask register (MASK) is a register
which is used to specify which bits in the 32-bit compare register are to take part in the compare operation.
Figure 52, “BSP Code Search Block Diagram,” on page 195 shows the Code search mechanism.

FIGURE 52. BSP Code Search Block Diagram

CMP_h CMP_l

015015

015015

MASK_lMASK_h

Comparator

Hit/Miss

alpha[31:0] /* bitstream input */

April 17, 1997 196

4.7.6.4 VLC Table Parser

4.7.6.5 Bitstream FIFO

The bitstream FIFO is a 64-byte (16 x 32-bit) first-in-first-out memory buffer. In decoding applications it is
filled with bitstream data (VICE DMA) and the BSP empties it 32-bits at a time. In encoding applications,
this FIFO is filled with bitstream data from the BSP’s write buffer and emptied by VICE DMA.

Figure?? shows the bitstream FIFO.

4.7.7 Bitstream Processor / Scalar Unit Synchronization

Program synchronization between the BSP and the Scalar Unit on VICE is done by sending messages
between the two sub-units via two unidirectional mailbox registers.

4.7.7.1 BSP_MBOX register.

The BSP_MBOX register is a 16-bit register which is readable by the BSP and both readable and writable by
the Scalar Unit. This register is also accessible by the Host CPU. The register format is shown below:

The SU can send a message to the BSP by writing the message in the BSP_MBOX register. This message
must fill bits 14-0. When the SU writes into this mailbox register, the BSIGNAL bit (15) is set to one, irre-
spective of the value which the SU may put on the commensurate bit of its data bus. The SU may read the

empty_ptr

fill_ptr

0

15

32

FIFO full Flag

two-ported memory

01415
B
S
I
G
NAL

April 17, 1997 197

contents of this register non-destructively (an SU read of this register will NOT affect its contents). When
the BSP reads from this register (LoadH instruction) the BSIGNAL bit (15) is copied into the BSP along
with the rest of the register contents. This BSP read, however, clears the BSIGNAL bit for subsequent reads.

4.7.7.2 MSP_MBOX register.

The MSP_MBOX register is a 16 bit register which is readable by the Scalar Unit and both readable and
writable by the BSP. This register is also accessible by the host CPU. The register format is shown below:

The BSP can send a message to the SU by writing the message in the MSP_MBOX register. This message
must fill bits 14-0. When the BSP writes to this mailbox register, the SUSIGNAL bit (15) is set to one. The
BSP may read the contents of this register non-destructively (A BSP read of this register will not affect its
contents). When the Scalar Unit reads from this register (MFC instruction). the SUSIGNAL bit is copied to
the Scalar Unit along with the rest of the register contents. This SU read, however, clears the SUSIGNAL bit
for subsequent reads.

01415
SU
S
I
G
NAL

April 17, 1997 198

5.0 Operational Description

How various primitives are implemented using this hardware. Could also be used to quantify system bottle-
neck issues such as data flow rates for various primitives. May be more likely to move the Bent’s document
called “A Day in the Life of Vice” that talks about the interface between the Unix Processor and Operating
System and the onboard MSP activity.

April 17, 1997 199

6.0 Performance Analysis

In this section we describe the performance of the VICE chip for a number of application. Each application
has different demands on each component ot the VICE architecture. Some applications are very demanding
of the bitstream processor while others are very demanding of the computation capability of the vector unit.
Most applications place a lot of demand on the DMA processor to provide data in a timely manner.

The VICE chip has a clock Period of 15ns. corresponding to a clock rate of 66 MHz.

Most performace estimates for the applications described are for a level of granularity appropriate for the
application. Form MPEG and Px64, this is the Macroblock level. For JPEG it is the MCU level. This granu-
larity is motivated mostly by the available storage on the VICE chip.

Given the macroblock or MCU granularity, it is useful to compute how many clock cycles are available for
processing the unit of granularity. For the applications subsequently described, this is principally motivated
by picture size and picture rate. Hence, for a 720x480 (CCIR-601) picture (1350 Macroblocks) at 30 fps,
the time to process a macroblock is approximately 1600 clock cycles.

For a 720x480 (CCIR 601) we have chosen to have 2700 MCUs in the JPEG still image compression algo-
rithme. If one were to try to encode or decode these JPEG pictures at 30 fps there are 800 cycles available
to process each JPEG MCU.

Note that a JPEG MCU is assumed to have 4:2:2 structure, while the MPEG macroblock is assumed 4:2:0.

6.0.1 Peak Hardware Performance

6.1 Baseline JPEG Decode Application

This application is very demanding on the bitstream processor when the compression ration of the bitstream
being decoded is small. VICE will be able to decode 4:1 compressed bitstreams (4:2:2 MCU).

The followinglist shows the performance requirements for decoding an MCU from each of the Bitstream
Processor, Sclar Unit/Vector Unit and DMA processor:

Scalar Unit/ Vector Unit:

Inverse Quantization:120 clock cycles per MCU

Inverse Discrete Cosine Transform: (4 8x8 blocks) 90 clock cycles per 8x8, giving 360 clocks per
4:2:2 MCU.

Bitstream Proceesor:

Decode of 8 4:1 compressed 8x8 blocks: The bitstream processor performance is driven by both the
number of bits to be decoded as well as the number of tokens to be encoded. From a token based perspective,
a 4:1 compression would have 128 tokens (8-bit coded tokens) . It takes the bitstream processor 5 cycles to
decode 8 bits. Hence it takes 5*128 or 640 cycles to decode such a bitstream. From a bitrate based perspec-
tive, a 4:1 compressed bitstream should have 1024 bits in it. If every token is the shortest token (2 bits) this
means decoding 512 tokens. It takes 3 cycles to decode a 2-bit token, hence it will take 1536 cycles to
decode such a MCU. Since, the former case (token based perspective) is more realistic (quantization is
aimed as reducing the number of tokens) it is expected that decoding of 4:1 compressed bitstrteams is viable.
The bitrate based approach being an extreme worst case.

April 17, 1997 200

DMA Processor:

Fetch of 4:1 compresses bitstream (~64 bytes for an MCU) (180 clock cycle)

Store of Decompressed MCU:

6.1.1 Baseline JPEG decode Data Flow

MCU(i)

MB(i+1)
Memory A Memory B Memory C

Bitstream
FIFO
(64 bytes)

write buffer

Data Flow For MCU Level JPEG Bitstream Decode

MCU(i+1)

MCU(i-1)

(4:2:2)
512 shorts

(4:2:2)

512 shorts

Bitstream
Processor

SU/VU

DMA into bitstream FIFO DMA results to system memory

April 17, 1997 201

6.1.2 Baseline JPEG decode registration Diagram

6.2 Baseline JPEG Encode (lossy) Application

Scalar Unit/ Vector Unit:

Quantization:: 120 cycles.

Discrete Cosine Transform: (4 8x8 blocks): 90 clock cycles per block or 360 cycles per MCU

Bitstream Proceesor:

Encode of 8 4:1 compressed 8x8 blocks: The bitstream processor can “Huffman code” an 8x8
block in 128 clock cycles.

DMA Processor:

Fetch of input MCU

Store of compressed (4:1) MCU (~ 128 bytes for 4:2:2 MCU)

BSP

DMA

MSP

Store MCU(i-1)(1800)

MCU Header Decode (80)

VLC Decode(MCU(I+1)

Q Matrix Update(96)

Inverse Quantization(120)

Inverse DCT(360)

Bitstream Fetching

Zero MCU(i+1) Buffer (InternalDMA)(128)

4:2:2 MCU Level Decoding of JPEG bitstream

MCU time = 800 cycles

April 17, 1997 202

6.2.1 Baseline JPEG Encode MCU data flow:

MCU(i)

Memory A Memory B Memory C

Data Flow For MCU Level JPEG Bitstream Encode

MCU(i+1)
(4:2:2)

256 shorts
(4:2:2)

SU/VU

MCU(i-1)

Bitstream
FIFO
(64 bytes)

write buffer

Bitstream
Processor

MCU(i-1)

MCU(i)
Quant Tables
Misc.

Quant Tables
Misc.

April 17, 1997 203

6.2.2 Baseline JPEG Encode registration diagram:

6.3 Lossless JPEG Application

Our studies indicate that the VICE engine can perform lossless JPEG using any of the seven predictors and
Huffman coding. See: Tuffli; Lossless JPEG on VICE; internal memo; Sept. 1994

6.4 MPEG-2 Decode Application

Scalar Unit/ Vector Unit:

Update quantization matrix:

Inverse Quantization:

Discrete Cosine Transform:: (540)

Predictor averaging and Motion Compensation:

Bitstream Processor:

Macroblock Header Decode: (120)

Motion Vector Extraction (FWD/BWD, FIELD0/FIELD1, Horizontal/Vertical) (240)

Motion Vector Computation:

BSP

DMA

MSP

Load MCU(i+1) (4:2:2)

DCT (MCU(i)) Quantization
(MCU (i))

(720) (240)

Huffman Coding & bitstream packing(1200)

Store Bitstream from Bitstream FIFO

Result to MEM C

Source from MEM C

4:2:2 MCU encoding of JPEG Bitstream

Note, the MSP is putting results into MEM C while the BSP is taking data to be Hufman coded from MEM C.
There are 64 stores to MEM C and 512 reads from MEM C, hence, given the BSP priority for memory, the time to
perform Huffman encoding will be lengthened by approx 64 cycles. This accounts for the derating time shown above.

MEMC
Contention
Derating

(64)

(360)

April 17, 1997 204

Predictor Fetch Set Up.

DMA Processor:

Store of Reconstructed Macroblock

Fetch of FWD Predictor;(Field Prediction) w Half-pel interpolation:

Fetch of BWD predictor (Field Prediction) w Half-pel interpolation:

Fetch of bitstream.

Predictor averaging and Motion Compensation:

6.4.1 MPEG-2 Decode Application Data Flow:

MB(i)
MB(i+1)

MB(i+1)

MB(i+1)
FWD Predictor

MB(i+1)
BWD Predictor

384 shorts

MB(i-1)
(4:2:2)

(4:2:0)

Memory A Memory B Memory C

Bitstream
FIFO
(64 bytes)

write buffer

MB(i)
BWD Predictor

MB(i)
FWD Predictor

Data Flow For Macroblock Level MPEG-2 Bitstream Decode

April 17, 1997 205

6.4.2 MPEG-2 Decode Application registration Diagram

Bitstream

6.5 H.261 Application

6.6 Image Vision Library Primitives

BSP

DMA

MSP

Store MB(i-1)(240)

MB Header Decode (until MV)(120)
Extract MV info from bitstream(240)

Compute FWD MVs(80) Extract BWD MV info from bitstream(240)

DMA setup(100)

VLC Decode

FWD Predictor Fetch (460) BWD Predictor Fetch (460)

Q Matrix Update

Inverse Quantization(292)

Inverse DCT(540)
pred.
averaging(320)

(96)

Bitstream Fetching

Zero MB(i+1) Buffer (InternalDMA)(96)

Compute BWD MVs (80)

Pred Sum.
4:2:0 to 4:2:2

540 960

DMA Setup(100)
MV predictor update

1256

1248

1060 +

Macroblock Level Decoding of MPEG-2 Bitstream

April 17, 1997 206

7.0 Precision Analysis

7.1 Scalar Unit

April 17, 1997 207

7.2 Vector Unit

April 17, 1997 208

8.0 Device Interface

8.1 Signal Descriptions

Figure 53, “Logical pin diagram of VICE,” on page 208 shows the Pins on VICE arranged by functional
grouping. Table 73, “VICE Pin Descriptions,” on page 209 covers detailed characteristics of each VICE pin
(Drive Strength, direction and description).

All I/O signals on VICE and the R4ValidIn_n output are 3-state pins that operate as such in the Moosehead
system. These same I/O signals and the R4ValidIn_n output will be put in the high-impedance state with the
Reset_n signal when asserted in the Moosehead system. For board test, these same signals and all other chip
outputs can be placed in high impedance mode with the Tristate_en pin.

FIGURE 53. Logical pin diagram of VICE

VICE

SysAD(63:0)

MSPClock

56

VDD

VSS

75

PLL_ANALOG_DIG
4

TDO
Pll_FB

TMS
TRST

PllEn

Tristate_en

TDI

TEST PINS

ViceSysRqst_n

64
SysADC(7:0)

8
SysCmd(8:0)

9

Vice_Int_n
SClock

ViceSysGnt_n
ViceRelease_n

RdRdy_n
WrRdy_n
R4ValidOut_n

R4ValidIn_n

Reset_n

SysCmdP
2

ViceValidOut_nViceValidIn_n
ViceWrRdy_n

Core

39

VDD
I/O

VSS

18

Core I/O

TCK

VDD

VSS

32

PKG

Pll_REF
IDDQ_EN_N

ViceID(1:0)

LA_CLK
MSP_PC(9:0)

BSP_PC(9:0)
MSP_Signal

BSP_Signal
BSP_Inbox_15

BSP_Outbox_15
DMA_Stat_Ch1(0)

DMA_Stat_Ch1_30(3:0)
DMA_Stat_Ch2(0)

DMA_Stat_Ch2_30(3:0)

April 17, 1997 209

TABLE 73. VICE Pin Descriptions

Pin Name Type Description
Output
Drive

SysAD(63:0) I/O 64-bit Multiplexed Address/Data bus. Bidirectional signals
used to communicate with the Unix Processor and the CRIME
chip. Cycles on the SysAD which contain a valid address are
called address cycles. Cycles on the SysAD which contain
valid data are called data cycles. Validity is identified by the
R4ValidOut_n, R4ValidIn_n, ViceValidOut_n and ViceVa-
lidIn_n pins.

8 mA

SysADC(7:0) I/O 8-bit SysAD check bus (even parity). An 8-bit bus containing
check bits for the SysAD bus.

8 mA

SysCmd(8:0) I/O 9-bit command bus. The SysCmd bus identifies the contents of
the SysAD bus during any cycle in which it is valid.
SysCmd(8) is used to indicate whether the current cycle is an
address cycle [SysCmd(8)=0] or a data cycle [SysCmd(8)=1].

8 mA

SysCmdP I/O 1-bit SysCMD check (even parity) for the SysCmd bus. 8 mA
SClock I Input System Clock for SysAD bus Synchronization. The

SClock is fed to CRIME, VICE and the Unix Processor which
all share the SysAD bus. CRIME and VICE use an internal
Phase Lock Loop to align the phase of SClock on the clock
tree inside of these chips with the phase of SClock at the input
pin. Only the Host Interface block inside of VICE uses the
PLL generated SClock.

RdRdy_n I External agent ready to accept a new read. VICE samples the
signal RdRdy_n to determine the issue cycle for a processor
read request.

WrRdy_n I External agent ready to accept a new write. VICE samples the
signal WrRdy_n to determine the issue cycle of a processor
write request.

R4ValidOut_n I Data from Unix processor is valid. The Unix processor drives
this signal. Both CRIME and VICE monitor this signal. All
Unix processor address cycles (read or write) drive this signal
active. Unix processor write data cycles drive this signal
active.

R4ValidIn_n O Data to Unix processor is valid. If the cycle is a read response
data cycle from CRIME to the Unix processor, the CRIME
chip drives this signal. If the cycle is a read response data
cycle from VICE to the Unix processor, the VICE chip drives
this signal. It is a 3-state signal on both CRIME and Vice.

8 mA
3-state
shared
with
CRIME

ViceWrRdy_n O To CRIME. This signal is used when the Unix processor
writes to the VICE chip. If the write buffer in VICE has 4
entries or less, VICE asserts this signal. The signal is
reclocked by CRIME and presented to the Unix processor its
WrRdy_n pin. This signal is not used during transactions
between VICE and Crime.

8 mA

April 17, 1997 210

ViceValidOut_n O Data from VICE is valid. VICE drives this signal which is
monitored by Crime. All VICE address cycles (read or write)
drive this signal active. VICE write data cycles drive this sig-
nal active.

8 mA

ViceValidIn_n I Data to VICE is valid. CRIME drives this signal which is
monitored by Vice. CRIME asserts this signal during read
response data cycles.

ViceSysRqst_n O VICE request to use SysAD bus. VICE drives this signal
which is monitored by Crime. Any VICE initiated address or
data cycle must be preceded by bus ownership. CRIME will
request the SysAD bus from the Unix processor when VICE
asserts ViceSysRqst_n. VICE will de-assert this signal in the
cycle after it receives ViceSysGnt_n.

8 mA

ViceSysGnt_n I OK to use SysAD bus. CRIME drives this signal when the
Unix processor has Released the SysAD bus to CRIME as the
result of a ViceSysRqst_n assertion. CRIME will assert this
signal for one SClock cycle when granting the SysAD bus to
VICE.

ViceRelease_n O VICE releases SysAD bus. VICE drives this signal which is
monitored by CRIME. VICE will assert this signal for one
SClock cycle when releasing the SysAD bus. VICE will per-
form SysAD transactions for up to 8 pipelined block transfers
before releasing the SysAD bus.

 8 mA

VClock I VICE Input Clock 66MHz.
Used in the MSP, BSP and DMA blocks of the chip. These
blocks use this clock exclusively and are functionally isolated
from the clock domain of the SysAD bus (SClock). The Host
Interface block inside of VICE also uses this signal when
crossing over to the SysAD bus clock domain (SClock).

VICE_Int_n O VICE drives this signal which is monitored by the CRIME
chip. This is a level sensitive interrupt signal that is a collec-
tion of interrupts from devices internal to the VICE chip.
It is also possible that this interrupt may be connected directly
to the Unix Processor.

8 mA

Reset_n I Reset Signal from CRIME. This signal is driven by CRIME to
both VICE and the Unix Processor. It is used by VICE to 3-
State SysAD I/O pins and the R4ValidIn_n output pin asyn-
chronous to SClock. Vice re-synchronizes this signal to the
SClock and VClock domains for use in resetting all internal
state machines.

Vice_ID(1:0) I Vice Id pins. Allows Vice to respond to one of four address
ranges. Mapped to bits A21 and A20 of the SysAD bus.
0x0 170X XXXX = Vice_ID 00
0x0 171X XXXX = Vice_ID 01
0x0 172X XXXX = Vice_ID 02
0x0 173X XXXX = Vice_ID 03

TCK I Input for Boundary Scan Clock. Selected per JTAG 1149 con-
troller mode.

Pin Name Type Description
Output
Drive

April 17, 1997 211

TDI I Data Input Pin for Boundary Scan Test.
TMS I Test Mode Select - Boundary Scan Tap Controller
TRST I Test Mode Reset - Boundary Scan Tap Controller
TDO O Test Data Out - Boundary Scan Chain 8 mA
TristateEn I 1 - Ouputs Active, PLL Enabled and Powered On

0 - Outputs 3-State, PLL Disabled and Powered Off
This signal can be asserted asynchronously.

PLL_AG GND Analog Phase Lock Loop Ground
PLL_AP PWR Analog Phase Lock Loop Power
PLL_BYPASS I 1- Bypass Internal Phase Lock Loop

0- Use Internal Phase Lock Loop - Normal System Config.
PLL_DIV20 O Phase Lock Loop Clock Signal / 2 Output for Test Purposes 2 mA
PLL_FB O Phase Lock Loop Clock Signal Output for Test Purposes 2 mA
PLL_REF O Clock Signal Input to Phase Comparator of PLL for Test Pur-

poses. (SClock buffered)
2 mA

PLL_TESTE I 1- Pll_FB and PLL_REF outputs enabled
0- Pll_FB and PLL_REF outputs disabled - Normal System
Config.

MSP_PC(9:0) O Media Signal Process Program Counter - Bits 12:3 2 mA
MSP_SIGNAL O Bit 4 of BSP_FIFO_STAT register for Hardware Observ. 2 mA
BSP_PC(9:0) O Bit Stream Process Program Counter - Bits 10:1 2 mA
BSP_SIGNAL O Bit 3 of BSP_FIFO_STAT register for Hardware Observ. 2 mA
BSP_OUTBOX_15 O Mailbox flag of BSP outbox. Reset by MSP read. Set by BSP

write. Available for Hardware Observation.
2 mA

BSP_INBOX_15 O Mailbox flag of BSP inbox. Set by MSP write. Reset by BSP
read. Available for Hardware Observation.

2 mA

DMA_Stat_Ch1(0) O Copy of DMA_STAT_CH1 register bit 0.
 0=DMA Not complete
 1=DMA Complete

2 mA

DMA_Stat_Ch1_30
(3:0)

O Copy of DMA_STAT_CH1 register bits 11:8
DMA_STAT_CODE

2 mA

DMA_Stat_Ch2(0) O Copy of DMA_STAT_CH2 register bit 0.
 0=DMA Not complete
 1=DMA Complete

2 mA

DMA_Stat_Ch2_30
(3:0)

O Copy of DMA_STAT_CH2 register bits 11:8
DMA_STAT_CODE

2 mA

VDDI PWR 56Pins Core +3.3V Power (24 more pad connections from die
to pakage internal)

VDDE PWR 39Pins I/O +3.3V Power
VSSI GND 75Pins Core Ground (28 more pad connections from die to

pakage internal)

Pin Name Type Description
Output
Drive

April 17, 1997 212

VSSE GND 18Pins I/O Ground (88 more pad connections from die to
package internal)

VSS_PKG GND 32 Ground connections to TBGA internal Ground Plane.

Pin Name Type Description
Output
Drive

April 17, 1997 213

8.2 Pin Assignments

The following table provides the physical pin to signal name assignments sorted by the TGBA pin number.

TABLE 74. 380 BGA Pin Assignments - Pin Order

Pin # Signal Pin # Signal Pin # Signal
A01 VSS_PKG A02 VSS A03 TDI
A04 VSS_PKG A05 TRST A06 TCK
A07 VSS_PKG A08 VDD A09 VSS
A10 VSS_PKG A11 VSS A12 VCLOCK
A13 VSS_PKG A14 VSS A15 VSS_PKG
A16 VSS A17 VSS A18 VSS_PKG
A19 VSS A20 VSS A21 VSS_PKG
A22 VSS A23 VSS A24 VSS_PKG
B01 VSS B02 VSS B03 VDD
B04 MSP_PC(9) B05 VSS B06 VSS
B07 MSP_PC(7) B08 MSP_PC(6) B09 VDD
B10 VSS B11 VSS B12 VSS
B13 VSS B14 TEST_OUT_ENB B15 VSS
B16 VDD B17 MSP_PC(4) B18 VDD
B19 VDD B20 MSP_PC(2) B21 VDD
B22 VDD B23 VDD B24 VSS
C01 SYSAD(32) C02 VDD C03 VDD
C04 TMS C05 TDO C06 MSP_PC(8)
C07 VSS C08 VDD C09 VSS
C10 VDD C11 LA_CLK C12 VDD
C13 VSS C14 VDD C15 VDD
C16 MSP_PC(3) C17 VSS C18 MSP_PC(1)
C19 VDD C20 VDD C21 VSS
C22 VDD C23 BSP_SIGNAL C24 VSS
D01 VSS_PKG D02 SYSAD(2) D03 SYSAD(0)
D04 VSS D05 VSS D06 VDD
D07 VSS D08 VDD D09 VSS
D10 VSS D11 VDD D12 IDDQ_EN_N
D13 VDD D14 TRISTATEEN D15 VSS
D16 VSS D17 MSP_PC(0) D18 VSS
D19 VSS D20 VDD D21 VSS
D22 SYSAD(1) D23 SYSAD(33) D24 VSS_PKG
E01 SYSAD(34) E02 SYSAD(36) E03 SYSAD(4)
E04 VDD E05 VDD E06 VDD
E07 VSS E08 VDD E09 VDD
E10 VDD E11 MSP_PC(5) E12 VDD
E13 VSS E14 VDD E15 VDD
E16 VDD E17 VDD E18 VSS

April 17, 1997 214

E19 VDD E20 VDD E21 VSS
E22 SYSAD(3) E23 SYSAD(35) E24 VSS
F01 SYSAD(8) F02 SYSAD(38) F03 SYSAD(6)
F04 VDD F05 VDD

F20 VDD F21 VSS
F22 SYSAD(7) F23 SYSAD(5) F24 VDD
G01 VSS_PKG G02 SYSAD(10) G03 SYSAD(40)
G04 VDD G05 VSS

G20 VDD G21 VDD
G22 SYSAD(37) G23 SYSAD(39) G24 VSS_PKG
H01 SYSAD(42) H02 SYSAD(44) H03 SYSAD(12)
H04 VDD H05 VSS

H20 VSS H21 VDD
H22 SYSAD(9) H23 SYSAD(41) H24 VDD
J01 SYSAD(46) J02 SYSAD(14) J03 SYSAD(60)
J04 VSS J05 VDD

J20 VDD J21 VSS
J22 SYSAD(11) J23 VDD J24 VSS
K01 VSS_PKG K02 SYSAD(30) K03 SYSAD(62)
K04 VDD K05 VDD

K20 VDD K21 PLL_FB
K22 PLL_BYPASS K23 VSS K24 VSS_PKG
L01 SYSAD(58) L02 SYSAD(28) L03 SYSAD(26)
L04 VSS L05 VDD

L20 SCLOCK L21 PLL_AP
L22 PLL_AG L23 PLL_DIV20 L24 PLL_TESTE
M01 VSS_PKG M02 SYSAD(56) M03 SYSAD(24)
M04 VDD M05 VSS

M20 PLL_REF M21 VCOK
M22 SYSAD(43) M23 SYSAD(13) M24 VDD
N01 SYSAD(54) N02 SYSAD(22) N03 SYSAD(50)
N04 VSS N05 VDD

N20 VDD N21 VSS
N22 SYSAD(45) N23 SYSAD(63) N24 VSS_PKG
P01 SYSAD(52) P02 SYSAD(20) P03 SYSAD(18)
P04 VDD P05 VSS

P20 VSS P21 VDD
P22 SYSAD(21) P23 SYSAD(61) P24 VSS
R01 VSS_PKG R02 SYSAD(48) R03 SYSAD(16)
R04 VSS R05 VDD

R20 VDD R21 VSS

TABLE 74. 380 BGA Pin Assignments - Pin Order

Pin # Signal Pin # Signal Pin # Signal

April 17, 1997 215

R22 SYSAD(31) R23 SYSAD(27) R24 VSS_PKG
T01 SYSADC(0) T02 SYSADC(2) T03 SYSADC(4)
T04 VSS T05 VDD

T20 VDD T21 VSS
T22 SYSAD(59) T23 SYSAD(25) T24 VDD
U01 SYSADC(6) U02 VDD U03 VSS
U04 VDD U05 VDD

U20 VSS U21 VSS
U22 SYSAD(57) U23 SYSAD(55) U24 VSS
V01 VSS_PKG V02 VDD V03 VSS
V04 VSS V05 VSS

V20 VDD V21 VDD
V22 SYSAD(53) V23 SYSAD(23) V24 VSS_PKG
W01 SYSCMDP W02 VDD W03 VSS
W04 VSS W05 VDD

W20 VDD W21 VSS
W22 SYSAD(19) W23 SYSAD(51) W24 VDDE
Y01 SYSCMD(0) Y02 SYSCMD(2) Y03 VDD
Y04 VDD Y05 VDD Y06 VDD
Y07 VSS Y08 VDD Y09 VSS
Y10 VDD Y11 VSS Y12 VDD
Y13 VDD Y14 DMA_STAT_CH2_30(1) Y15 VDD
Y16 VDD Y17 VDD Y18 BSP_PC(9)
Y19 VDD Y20 VDD Y21 VDD
Y22 SYSAD(21) Y23 SYSAD(17) Y24 VDD
AA01 VSS_PKG AA02 SYSCMD(1) AA03 VDD
AA04 VSS AA05 VDD AA06 VDD
AA07 VSS AA08 VDD AA09 VDD
AA10 VSS AA11 VICEID(1) AA12 DMA_STAT_CH1(0)
AA13 VDD AA14 VDD AA15 DMA_STAT_CH2_30(3)
AA16 BSP_PC(1) AA17 BSP_PC(4) AA18 VSS
AA19 BSP_OUTBOX_15 AA20 VSS AA21 VSS
AA22 SYSAD(49) AA23 SYSADC(7) AA24 VSS_PKG
AB01 SYSCMD(3) AB02 SYSCMD(4) AB03 VDD
AB04 VSS AB05 VSS AB06 VSS
AB07 VICERELEASE_N AB08 VICESYSRQST_N AB09 VICESYSGNT_N
AB10 VDD AB11 VSS AB12 DMA_STAT_CH2(0)
AB13 VSS AB14 VSS AB15 DMA_STAT_CH2_30(2)
AB16 VSS AB17 BSP_PC(0) AB18 VDD
AB19 BSP_PC(6) AB20 BSP_INBOX_15 AB21 VDD
AB22 SYSADC(5) AB23 SYSAD(47) AB24 VDD

TABLE 74. 380 BGA Pin Assignments - Pin Order

Pin # Signal Pin # Signal Pin # Signal

April 17, 1997 216

AC01 SYSCMD(5) AC02 SYSCMD(6) AC03 VDD
AC04 VDD AC05 VSS AC06 WRRDY_N
AC07 VICEVALIDIN_N AC08 VICEVALIDOUT_N AC09 VICEWRRDY_N
AC10 RESET_N AC11 VDD AC12 DMA_STAT_CH1_30(1)
AC13 DMA_STAT_CH1_30(3) AC14 VSS AC15 DMA_STAT_CH2_30(0)
AC16 VDD AC17 VDD AC18 MSP_SIGNAL
AC19 BSP_PC(3) AC20 BSP_PC(5) AC21 BSP_PC(7)
AC22 SYSADC(1) AC23 SYSAD(15) AC24 VSS
AD01 VSS_PKG AD02 SYSCMD(7) AD03 SYSCMD(8)
AD04 VSS_PKG AD05 RDRDY_N AD06 R4VALIDOUT_N
AD07 VSS_PKG AD08 VICE_INT_N AD09 VICEID(0)
AD10 VSS_PKG AD11 DMA_STAT_CH1_30(0) AD12 VSS_PKG
AD13 DMA_STAT_CH1_30(2) AD14 R4VALIDIN_N AD15 VSS_PKG
AD16 VSS AD17 VSS AD18 VSS_PKG
AD19 BSP_PC(2) AD20 VSS AD21 VSS_PKG
AD22 BSP_PC(8) AD23 SYSADC(3) AD24 VSS_PKG

TABLE 74. 380 BGA Pin Assignments - Pin Order

Pin # Signal Pin # Signal Pin # Signal

April 17, 1997 217

The following table provides the physical pin to signal name assignments sorted by the Signal Name from
the VICE VHDL Data Base.

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #
BSP_INBOX_15 AB20 228
BSP_OUTBOX_15 AA19 234
BSP_PC(0) AB17 214
BSP_PC(1) AA16 215
BSP_PC(2) AD19 212
BSP_PC(3) AC19 217
BSP_PC(4) AA17 224
BSP_PC(5) AC20 223
BSP_PC(6) AB19 225
BSP_PC(7) AC21 226
BSP_PC(8) AD22 229
BSP_PC(9) Y18 237
BSP_SIGNAL C23 357
DMA_STAT_CH1(0) AA12 181
DMA_STAT_CH1_30(0) AD11 176
DMA_STAT_CH1_30(1) AC12 183
DMA_STAT_CH1_30(2) AD13 191
DMA_STAT_CH1_30(3) AC13 184
DMA_STAT_CH2(0) AB12 182
DMA_STAT_CH2_30(0) AC15 195
DMA_STAT_CH2_30(1) Y14 198
DMA_STAT_CH2_30(2) AB15 202
DMA_STAT_CH2_30(3) AA15 205
IDDQ_EN_N D12 430
LA_CLK C11 438
MSP_PC(0) D17 387
MSP_PC(1) C18 393
MSP_PC(2) B20 394
MSP_PC(3) C16 404
MSP_PC(4) B17 405
MSP_PC(5) E11 442
MSP_PC(6) B08 450
MSP_PC(7) B07 457
MSP_PC(8) C06 469
MSP_PC(9) B04 470

April 17, 1997 218

MSP_SIGNAL AC18 213
PLL_AG L22 316
PLL_AP L21 318
PLL_BYPASS K22 324
PLL_DIV20 L23 315
PLL_FB K21 327
PLL_REF M20 310
PLL_TESTE L24 314
R4VALIDIN_N AD14 192
R4VALIDOUT_N AD06 163
RDRDY_N AD05 155
RESET_N AC10 172
SCLOCK L20 320
SYSAD(0) D03 9
SYSAD(1) D22 358
SYSAD(2) D02 19
SYSAD(3) E22 350
SYSAD(4) E03 17
SYSAD(5) F23 339
SYSAD(6) F03 20
SYSAD(7) F22 347
SYSAD(8) F01 41
SYSAD(9) H22 336
SYSAD(10) G02 32
SYSAD(11) J22 329
SYSAD(12) H03 31
SYSAD(13) M23 306
SYSAD(14) J02 42
SYSAD(15) AC23 249
SYSAD(16) R03 80
SYSAD(17) Y23 272
SYSAD(18) P03 72
SYSAD(19) W22 264
SYSAD(20) P02 71
SYSAD(21) Y22 261
SYSAD(22) N02 62
SYSAD(23) V23 276
SYSAD(24) M03 60
SYSAD(25) T23 286

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 219

SYSAD(26) L03 51
SYSAD(27) R23 294
SYSAD(28) L02 53
SYSAD(29) P22 295
SYSAD(30) K02 50
SYSAD(31) R22 287
SYSAD(32) C01 22
SYSAD(33) D23 348
SYSAD(34) E01 33
SYSAD(35) E23 345
SYSAD(36) E02 28
SYSAD(37) G22 340
SYSAD(38) F02 29
SYSAD(39) G23 335
SYSAD(40) G03 27
SYSAD(41) H23 328
SYSAD(42) H01 44
SYSAD(43) M22 307
SYSAD(44) H02 39
SYSAD(45) N22 304
SYSAD(46) J01 52
SYSAD(47) AB23 254
SYSAD(48) R02 73
SYSAD(49) AA22 253
SYSAD(50) N03 63
SYSAD(51) W23 273
SYSAD(52) P01 70
SYSAD(53) V22 271
SYSAD(54) N01 69
SYSAD(55) U23 283
SYSAD(56) M02 61
SYSAD(57) U22 275
SYSAD(58) L01 54
SYSAD(59) T22 282
SYSAD(60) J03 38
SYSAD(61) P23 297
SYSAD(62) K03 43
SYSAD(63) N23 305
SYSADC(0) T01 79

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 220

SYSADC(1) AC22 235
SYSADC(2) T02 81
SYSADC(3) AD23 240
SYSADC(4) T03 85
SYSADC(5) AB22 241
SYSADC(6) U01 82
SYSADC(7) AA23 263
SYSCMD(0) Y01 94
SYSCMD(1) AA02 104
SYSCMD(2) Y02 101
SYSCMD(3) AB01 107
SYSCMD(4) AB02 113
SYSCMD(5) AC01 118
SYSCMD(6) AC02 127
SYSCMD(7) AD02 138
SYSCMD(8) AD03 144
SYSCMDP W01 90
TCK A06 456
TDI A03 473
TDO C05 472
TEST_OUT_ENB B14 419
TMS C04 480
TRISTATEEN D14 415
TRST A05 460
VCLOCK A12 435
VCOK M21 308
VDDE C02 10
VDDE C14 417
VDDE E05 1
VDDE E06 487
VDDE E08 475
VDDE E09 464
VDDE E10 453
VDDE E12 432
VDDE E15 402
VDDE E16 391
VDDE E17 380
VDDE E19 369
VDDE E20 367

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 221

VDDE F20 365
VDDE F24 334
VDDE G04 18
VDDE G21 349
VDDE H21 346
VDDE K05 36
VDDE M04 59
VDDE M24 313
VDDE R05 87
VDDE T05 98
VDDE V20 252
VDDE W05 121
VDDE W24 285
VDDE Y05 123
VDDE Y10 158
VDDE Y12 179
VDDE Y13 188
VDDE Y15 209
VDDE Y16 220
VDDE Y19 243
VDDE Y20 245
VDDE Y24 277
VDDE AA03 114
VDDE AA08 143
VDDE AA09 152
VDDE AB24 266
VDDI A08 448
VDDI B03 479
VDDI B09 447
VDDI B16 408
VDDI B18 398
VDDI B19 395
VDDI B21 385
VDDI B22 376
VDDI B23 371
VDDI C08 458
VDDI C12 429
VDDI C20 383
VDDI C22 363

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 222

VDDI D06 478
VDDI D11 440
VDDI E14 413
VDDI F04 11
VDDI F05 3
VDDI H04 21
VDDI H24 326
VDDI J05 25
VDDI J20 342
VDDI J23 325
VDDI K04 40
VDDI K20 331
VDDI L05 47
VDDI N05 66
VDDI N20 301
VDDI P04 74
VDDI P21 293
VDDI R20 280
VDDI T20 269
VDDI T24 296
VDDI U02 84
VDDI U04 102
VDDI U05 109
VDDI V02 91
VDDI V21 262
VDDI W02 95
VDDI W20 247
VDDI Y03 106
VDDI Y06 125
VDDI Y08 136
VDDI Y17 231
VDDI Y21 250
VDDI AA06 133
VDDI AA13 186
VDDI AA14 196
VDDI AB03 119
VDDI AB10 165
VDDI AB18 218
VDDI AC03 132

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 223

VDDI AC04 141
VDDI AC11 175
VDDI AC16 203
VDDI AC17 206
VDDI ____ 7
VDDI ____ 26
VDDI ____ 48
VDDI ____ 65
VDDI ____ 86
VDDI ____ 108
VDDI ____ 129
VDDI ____ 148
VDDI ____ 170
VDDI ____ 187
VDDI ____ 208
VDDI ____ 230
VDDI ____ 251
VDDI ____ 270
VDDI ____ 292
VDDI ____ 309
VDDI ____ 330
VDDI ____ 352
VDDI ____ 373
VDDI ____ 392
VDDI ____ 414
VDDI ____ 431
VDDI ____ 452
VDDI ____ 474
VDD_SBUF(0) E04 6
VDD_SBUF(1) AA05 128
VDD_SBUF(2) AB21 236
VDD_SBUF(3) G20 359
VDD_VBUF(0) D20 372
VDD_VBUF(1) C15 409
VDD_VBUF(2) C10 446
VDD_VBUF(3) C19 386
VDD_VBUF(4) D13 425
VDD_VBUF(5) D08 468
VDD_VBUF(6) C03 485

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 224

VICEID(0) AD09 174
VICEID(1) AA11 171
VICERELEASE_N AB07 149
VICESYSGNT_N AB09 160
VICESYSRQST_N AB08 153
VICEVALIDIN_N AC07 154
VICEVALIDOUT_N AC08 161
VICEWRRDY_N AC09 164
VICE_INT_N AD08 166
VSSE A11 436
VSSE B02 5
VSSE B13 427
VSSE D07 471
VSSE D10 449
VSSE D15 406
VSSE D18 384
VSSE D21 370
VSSE E07 481
VSSE E18 374
VSSE E21 361
VSSE F21 356
VSSE G05 8
VSSE K23 317
VSSE N04 64
VSSE U21 265
VSSE AC05 150
VSSE AC14 193
VSSE ____ 2
VSSE ____ 12
VSSE ____ 13
VSSE ____ 23
VSSE ____ 24
VSSE ____ 34
VSSE ____ 35
VSSE ____ 45
VSSE ____ 46
VSSE ____ 55
VSSE ____ 56
VSSE ____ 67

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 225

VSSE ____ 68
VSSE ____ 77
VSSE ____ 78
VSSE ____ 88
VSSE ____ 89
VSSE ____ 99
VSSE ____ 100
VSSE ____ 110
VSSE ____ 111
VSSE ____ 122
VSSE ____ 124
VSSE ____ 134
VSSE ____ 135
VSSE ____ 145
VSSE ____ 146
VSSE ____ 156
VSSE ____ 157
VSSE ____ 167
VSSE ____ 168
VSSE ____ 177
VSSE ____ 178
VSSE ____ 189
VSSE ____ 190
VSSE ____ 199
VSSE ____ 200
VSSE ____ 210
VSSE ____ 211
VSSE ____ 221
VSSE ____ 222
VSSE ____ 232
VSSE ____ 233
VSSE ____ 244
VSSE ____ 246
VSSE ____ 256
VSSE ____ 257
VSSE ____ 267
VSSE ____ 268
VSSE ____ 278
VSSE ____ 279

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 226

VSSE ____ 289
VSSE ____ 290
VSSE ____ 299
VSSE ____ 300
VSSE ____ 311
VSSE ____ 312
VSSE ____ 321
VSSE ____ 322
VSSE ____ 332
VSSE ____ 333
VSSE ____ 343
VSSE ____ 344
VSSE ____ 354
VSSE ____ 355
VSSE ____ 366
VSSE ____ 368
VSSE ____ 378
VSSE ____ 379
VSSE ____ 389
VSSE ____ 390
VSSE ____ 400
VSSE ____ 401
VSSE ____ 411
VSSE ____ 412
VSSE ____ 421
VSSE ____ 422
VSSE ____ 433
VSSE ____ 434
VSSE ____ 443
VSSE ____ 444
VSSE ____ 454
VSSE ____ 455
VSSE ____ 465
VSSE ____ 466
VSSE ____ 476
VSSE ____ 477
VSSE ____ 488
VSSI A02 484
VSSI A09 445

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 227

VSSI A14 420
VSSI A16 418
VSSI A17 410
VSSI A19 407
VSSI A20 399
VSSI A22 388
VSSI A23 382
VSSI B01 16
VSSI B05 467
VSSI B06 461
VSSI B10 439
VSSI B11 437
VSSI B12 428
VSSI B15 416
VSSI B24 362
VSSI C07 462
VSSI C09 451
VSSI C13 426
VSSI C17 397
VSSI C21 375
VSSI C24 351
VSSI D04 4
VSSI D05 483
VSSI D09 459
VSSI D16 396
VSSI D19 377
VSSI E13 423
VSSI E24 338
VSSI H05 14
VSSI H20 353
VSSI J04 30
VSSI J21 337
VSSI J24 323
VSSI L04 49
VSSI M05 57
VSSI N21 303
VSSI P05 76
VSSI P20 291
VSSI P24 298

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 228

VSSI R04 83
VSSI R21 284
VSSI T04 93
VSSI T21 274
VSSI U03 92
VSSI U20 258
VSSI U24 288
VSSI V03 96
VSSI V04 105
VSSI V05 115
VSSI W03 103
VSSI W04 112
VSSI W21 255
VSSI Y04 117
VSSI Y07 130
VSSI Y09 147
VSSI Y11 169
VSSI AA04 126
VSSI AA07 140
VSSI AA10 162
VSSI AA18 227
VSSI AA20 239
VSSI AA21 248
VSSI AB04 131
VSSI AB05 139
VSSI AB06 142
VSSI AB11 173
VSSI AB13 185
VSSI AB14 194
VSSI AB16 207
VSSI AC24 260
VSSI AD16 201
VSSI AD17 204
VSSI AD20 216
VSSI ____ 15
VSSI ____ 37
VSSI ____ 58
VSSI ____ 75
VSSI ____ 97

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 229

VSSI ____ 116
VSSI ____ 120
VSSI ____ 137
VSSI ____ 159
VSSI ____ 180
VSSI ____ 197
VSSI ____ 219
VSSI ____ 238
VSSI ____ 242
VSSI ____ 259
VSSI ____ 281
VSSI ____ 302
VSSI ____ 319
VSSI ____ 341
VSSI ____ 360
VSSI ____ 364
VSSI ____ 381
VSSI ____ 403
VSSI ____ 424
VSSI ____ 441
VSSI ____ 463
VSSI ____ 482
VSSI ____ 486
VSS_PKG_VSS A01 ___
VSS_PKG_VSS A04 ___
VSS_PKG_VSS A07 ___
VSS_PKG_VSS A10 ___
VSS_PKG_VSS A13 ___
VSS_PKG_VSS A15 ___
VSS_PKG_VSS A18 ___
VSS_PKG_VSS A21 ___
VSS_PKG_VSS A24 ___
VSS_PKG_VSS D01 ___
VSS_PKG_VSS D24 ___
VSS_PKG_VSS G01 ___
VSS_PKG_VSS G24 ___
VSS_PKG_VSS K01 ___
VSS_PKG_VSS K24 ___
VSS_PKG_VSS M01 ___

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 230

VSS_PKG_VSS N24 ___
VSS_PKG_VSS R01 ___
VSS_PKG_VSS R24 ___
VSS_PKG_VSS V01 ___
VSS_PKG_VSS V24 ___
VSS_PKG_VSS AA01 ___
VSS_PKG_VSS AA24 ___
VSS_PKG_VSS AD01 ___
VSS_PKG_VSS AD04 ___
VSS_PKG_VSS AD07 ___
VSS_PKG_VSS AD10 ___
VSS_PKG_VSS AD12 ___
VSS_PKG_VSS AD15 ___
VSS_PKG_VSS AD18 ___
VSS_PKG_VSS AD21 ___
VSS_PKG_VSS AD24 ___
WRRDY_N AC06 151

TABLE 75. Signal Name - Pin Assignment

Signal Name TBGA Pin # Die Pad #

April 17, 1997 231

8.3 Test Modes

Describe JTAG mode here..

8.4 Schematic Icon

TABLE 76.

VICE Function SysAD Flops
All Other
Vice Flops

April 17, 1997 232

8.5 Physical Packaging Diagram

380 Lead Tab Ball Grid Array package from VLSI. Reference VLSI Drawing Number 25-45000 Rev: **.

FIGURE 54. 380 Lead Tab Ball Grid Array

31.00

All Units in mm

31.00

1 245 20

A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
AA
AB
AC
AD

Orientation
Mark

1.27

0.63 +/- 0.025

0.125 +/- 0.125

1.97 +/- 0.17 0.55 +/- 0.10

Refer to VLSI Technology Drawing 25-45000 for Co-planar specifications.

DIE
PAD 1

April 17, 1997 233

8.6 Physical Package Markings

Package Markings for the VICE chip

FIGURE 55. Package Markings

Package Markings above shown for Software ID “TRE” using hinv under Unix.

Alternate marking for earlier parts would be:
VY06762 (for VICE-A) 099-0123-001 (None shipped - Not at speed part - proto only)
VY21314- (for VICE-B) 099-0123-002 (Software ID “DX” using hinv under Unix

8.7 Bonding Diagram

Refer to Table 75, “Signal Name - Pin Assignment,” on page 217

VICE-C
099-0123-003
SGI c 96
VY21314B

April 17, 1997 234

9.0 Device Characteristics

9.1 Absolute Maximum Ratings

Stresses above those listed may cause permanent damage to the device. These are stress rating only, and
functional operation of this device under these or any conditions above those indicated in this specification is
not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reli-
ability.

9.2 Operating Range

TABLE 77. Absolute Maximum Ratings - Non Operational

Condition Allowable Range
Ambient Operating Temperature with voltage applied
(junction temperature not to exceed ambient temperature
by more than 30 degrees C)

-40 oC to +85 oC

Storage Temperature -40 oC to +125 oC
Supply Voltage -0.5 to +4.0 V
Input Voltage (Any Pin) -0.5 to +3.9 V
DC Input Current +/- 20 mA
Lead Temperature 250 oC

TABLE 78. Device Operating Range

Condition Allowable Range
Ambient Operating Temperature with voltage applied
(junction temperature not to exceed 110oC which limits
internal temperature rise to 60oC)

0 oC to +50 oC

Junction Temperature Simulated 110 oC
VDD Supply Voltage VSS = (0.0)
Note: Supply Voltage anticipated to be 3.3V +/1 5%
 Chip simulated to 3.135V as minimum voltage. For
 timing and power calculations, chip can run as high
 as 3.6 V.

3.135 V to 3.6 V

April 17, 1997 235

9.3 DC Characteristics and Capacitance

9.4 AC Characteristics

AC Characterization performed at worst case low voltage 3.135V, Junction temperature of 110 oC, and load
capacitance on SysAD bus interconnect of 80pF.

9.4.1 PLL Characteristics

Total Jitter < 1 nsec. Capture and Lock 1KHz to 200 MHz.

TABLE 79. DC Characteristics (Tj = 0 to 110o C)

Parameter Description Conditions Min Max Units
VIL Low Input Voltage VDD = 2.7V -0.33 0.81 V
VIL Low Input Voltage VDD = 3.6V -0.33 1.08 V
VIH High Input Voltage VDD = 2.7V 1.89 3.03 V
VIH High Input Voltage VDD = 3.6V 2.52 3.93V V
VOL Low Output Voltage VDD = 2.7V

IO =2 to 4 mA
---- 0.4 V

VOH High Output Voltage VDD = 2.7V
IO = 2 to 4 mA

2.4 ---- V

IIH, IIL Input Leakage Current VI = VDD, VSS -1 +1 uA
IOZH, IOZL Output Leakage Current VO = VDD, VSS -1 +1 uA
COUT Output Pin Capacitance f = 1 MHz

VDD = 0V
---- 15 pF

Power Power Dissipation VDD = 3.3V 4 -Typical 5 W

TABLE 80. AC Characteristics

Parameter Description Min Max UNITS
SClock-Tper Period Rate 100 MHz
SClock-Tcy Cycle Time 10 ns
SClock-Tchi SClock High Time 4 6 ns
SClock-Tclo SClock Low Time 4 6 ns
VClock-Tper Period Rate 60 MHz
VClock-Tcy Cycle Time 17 ns
VClock-Tchi VICE Clock High Time 7 10 ns
VClock-Tclo VICE Clock Low Time 7 109 ns

April 17, 1997 236

9.5 Package Thermal Characteristics

The VICE die when does not need a heatsink if the 4.5 W power number is met and an airflow of 200 ft/min
can be achieved in the system. It will need a heatsink if the power consumption is higher or if the air flow is
lower.

For selecting a package for the VICE die, Table 81, “Package Thermal Resistance Characteristics - Air Flow
Consideration,” on page 236 can be used. Unitl we have final numbers for a 526 die in a 380 - 31mm pack-
age, two different package and die size combinations are listed. Junction Temperature Calculation is as fol-
lows:

Tj = Ta + (Theta Ja x Ptotal)

Where
Tj = Junction Temperature measured in oC
Ta = Ambient Temperature measured in oC
Theta Ja = Package Thermal Resistance measured in oC/Watt
Ptotal = Total Typical Power measured in Watts

For the Vice chip then the following values can be used in the formula to find Theta Ja.

Tj = 110 oC (Chip simulated to operate at this junction temperature)
Ta = 50 oC (40 oC temp for the moosehead box w/ 10 oC rise inside the box)
Ptotal = 4.5 W (Calculated Typical Power Dissipation)

Theta Ja = (Tj - Ta) / Ptotal = (110 - 50) / 4.5 = 13 oC/W.

For Ptotal = 8 W (Estimate worst case)

Theta Ja = (110 - 50) / 8 = 7.5 oC/W.

TABLE 81. Package Thermal Resistance Characteristics - Air Flow Consideration

Air Flow
(Ft/Min)

380 Pkg Pads
31mm Body
386mil die
Mulit Layer Bd
No Heatsink
Theta Ja (oC/W)

552 Pkg Pads
37mm Body
526 mil die
Multi Layer Bd
No Heatsink
Theta Ja (oC/W)

380 Pkg Pads
31mm Body
386mil die
Mulit Layer Bd
38mm x 38mm x
7.2mm Heatsink
Theta Ja (oC/W)

552 Pkg Pads
37mm Body
526 mil die
Multi Layer Bd
38mm x 38mm x
7.2mm Heatsink
Theta Ja (oC/W)

Still Air 14.5 11 10
100 Top 7.5
200 Top 12 10.3 6.5
200 Top
& Bottom

9

April 17, 1997 237

10.0 Bugs

This section originally was to contain only bugs found in the actual chip. It has been expanded to include dif-
ferences between the Software Simulation environment and the actual chip.

10.1 Software Simulator vs. Silicon Behavior

10.1.1 MSP_D_EN Register

Must be programmed to allow MSP access to each of the three banks of Data RAM inside of Vice. For per-
formance enhancement, if the MSP is NOT going to access a particular bank of Data RAM, that bit should
be set to a logical ‘0’ so as to allow the DMA, the Host or the BSP a higher bandwidth access to that portion
of memory.

10.1.2 MSP_CAUSE Register

Because load/store and Contention exceptions occur in the write back stage of the MSP while other excep-
tions occur during the decode stage, the load/store and Contention exceptions followed immediately by the
other type of extensions (for example a Break), will produce an Exception Code of the Breakpoint to appear
in the MSP_Cause register rather than the load/store or contention exception.

The MSP_ExcpFlag register will correctly show both exceptions as having occurred.

April 17, 1997 238

10.2 Silicon Bugs

Known bugs in the Vice 1 silicon. (VLSI part # vy06762)

10.2.1 Leading Zero Bug

Collection of one bug (A) and one request for feature enhancement (B). Feature enhancement requests that
the BSP process be able to reset it’s write buffer.

10.2.1.1 Application

JPEG encode

10.2.1.2 Symptom

A- Leading “00” at start of bit stream for a field/frame when the previous field/frame ended on an “FF” code.

B-Encoded bit stream gets “stuck” in the BSP write buffer and does not show up till the next frame is
encoded.

10.2.1.3 Cause

A-The byte stuffer in the BSP remembers state of detecting an “FF” code as the last byte of a field/frame
when encoding. When the next bits go into the (write buffer? encode pipe?) the byte stuffer puts in the “00”
when it should not.

B- DMA only empties the BSP write buffer when it is full. If the encoded bit stream is not a multiple of 8
bytes, the last bytes are not transferred by the DMA engine.

10.2.1.4 Work-around

A- BSP software stuffing extra bytes into the encode pipe to “flush” the state of the byte insertion hardware.

B- BSP software has to monitor write buffer count and pad correctly to make bit stream a multiple of 8
bytes.

10.2.1.5 Fix for Spin

A- Hardware fix to automatically reset the byte stuffer at end of picture?

B- Reset of write buffer accessible to BSP Software?

April 17, 1997 239

10.2.2 Rocky bad block

Not fully characterized as of 3-20-96.

10.2.2.1 Application

JPEG encode

10.2.2.2 Symptom

Particular Macro Block with specific bit offset pattern causes a bad block to be encoded.

10.2.2.3 Cause

10.2.2.4 Work-around

10.2.2.5 Fix for Spin

10.2.3 Low Quant - Low Compression

Not fully characterized as of 3-20-96.

10.2.3.1 Application

JPEG encode

10.2.3.2 Symptom

High Bit Rate causes image to be un-recognizable

10.2.3.3 Cause

10.2.3.4 Work-around

10.2.3.5 Fix for Spin

April 17, 1997 240

10.2.4 Skier Sparkle

8 Second Movie compressed with Vice one field at a time and played back real-time with Cosmo Compress.

10.2.4.1 Application

JPEG encode

10.2.4.2 Symptom

A “sparkle” observed in the picture during playback that looks like it may be an all white block of some sort.

10.2.4.3 Cause

To: vice@sgi.com

the “sparkle” appears in the original skiing image (frames 208 and 209).

no bugs here.

Chuck Tufflituffli@sgi.com

10.2.4.4 Work-around

10.2.4.5 Fix for Spin

10.2.5 Decode

Not fully characterized as of 3-20-96.

10.2.5.1 Application

JPEG decode

10.2.5.2 Symptom

High Bit Rate causes lockup.

10.2.5.3 Cause

10.2.5.4 Work-around

10.2.5.5 Fix for Spin

April 17, 1997 241

10.2.6 MPEG hang

Decode of an MPEG image causes application to hang.

10.2.6.1 Application

MPEG decode

10.2.6.2 Symptom

BSP appears to be in a loop waiting for the DMA engine.

10.2.6.3 Cause

10.2.6.4 Work-around

10.2.6.5 Fix for Spin

10.2.7 VSUM2

Not fully understood as of 3-20-96.

10.2.7.1 Application

vd/regress.csh

10.2.7.2 Symptom

vsum2 test in the regress.csh test fails in the silicon.

vsum2 test in the regress.csh appears to work in the vhdl?

10.2.7.3 Cause

10.2.7.4 Work-around

10.2.7.5 Fix for Spin

April 17, 1997 242

10.2.8 BSP Halt Ack

Decode of an MPEG image causes application to hang.

10.2.8.1 Application

Vice Debugger (vd)

10.2.8.2 Symptom

BSP does not raise it’s Halt Acknowledge bit when the BSP is reset by its software reset bit.

10.2.8.3 Cause

Not part of hardware defined behavior. This functionality does not exist in the present silicon.

10.2.8.4 Work-around

Vice Debugger does not depend on this signal for now.

10.2.8.5 Fix for Spin

Halt Acknowledge will be set when the BSP is reset by its software reset bit.

10.2.9 MSSM Reset

Multi State State Machine is not reset by the BSP software reset bit.

10.2.9.1 Application

Various hang conditions when running JPEG, MPEG

10.2.9.2 Symptom

Multi-State State Machine is not reset by the BSP software reset bit.

10.2.9.3 Cause

MSSM reset was not included in the BSP software reset in the hardware.

10.2.9.4 Work-around

None. Reset button on workstation is only fix? What about a warm boot as this will reset the Vice chip?

10.2.9.5 Fix for Spin

Yes, MSSM will be reset by the BSP software reset bit.

April 17, 1997 243

10.2.10 MSP PC Pins

MSP PC output pins of Vice.

10.2.10.1 Application

Logic Analyzer

10.2.10.2 Symptom

MSP PC does not appear to change on the logic analyzer when it should.

10.2.10.3 Cause

The MSP PC output pins are actually driven by the Exception PC so the pins only update when an MSP
exception occurs.

10.2.10.4 Work-around

Use the vice debugger and read back the MSP PC from inside the chip.

10.2.10.5 Fix for Spin

Yes. MSP PC will be connected to the MSP PC output pins. Expect a register delay (or two) from what the
actual MSP PC is pointed at when the MSP is executing.

April 17, 1997 244

10.2.11 Vice-Crime Handshake Pins.

Vice-Crime Handshake pins are 3-state during reset.

10.2.11.1 Application

Cold Reset/Warm Reset.

10.2.11.2 Symptom

Workstation does not always get through the boot prom after reset.

10.2.11.3 Cause

Petty Crime expects these signals to be at know logic levels (de-asserted) during reset. The proto cpu boards
all had pullups on these signals since the Petty Crime and CPU needed to run without Vice installed for
some number of months. This is a bug in Vice.

10.2.11.4 Work-around

Leave pullups on all the proto-boards with Vice1 installed.

10.2.11.5 Fix for Spin

Hardware will be modified to provide a logical ‘1’ on the following pins per Section 2.2.1 of this docu-
ment.ViceValidOut_n, ViceSysRqst_n, ViceRelease_n and ViceInt_n.

An additional point on reset. ViceRelease_n activates for once cycle (logical ‘0’) reset is removed from the
Vice chip (chip just coming out of reset) to ensure that the Crime arbiter is reset cleanly. The Vice 1 chip
already performs this action.

NOTE: This was not fixed in the spin and still occurs with the latest VICE parts 099-0123-003
vy21314B “VICE-C” Unix hinv report “TRE” (I think that is all the names that it is know by!)

April 17, 1997 245

11.0 Revision History

4-17-97 All

Created Revision 1.0

Long list of changes. Just look for the change bars in the margins.

4-5-95 All

Created Revision 0.20

vice.title - D. Barnett, S. Klinger Added
ch1 - System Block Diagram Updated, Logical pin diagram updated pwr/gnd/jtag, spelling fixes
ch2_addr - BSP Table Memory expanded 0x5000 - 0x6FFC and 22 bits wide, BSP FIFO now at 0x7000,
TLB moved to 0xF000 on common bus.
ch2_init - ViceReset_n same net as MIPS Reset*. Not independent, not enough pins on CRIME.
ch2_interrupt - No Changes
ch2_msp_manage - Instruction RAM dual ported now. Can DMA update while MSP is executing.
ch2_bsp_manage - No Changes.
ch2_dma_manage - No Changes except change bars removed from last version.
ch2_reg - Look for change bars, lots of little stuff. Each DMA channel now has their own interrupts, Inter-
rupts are now reset by a write only register called VICE_INT_RESET. DMA Flush Buffer Mode added,
Chroma only DMA modes specified but may not be required, will test last! Lots of updates to BSP registers
since Jan 18 spec.
ch3_sys_intfc - Figure with SysAD Clock Distribution and 66 MHz internal clock source, No ref to DSS
proc.
ch4_arch_4.1_4.3 - Clarification to DMA Descriptors. Clarification of SysAD Vice Write bursts. Look at
change bars.
ch4_arch_sec4.4.1 - MSP Instruction RAM now dual port
ch4_arch_sec4.4.2 - No Change
ch4_arch_sec4.4.3 - No Change
ch4_arch_4.4.4_su - No changes. Change bars from previous revisions removed.
ch4_arch_4.4.5_vu - Major update of instructions and co-ordination with Appendix A Vector Unit Instruc-
tion Details.
ch4_arch_4.6 - BSP programming restrictions updated.
ch5_oper_descr - No Change
ch6_perf - No Changes
ch7 - No Changes
ch8_dev_intfc - JTAG pins added, package changed to 380 TBGA.
ch9_dev_char - Preliminary TBGA thermal characteristics added.
Appendix A - Major updates to Vector Unit Instruction Set Details
Appendix B - Vector Unit Block Diagrams included
Appendix D - Test Plan Added

1-18-95 Te-Li L., Robb P.

Created Revision 0.12

Added Appendix A - Vector Unit Instruction Set Details Release
Updates to Vector Unit Section
 - Instruction names have been changed to reflect new naming convenctions.
 - Many new instructions have been added.
 - Some unused instructions have been deleted.

April 17, 1997 246

 - All instructions have been updated to reflect new modes of operation.

Updates to Scalar Unit Section

11-23-94 Te-Li L., Michael F., Robb P., Mark T., Bent H.

Created Revision 0.11 ready for limited distribution and review!

Post Review changes for Vector Unit and Bitstream Processor
Added Bitstream Processor Appendix B Instruction Set Details
Added Section to Ch2 for MSP Code Management
Revised Pin Description in Ch3, 4, 8 Vice shares Processor Reset_n now.
Ch4 Common Bus and DMA Bus protocols revised. All cycles now 3 clocks rq/gnt, addr, data

11-13-94 All

Post Spec Review changes marked with change bars as shown at the left (for most changes). Vector Unit and
Bitstream Processor sections not yet revised.

10-13-94 Te-Li L., Michael F., Robb P., Mark T. - Results of Detailed Spec Review Ch1 & Ch2
 and preparation for Vector Unit and Bitstream Processor reviews.

vice.title
 - Revision 0.9, Acknowledgments deleted.
vice.book
 - Moved registers in chapter 2 to the end of the chapter.
 - Added new chapter for BSP management.
ch1
 - Updated feature list, block diagram. Cleaned up errors.
ch2_addr
 - All new address map
ch2_reg
 - Added MSP_Watchpoint register, MSP_PC is now read/write. MSP_DEBUG now MSP_CTL_STAT
 - Added BSP; IN_BOX, OUT_BOX, CTL_STAT, Watchpoint registers
 - Added HST_BSO_IN/OUT_BOX shadow registers
 - Renumbered register addresses
ch2_init
 - Clarified VICE chip and internal block resets.
ch2_interrupt
 - DMA and Buss Error exceptions removed from MSP exception processing.
 - Vector Unit Reserved Instruction Exception added
 - Watchpoint exception ignores 3 lsb address bits.
ch2_bsp_manage
 - New chapter added
ch4_arch_sec4.1_4.3
- Added “DMA” bus to ch4 Architecture Section
ch4_arch_sec4.4.5_vu
 - Update instruction names and formats
 - Additional details for multiply instructions
 - Add two new instructions Add With Accumulate and Subtract With Accumulate
 - Clean up of interlock section
 - Added block diagram
 - Added saturation status register - VCLR

April 17, 1997 247

 - Add Zero and Xtend Load/Store instructions
 - General editing for better readability and improved clarity
ch4_arch_sec4.6
 - Bit Stream Processor Instruction Set Updated, Logical NOR gone
 - Mail Box Registers Defined
 - Figures Numbered

9-30-94 All Version 0.8

vice.title
 - Revision 0.8
vice.book
 - Deleted ch4_arch_sec4.7 which was DMA. Has been in ch4_arch_sec4.1_4.3 all along.
ch1
 - Updated DMA function list in overview section
ch2_addr
 - New System Address 0x0 1700 0000 was 0xF 0000 0000.
 - Also MPS processor registers no longer accessible
ch2_reg
 - Deleted MSP_PCTrace Reg Changed MSP_BadVAddr to MSP_BadAddr
 - Deleted MSP_Breakpoint Reg Added MSP_EPC Added MSP_ExcpFlag Reg
 - Removed Single-Step and Breakpoint in MSP_Debug Register
 - Added more documentation for each register Changed MSP_PC to be write only
 - DMA registers added.
 - BSP registers added.
ch2_interrupt
 - Redefined Breakpoint Exception
 - Added more documentation about EPC being updated for certain exceptions
 - Added definition for Reserved Instruction Exception
 - Added more overall documentation for each exception
ch2_msp_manage
 - Removed Single-Step and Breakpoint Mode
 - Added documentation on sequence of events for a Software Break Instruction.
ch3_sysintfc
 - Vice address updated
ch4_arch_sec4.1_4.3
 - New DMA functions. Internal Bus Protocol for VICE updated. 3 buses now.
ch4_arch_sec4.4.4_su
 - Added in interlocks & stalls for 2 cycle load delay slot
 - Added in documentation for X-Bar
 - Added in documentation for load/store mechanism
 - Added in documentation for pipeline timing of branches/jumpssu
 - Added in doc on what to check during 2 cycle load delay slots.
 - Added RD_immediate to things to check for when check RT for load dly
 - Added BREAK instruction as one of the supported instructions.
 ch4_arch_sec4.4.5_vu
 - Fix some typos
ch4_arch_sec4.6
 - Bit Stream Processor Instruction Set Updated
ch6_perf
 - Application performance timelines added.
ch9
 - Deleted reference to I2C bus timing. Left over from A/V I/O.

April 17, 1997 248

vice_bib.doc
 - Corrected format where two references were joined in one paragraph.

8-17-94 M.T., T.L. Version 0.7

Chapter 2 - Explicit space for MSP Data RAM banks A,B,C. Updated address map. Interrupt
 and intitialization sections update.

Chapter 3 - Revised SysAD interface definition. No R4K burst access to VICE. VICE can
 only access system memory. Interrupt pin back on VICE.

Chapter 4 Sections 4.1-4.3 - Host Interface block diagram added. Internal VICE bus clarified
 First pass at bus arbiter added.

7-19-94 M.T. Version 0.6.

Chapter 1 - Latest block diagrams. Overview of major blocks in VICE. Deleted references to Video I/O.

Chapter 2 - Updated Address Map, Moved dummy register to location 0 for safety. Removed all references
to Video and Audio I/O and I2C bus. Added VICE exception register, per Bents previous document. DMA
registers first pass.

Chapter 3 - Added SysAD timing diagrams and description of transfers that VICE can be involved in. Added
Logical diagram of VICE/CRIME/R4K interconnect.

Chapter 4 - Deleted Video I/O unit

Chapter 8 - Updated Logical Diagram and Pin Descriptions

5-25-94 R.P., M.T. Version 0.5. Vector Unit Special Reg Highlights added, Overview Instr Groups. VLC,
DMA templates created.

5-12-94 R.P. Updated Vector Unit Architecture and Appendix A, Vector Unit Instruction Set.

4-15-94 S.A. Updated Section 4.4.4 Scalar Unit Architecture. New internal block diagram, new instruction
execution pipeline description, memory block diagram, memory control block diagram, instructions sup-
ported updated

3-14-94 M.T. Updated Section 4.5 Video I/O. Added additional pixel formats. Removed Old VINO specific
items in the filter section.

3-8-94 M.T. Called Version 0.2 on Title Page. Updated Moosehead System Block Diagram to show latest
chip partitioning per Mike Nielsen. Modified formatting of additions to Ch1 and Ch4 to match format of
overall document.

3-6-94 S.A. Added Scalar Unit Sections 4.4.4 and updates to 4.4.1 MSP Overview and Ch1 updates with
Moosehead System Block Diagram.

3-4-94 R.P Added Appendix A, Vector Unit Instruction Set.

3-2-94 M.T. Added Video DMA registers, programming section and block diagram in architecture section.

April 17, 1997 249

2-10-94 First release of overall document structure. Many VINO like features borrowed from the VINO
specification (Thank-you Chris and Linda).

4/17/97 392

Appendix B:

Vector Unit Block Diagrams

4/17/97 413

Appendix C

Bitstream Processor Instruction Set Details:

4/17/97 414

Format A:

0) LoadH /* load halfword: rD <- MEM[rPage + offset<<1] */
1) LoadBl /* load byte low: rDl <- MEM[rPage + Offset] */
2) LoadBh /* load byte high: rDh <-MEM[rPage + Offset] */
3) StoreH /* store halfword: MEM[rPage + Offset<<1] <- rS */
4) StoreBl /* store Byte low: MEM[rPage +offset] <- rSl */
5) StoreBh /* store Byte high: MEM[rPage +offset] <- rSh*/
6) LDI_l /* load immediate: rDl <- imm */
7) LDI_h /* load immediate: rDh <- imm */

opcode1

15 10

0

1314 IMM811

rD/rS offset

4/17/97 415

Format A instruction Syntax:

OPCODE {rD,rS} , {LABEL, IMMEDIATE}

OPCODE= { LoadH, LoadBl, LoadBh, StoreH, StoreBl,
StoreBh, LDI_l, LDI_h }

D = { 0,1,2,3,4,5,6,7}
S = { 0,1,2,3,4,5,6,7 }

LABEL = { } /* any permissable text */

IMM = 8-bit unsigned number.

Note: the LABEL must be within [0, 255] bytes/halfwords of the
rPage register.

If LABEL is not in the above specified range then the rPage register
must be loaded to contain the address of the page where the LABEL
can be found.

4/17/97 416

FORMAT A Instruction Execution Sequence:

INSTRUCTION FETCH:

IAB <- PC ; PC <- PC + 2

INSTRUCTION DECODE:

ADDREG <- rPage + Offset (<<1)

INSTRUCTION EXECUTE:

if (load_from_memory || store){

AB<- ADDREG;

if (load) { rD <- DB }

if (store) { DB <- rD}

}else { /* load immediate */

rD(h,l) <- IMM
}

4/17/97 417

Foremat B: 0

IMM

rD/rSopcode

15 11 10 8 7 0

0) NOP /* must have this */
1) CMPI /* compare rSl with IMM(8-bit unsigned)
2) ANDI /* and rSl with IMM(8-bit unsigned)
3) BRANCH /*BRANCH cond, pc + Offset (signed)*/
4) BREAK
5) ADDI /* add unsigned 8-bit immediate to rS */
6) JR /* jump cond to rT */
7) RESUME /* resume multi-cycle instruction */

Cond = eq (Z) , ne , ge, lt, ext0, ext1, ext2, TRUE

0

2

rT

3

Cond

Offset

4/17/97 418

Format B Instruction Syntax:

{
OPCODE1 {rS} , {IMM}

OPCODE2 {COND}, LABEL1

OPCODE3 { COND}

OPCODE4 { rT}

OPCODE5
}

OPCODE1 = { CMPI, ANDI }
S = {0,1,2,3,4,5,6,7}
IMM = { 0,1,2,...255 }

OPCODE2 = { BRANCH, CALL }
COND = { EQ, NE, GE, LT, EXT0, EXT1, EXT2, EXT3 }
LABEL1 =

OPCODE3 = RET
COND = { EQ,NE,GE,LT,EXT0,EXT1,EXT2,TRUE }

OPCODE4 = JR
T={0,1,2,3,4,5,6,7}

OPCODE5 = { RESUME, NOP }

4/17/97 419

FORMAT B Instruction Execution Sequence:

CMPI, ANDI

INSTRUCTION FETCH:

IAB <- PC ; PC <- PC + 2

INSTRUCTION DECODE:

INSTRUCTION EXECUTE:

if (CMPI) { alu: rD - IMM ; status <- status(cmpi) }

if (ANDI) { alu: rDl & IMM ; status ,_ status(andi) }

4/17/97 420

FORMAT B Instruction Execution Sequence:

BRANCH cond, Label

INSTRUCTION FETCH:

IAB <- PC ; PC <- PC + 2; IR <- IMEM[IAB]

INSTRUCTION DECODE:

PC <- PC + IMM /* NB. target is pc+ 2 + IMM.

INSTRUCTION EXECUTE:

if (cond) {
IAB <- PC; IR<- IMEM[IAB]

else {
NOP

}

IF (i) ID (i) EX(i)

BRANCH

ALU inst.

IF(i+1) ID(i+1) EX(i+1)

delay slot
IF(i+2) ID(i+2) EX(i+2)

IF(target)Branch Target ID(target)

NB. Branch has 1 delay slot.

4/17/97 421

FORMAT B Instruction Execution Sequence:

JR cond, Label

INSTRUCTION FETCH:

IAB <- PC ; PC <- PC + 2; IR <- IMEM[IAB]

INSTRUCTION DECODE:

INSTRUCTION EXECUTE:

if (cond) {
IAB <- rT ; IR <- MEM[IAB]

else {
NOP

}

IF (i) ID (i) EX(i)

BRANCH

ALU inst.

IF(i+1) ID(i+1) EX(i+1)

delay slot
IF(i+2) ID(i+2) EX(i+2)

IF(target)Branch Target ID(target)

NB. JR has 1 delay slot.

NB. if accessing register file to provide address is a critical path , can put register access in ID stage.

4/17/97 422

Format C: 0 1 opcode
rTrD rS

Arithmetic
0) ADD /* triadic add */
0) ADDC /* add with carry (ext = 1)*/
1) SUB /* triadic subtract */
2) CMP /* dyadic compare */
3) AND /* bitwise, triadic logical AND (N,Z flag)*/
4) OR /* bitwise, triadic logical OR (Z flag) */
5) LSHIFT /* left shift zero fill rD = rS << rT (rT 0-15)*/
6) ARSHIFT /* right arithmetic shift. rD = rS >> 1*/
7) MULT /* rD = rS*rT(15:0) ; cmp_h = rS * rT(31:16)
8)ZZXLATE /* rD <- XLATE rS */
9) XOR /* bitwise, triadic logical exclusive or (N,Z Flag) */
10) ABS /* absolute value N set if operand is negative (N,Z
Flags)*/
11) NEG /* negate the value (N,Z Flags) */
Register Copy:
12) COPYTO /* Copy GPR to any Alternate register */
13) COPYFROM /* Copy any Alternate register to GPR */
Load/Store:
14) LLOADH /* rD -< MEM[rS] */
15) LSTOREH /* MEM[rS] <- rT */

Alternate registers:
rPage
alpha_h, alpha_l
beta_h, beta_l
cmp_h, cmp_l
mask_h, mask_l
root_tbl_ptr, tbl_res
block_data, block_adress, block_ptr, acc_run
status_cntl

15 14 13 02356910
e
x
t

N

4/17/97 423

Format C Instruction Syntax:

OPCODE6 rD,rS,rT

OPCODE7 rS,rT

OPCODE8 rD,rT

OPCODE9 rEXTEND, rS

OPCODE10 rD, rEXTEND

OPCODE11 rD, rS

OPCODE6 = {ADD, SUB, AND ,OR ,NOR, XOR}
D= { 0,1,2,3,4,5,6,7}
S= { 0,1,2,3,4,5,6,7}
T= {0,1,2,3,4,5,6,7}

OPCODE7 = { CMP , LSTOREH}

OPCODE8 = { ABS, NEG }

OPCODE9 = {COPYTO}
EXTEND = { rpage, alpha_h, alpha_l, beta_h, beta_l, CMP_h, CMP_l, MASK_h, MASK_l

root_tbl_ptr, tbl_res, block_data, block_address, block_ptr, ac_run, status_cntl }

OPCODE10 = { COPYFROM }

OPCODE11 = {LLOADH}

4/17/97 424

FORMATC Instruction Execution Sequence:

Arithmetic Instructions

INSTRUCTION FETCH:

IAB <- PC ; PC <- PC + 2

INSTRUCTION DECODE:

INSTRUCTION EXECUTE:

rD = rS op Rt

4/17/97 425

FORMATC Instruction Execution Sequence:

Copy Instructions

INSTRUCTION FETCH:

IAB <- PC ; PC <- PC + 2

INSTRUCTION DECODE:

INSTRUCTION EXECUTE:

if (COPYTO){
db <- gpr; rDextended <- db

} else { /* COPYFROM */
db <- rDextended; gpr <- db

}

4/17/97 426

FORMATC Instruction Execution Sequence:

Load/Store Instructions

INSTRUCTION FETCH:

IAB <- PC ; PC <- PC + 2

INSTRUCTION DECODE:

INSTRUCTION EXECUTE:

if (LLOADH){
ab <- rS;
db <- MEM[ab] ; rD <- db

} else { /* LSTOREH */
ab <- rS/
db <- gpr ; MEM[ab] <- db

NB. This may be timing critical

4/17/97 427

Format D: 1 1

Single Cytle Instructions:
0) getBits(q) rD,N /* get N bits from bitstream put in rD right justified with zero fill

q=1 enables byte swallowing*/
1) probeBits rD,N /* probe N bits in the bitstream. */
2) ShiftStream(N,q) /* shift the bitstream left N bits

q=1 enables byte swallowing*/
3) getBits(q) rD, rT /* get (rT +1)bits from bitstream (use bits 3-0 of rT) . q=1
enables byte swallowing */

4)generic_lookup_pack rT

5) leaf_run_level_parse(q) /* perform run-level lookup until hit a leaf node in
search tree - Appropriate for H.261 and MPEG 1& 2 */

6) block_run_level_parse(q) /* perform a run-level lookup until hit the end of a
block Appropriate for H.261 and MPEG 1& 2 */

7) load_code_pack_H261(q,p) offset

8) generic_leaf_parse. /* perform generic table lookup putting the signe extended
11-bit value at the leaf node in the tbl_res register. */

9) block_run_size_parse(q) /* perform JPEG run/level parse of a block of data.
Compute level from size information and the bitstream. This instruction is JPEG
specific.

A)code_search(q,p) . /* shift the bitstream left one bit at a time until hit a start code
(programmed in the CMP and mask registers). q = 1 => byte alignement. p= 1 =>
byte insertion.

C) pack_bitstream(q) L, rT. /* pack L left justified bits in rT into the bitstream. q
enables JPEG-style byte insertion */

D) load_code_pack(q,p) offset /* coding pipe <- MEM[rPage + Offset]. q enables
zero-byte insertion p = AC/DC coefficients*/

E) byte_align /* make the bistream buffer byte aligned. FIll is from CMP_H register
(msbs)

NB. when performing byte swallowing, non-zero values are not swallowed.

NrDopcode

15 14 13 10 9 0356

q

4

M
)

2
rT

offset

78

p

L

4/17/97 428

Format D Instruction Syntax

OPCODED(rD,N)

OPCODED1(N)

OPCODED2(Q)

OPCODED3

OPCODED = { getbits , probebits }
D = {0,1,2,3,4,5,6,7}
N = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

OPCODED1 = { shiftstream }

OPCODED2 = { leaf_run_level_parse, block_run_level_parse}
Q = { 0,1 }

OPCODED3 = { generic_leaf_parse, block_run_length, start_code_search }

4/17/97 429

FORMAT D Instruction Execution Sequence:

Single Cycle Instructions

INSTRUCTION FETCH:

IAB <- PC ; PC <- PC + 2

INSTRUCTION DECODE:

INSTRUCTION EXECUTE:

if (getBits(N)){
db <- alpha_h[15:0] ; rD <- db[32 - (32-N)]; alpha_h.alpha_l.beta_h.beta_l << N ;

} else { if(probeBits(N)){
db <- alpha_h[15:0] ; rD <- db[32 - (32-N)];

} else { if(ShiftStream(N)){
alpha_h.alpha_l.beta_h.beta_l << N ;

}

4/17/97 430

FORMAT D Instruction Execution Sequence:

Multi Cycle Instructions

INSTRUCTION FETCH:

IAB <- PC ; PC <- PC + 2

INSTRUCTION DECODE:

INSTRUCTION EXECUTE:

Pipeline stalled in execute cycle until multi-cycle instructions have completed execution.

April 17, 1997 431

Appendix D:
Test Plan

April 17, 1997 432

 D.1 Functional verification

This section describes VHDL simulation environment and lists diagnostics for VICE. For VHDL simula-
tion, the preferred environment is at the board level with R4K as the host CPU and CRIME chip as the inter-
face to main memory. And the ultimate system level simulation would start with all codes residing in main
memory, R4K text would then DMA MSP and BSP instructions and data into the appropriate instruction
rams and data ram within VICE and off it goes.

VICE simulation requires one to three kinds of assembly codes (in addition to compiled code if any). These
are : MSP code, BSP code and R4K code that need to be assembled separately using different assemblers.
For each diagnostic, a makefile is used to encapsulate the steps of text generation : assemble which “.s” file
with which assembler.

The board level simulation is the most comprehensive test. However, it may not be practical for the debug
stage of MSP and BSP. The proposed mechanism for facilitating both simulation needs is to allow preload of
MSP instruction ram, BSP instruction ram and data rams from three separate files along with separate file for
main memory. When board level simulation is desired, put all text in main memory and leave the files for
MSP text, BSP text and data ram empty. It would leave instruction rams and data rams uninitialized. For
individual processor (MPS / BSP) debug, put MSP and/or BSP text in the appropriate file(s) for preload.
This method would facilitate diagnostics for checking resource contention between MSP and BSP. It’s rec-
ommended that this step be included in the makefile of each diagnostic.

TABLE 82. HD diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

v_hdreg.s x na x Write/Read of all registers in hd block
v_dmareg.s x Write/Read of all dma descriptor RAM
v_tlbmem.s x na x Write/Read of tlb RAM in VICE
v_hd_cnt.s x Verify Counter working in hd block
v_hd_fw.s x na x Write of Host Data PIO Fifo.

 Tests Back to Back Writes
 TestsFullBehavior/WRRDYStall

v_dma00.s x na x Initial DMA debug
v_dma01.s x DMA Ch1/2 block rd/wr from/to Sys-DRAM to/from Vice Data RAM A

Test Round Trip Data Through Vice Both Channels Active
Random PIO activity to Vice and Crime during DMA

v_dma02.s x DMA Ch1/2 block rd/wr from/to Sys-DRAM to/from Vice Data RAM B
Test Round Trip Data Through Vice Both Channels Active
Random PIO activity to Vice and Crime during DMA

v_dma03.s x DMA Ch1/2 block rd/wr from/to Sys-DRAM to/from Vice Data RAM C
Test Round Trip Data Through Vice Both Channels Active
Random PIO activity to Vice and Crime during DMA

v_dma04.s x DMA Ch1 block rd/wr from/to Sys-DRAM to/from Vice MSP IRAM
v_dma05.s x DMA Ch1 block rd/wr from/to Sys-DRAM to/from Vice BSP IRAM
v_dma06.s x DMA Ch1 block rd/wr from/to Sys-DRAM to/from Vice BSP Table RAM
v_dma07.s x DMA Ch1 block rd from Sys-DRAM to Vice BSP Input FIFO.
v_dma08.s x DMA Ch1 block wr to Sys-DRAM from Vice BSP Output FIFO.
v_dma09.s x DMA Ch1 block rd from Sys-DRAM to Vice TLB RAM.

April 17, 1997 433

v_hd_fwr.s x na x Write of Host Data PIO Fifo.
 Tests Back to Back Writes
 TestsFullBehavior/WRRDYStall

v_dma01.s x DMA Ch1/2 block rd/wr from/to Sys-DRAM to/from Vice Data RAM A
Test Round Trip Data Through Vice Both Channels Active
Random PIO activity to Vice and Crime during DMA

v_dma02.s x DMA Ch1/2 block rd/wr from/to Sys-DRAM to/from Vice Data RAM B
Test Round Trip Data Through Vice Both Channels Active
Random PIO activity to Vice and Crime during DMA

v_dma10.s x DMA Ch2 block fill of Vice Data RAM A,B,C with diff patterns.
v_dma11.s x DMA Ch1/2 Skip/Halt verification.
v_dma12.s x DMA Ch1 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:0 split
v_dma13.s x DMA Ch1 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:2 split
v_dma14.s x DMA Ch1 block rd from Sys-DRAM Y Only 4:2:2 -> 4:
v_dma15.s x DMA Ch1 block rd from Sys-DRAM Chroma Only 4:2:2 -> 2:0
v_dma16.s x DMA Ch1 block wr to Sys-DRAM split 4:2:0 -> 4:2:2 Y/C
v_dma17.s x DMA Ch1 block wr to Sys-DRAM split 4:2:2 -> 4:2:2 Y/C
v_dma18.s x DMA Ch1 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-0
v_dma19.s x DMA Ch1 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-0
v_dma20.s x DMA Ch1 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-0
v_dma21.s x DMA Ch1 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-0
v_dma22.s x DMA Ch1 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-1
v_dma23.s x DMA Ch1 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-1
v_dma24.s x DMA Ch1 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-1
v_dma25.s x DMA Ch1 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-1
v_dma26.s x Flush DMA Ch1 block wr to Sys-DRAM from Vice BSP Output FIFO.

Test Flush Command.
Test Different Source/Destination Alignment Choices

v_dma27.s x Align DMA Ch1 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:0 split
v_dma28.s x Align DMA Ch1 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:2 split
v_dma29.s x Align DMA Ch1 block rd from Sys-DRAM Y Only 4:2:2 -> 4:
v_dma30.s x Align DMA Ch1 block rd from Sys-DRAM Chroma Only 4:2:2-> 2:0
v_dma31.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-0
v_dma32.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-0
v_dma33.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-0
v_dma34.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-0
v_dma35.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-1
v_dma36.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-1
v_dma37.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-1
v_dma38.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-1
v_hd_rdwr.s x SysAD Random PIO Write/Read to CRIME/VICE space
v_int.s x Load Code for MSP and BSP to software interrupt host.
v_reg.s x SysAD PIO Write/Read of all registers in VICE
v_dmem.s x SysAD PIO Write/Read of all Data RAM

TABLE 82. HD diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 434

v_bsp_iram.s x na x SysAD PIO Write/Read of BSP Instruction RAM
v_iram.s x na x SysAD PIO Write/Read of MSP Instruction RAM
v_comdmaarb.s x Download BSP code, MSP code. BSP runs 1 DMA engine, MSP runs

other. Both DMA engines moving data AND both MSP and BSP
doing lots of load/store to Data RAM AND lots of Common Bus
activity to exercise the hd_comarb.vhd and hd_dmaarb.vhd circuits in
the hd block

BSP driven tests
bsp_hdreg.s x Write/Read of all registers in hd block
bsp_dmareg.s x x x x Write/Read of all dma descriptor RAM
bsp_hd_cnt.s x x x x Verify Counter working in hd block
bsp_dma01.s x x x x DMA Ch2 block rd/wr from/to Sys-DRAM to/from Vice Data RAM A
bsp_dma02.s x x x x DMA Ch2 block rd/wr from/to Sys-DRAM to/from Vice Data RAM B
bsp_dma03.s x x x x DMA Ch2 block rd/wr from/to Sys-DRAM to/from Vice Data RAM C
bsp_dma05.s x x x x DMA Ch2 block rd/wr from/to Sys-DRAM to/from Vice BSP IRAM
bsp_dma06.s x x x x DMA Ch2 block rd/wr from/to Sys-DRAM to/from Vice BSP Table RAM
bsp_dma07.s x x x x DMA Ch2 block rd from Sys-DRAM to Vice BSP Input FIFO.
bsp_dma08.s x x x x DMA Ch2 block wr to Sys-DRAM from Vice BSP Output FIFO.
bsp_dma09.s x DMA Ch2 block rd from Sys-DRAM to Vice TLB RAM.
bsp_dma10.s x x x x DMA Ch2 block fill of Vice Data RAM A,B,C with diff patterns.
bsp_dma11.s x x x x DMA Ch2 Skip/Halt verification.
bsp_dma12.s x x x x DMA Ch2 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:0 split
bsp_dma13.s x x x x DMA Ch2 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:2 split
bsp_dma14.s x x x x DMA Ch2 block rd from Sys-DRAM Y Only 4:2:2 -> 4:
bsp_dma15.s x x x x DMA Ch2 block rd from Sys-DRAM Chroma Only 4:2:2 -> 2:0
bsp_dma16.s x x x x DMA Ch2 block wr to Sys-DRAM split 4:2:0 -> 4:2:2 Y/C
bsp_dma17.s x x x x DMA Ch2 block wr to Sys-DRAM split 4:2:2 -> 4:2:2 Y/C
bsp_dma18.s x x x x DMA Ch2 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-0
bsp_dma19.s x x x x DMA Ch2 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-0
bsp_dma20.s x x x x DMA Ch2 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-0
bsp_dma21.s x x x x DMA Ch2 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-0
bsp_dma22.s x x x x DMA Ch2 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-1
bsp_dma23.s x x x x DMA Ch2 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-1
bsp_dma24.s x x x x DMA Ch2 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-1
bsp_dma25.s x x x x DMA Ch2 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-1
bsp_dma26.s x x x x Flush DMA Ch2 block wr to Sys-DRAM from Vice BSP Output FIFO.

Test Flush Command.
Test Different Source/Destination Alignment Choices

bsp_dma27.s x x x x Align DMA Ch2 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:0 split
bsp_dma28.s x x x x Align DMA Ch2 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:2 split
bsp_dma29.s x x x x Align DMA Ch2 block rd from Sys-DRAM Y Only 4:2:2 -> 4:
bsp_dma30.s x x x x Align DMA Ch2 block rd from Sys-DRAM Chroma Only 4:2:2-> 2:0
bsp_dma31.s x Align DMA Ch2 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-0
bsp_dma32.s x Align DMA Ch2 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-0

TABLE 82. HD diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 435

bsp_dma33.s x Align DMA Ch2 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-0
bsp_dma34.s x Align DMA Ch2 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-0
bsp_dma35.s x Align DMA Ch2 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-1
bsp_dma36.s x Align DMA Ch2 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-1
bsp_dma37.s x Align DMA Ch2 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-1
bsp_dma38.s x Align DMA Ch2 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-1
bsp_reg.s x x x x BSP PIO Write/Read of all registers in VICE
bsp_dmem.s x x x x BSP PIO Write/Read of all Data RAM
MSP driven tests
msp_hdreg.s x Write/Read of all registers in hd block
msp_dmareg.s x x x x Write/Read of all dma descriptor RAM
msp_hd_cnt.s x x x x Verify Counter working in hd block
msp_dma01.s x x x x DMA Ch1 block rd/wr from/to Sys-DRAM to/from Vice Data RAM A
msp_dma02.s x x x x DMA Ch1 block rd/wr from/to Sys-DRAM to/from Vice Data RAM B
msp_dma03.s x x x x DMA Ch1 block rd/wr from/to Sys-DRAM to/from Vice Data RAM C
msp_dma04.s x x x x DMA Ch1 block rd/wr from/to Sys-DRAM to/from Vice MSP IRAM
msp_dma09.s x DMA Ch1 block rd from Sys-DRAM to Vice TLB RAM.
msp_dma10.s x x x x DMA Ch1 block fill of Vice Data RAM A,B,C with diff patterns.
msp_dma11.s x x x x DMA Ch1 Skip/Halt verification.
msp_dma12.s x x x x DMA Ch1 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:0 split
msp_dma13.s x x x x DMA Ch1 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:2 split
msp_dma14.s x x x x DMA Ch1 block rd from Sys-DRAM Y Only 4:2:2 -> 4:
msp_dma15.s x x x x DMA Ch1 block rd from Sys-DRAM Chroma Only 4:2:2 -> 2:0
msp_dma16.s x x x x DMA Ch1 block wr to Sys-DRAM split 4:2:0 -> 4:2:2 Y/C
msp_dma17.s x x x x DMA Ch1 block wr to Sys-DRAM split 4:2:2 -> 4:2:2 Y/C
msp_dma18.s x x x x DMA Ch1 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-0
msp_dma19.s x x x x DMA Ch1 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-0
msp_dma20.s x x x x DMA Ch1 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-0
msp_dma21.s x x x x DMA Ch1 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-0
msp_dma22.s x x x x DMA Ch1 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-1
msp_dma23.s x x x x DMA Ch1 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-1
msp_dma24.s x x x x DMA Ch1 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-1
msp_dma25.s x x x x DMA Ch1 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-1
msp_dma26.s x Flush DMA Ch1 block wr to Sys-DRAM from Vice BSP Output FIFO.

Test Flush Command.
Test Different Source/Destination Alignment Choices

msp_dma27.s x x x x Align DMA Ch1 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:0 split
msp_dma28.s x x x x Align DMA Ch1 block rd from Sys-DRAM Y/C 4:2:2 -> 4:2:2 split
msp_dma29.s x x x x Align DMA Ch1 block rd from Sys-DRAM Y Only 4:2:2 -> 4:
msp_dma30.s x x x x Align DMA Ch1 block rd from Sys-DRAM Chroma Only 4:2:2-> 2:0
msp_dma31.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-0
msp_dma32.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-0
msp_dma33.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-0

TABLE 82. HD diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 436

msp_dma34.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-0
msp_dma35.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-00 HPEN-1 YC-01 ILV-1
msp_dma36.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-01 HPEN-1 YC-01 ILV-1
msp_dma37.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-10 HPEN-1 YC-01 ILV-1
msp_dma38.s x Align DMA Ch1 block rd from Sys-DRAM HPEL-11 HPEN-1 YC-01 ILV-1
msp_reg.s x SysAD PIO Write/Read of all registers in VICE
msp_dmem.s x x x x SysAD PIO Write/Read of all Data RAM

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description
bsp_LoadH_00.s X bsp LoadH from DMA bus (whole address space)
bsp_LoadH_04.s X X X bsp LoadH from DMA bus with stall (DMA not available)
bsp_LoadH_07.s X bsp LoadH from DMA bus with back to back load (burst)
bsp_LoadH_10.s X bsp LoadH from common bus (whole address space)
bsp_LoadH_14.s X X X bsp LoadH from common bus with stall (common bus not available)
bsp_LoadH_17.s
bsp_ls_01.s x x x simple halfowrd store. Memory model 1 MLF
bsp_ls_02.s x x x simple halfword stores Memory model 1 MLF
bsp_ls_03.s x x x load and store bytes Memory model 1 MLF
bsp_ls_04.s x x x load and store bytest Memory model 1 MLF
bsp_ls_05.s x x x load and store bytest Memory model 2 MLF
bsp_ls_10.s x x x load store -- Massive bus activity. MLF
dmaregs.s x x x load store to dma registers
dmaregs1.s x x x load store to dma registers
bsp_LoadBl_00.s X bsp LoadBl from DMA bus (whole address space)
bsp_LoadBl_04.s X X X bsp LoadBl from DMA bus with stall (DMA not available)
bsp_LoadBl_10.s X bsp LoadBl from common bus (whole address space)
bsp_LoadBl_14.s X X X bsp LoadBh from common bus with stall (common bus not available)
bsp_LoadBh_00.s X bsp LoadBh from DMA bus (whole address space)
bsp_LoadBh_04.s X X X bsp LoadBh from DMA bus with stall (DMA not available)
bsp_LoadBh_10.s X bsp LoadBh from common bus (whole address space)
bsp_LoadBh_14.s X X X bsp LoadBh from common bus with stall (common bus not available)
bsp_StoreH_00.s x bsp StoreH from DMA bus (whole address space)
bsp_StoreH_04.s x x x bsp StoreH from DMA bus with stall (DMA not available)
bsp_StoreH_07.s x bsp StoreH from DMA bus with back to back load (burst)
bsp_StoreH_10.s x bsp StoreH from common bus (whole address space)
bsp_StoreH_14.s x x x bsp StoreH from common bus with stall (common bus not available)
bsp_StoreH_17.s x bsp StoreH from common bus with back to back load (burst)
bsp_StoreBl_00.s x bsp StoreBl from DMA bus (whole address space)
bsp_StoreBl_04.s x x x bsp StoreBl from DMA bus with stall (DMA not available)

TABLE 82. HD diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 437

bsp_StoreBl_10.s x bsp StoreBl from common bus (whole address space)
bsp_StoreBl_14.s x x x bsp StoreBh from common bus with stall (common bus not available)
bsp_StoreBh_00.s x bsp StoreBh from DMA bus (whole address space)
bsp_StoreBh_04.s x x x bsp StoreBh from DMA bus with stall (DMA not available)
bsp_StoreBh_10.s x bsp StoreBh from common bus (whole address space)
bsp_StoreBh_14.s x x x bsp StoreBh from common bus with stall (common bus not available)
bsp_LDIh-0.s x bsp LDI_h - all register destinations
bsp_LDIh-1.s x bsp LDI_h - all register destinations
bsp_LDIl-0.s x bsp LDI_l - all register destinations
bsp_LDIl-1.s x bsp LDI_l - all register destinations
bsp_cmpi_00.s x x x bsp CMPI - check all flags set properly
bsp_andi_00.s x x x bsp ANDI - check all flags set properly
bsp_beq_00.s x x bsp BRANCH

check branch correctly taken (forward and backward) for each
condition code
check that instruction in delay slot is executed properly

bsp_beq_01.s x x x bsp BRANCH
bsp_beq_02.s x x x bsp BRANCH
bsp_bge_00.s x x x bsp BRANCH
bsp_bge_01.s x x x bsp BRANCH
bsp_bge_02.s x x x bsp BRANCH
bsp_bne_00.s x x x bsp BRANCH
bsp_bne_01.s x x x bsp BRANCH
bsp_bne_02.s x x x bsp BRANCH
bsp_bne_03.s x x x bsp BRANCH
bsp_blt_00.s x x x bsp_BRANCH
bsp_blt_01.s x x x bsp BRANCH
bsp_blt_02.s x x x bsp BRANCH
bsp_blt_03.s x x x bsp BRANCH
bsp_ext0_00.s x x x bsp BRANCH
bsp_ext0_01.s x x x bsp BRANCH
bsp_ext0_02.s x x x bsp BRANCH
bsp_ext0_03.s x x x bsp BRANCH
bsp_ext1_00.s x x x bsp BRANCH
bsp_ext1_01.s x x x bsp BRANCH
bsp_ext1_02.s x x x bsp BRANCH
bsp_ext1_03.s x x x bsp BRANCH
bsp_ext2_00.s x x x bsp BRANCH
bsp_ext2_01.s x x x bsp BRANCH
bsp_ext2_02.s x x x bsp BRANCH
bsp_ext2_03.s x x x bsp BRANCH

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 438

bsp_jr_00.s x x x bsp JR
check branch correctly taken (forward and backward) for each condi-
tion code.
check that instruction in delay slot is executed properly

bsp_jr_01.s x x x bsp JR
bsp_jr_02.s x x x bsp JR
bsp_jr_03.s x x x bsp JR
bsp_jr_04.s x x x bsp JR
bsp_jr_05.s x x x bsp JR
bsp_jr_06.s x x x bsp JR
bsp_jr_07.s x x x bsp JR
bsp_jr_08.s x x x bsp JR
bsp_jr_09.s x x x bsp JR
bsp_jr_10.s x x x bsp JR
bsp_jr_11.s x x x bsp JR
bsp_jr_12.s x x x bsp JR
bsp_jr_13.s x x x bsp JR
bsp_jr_14.s x x x bsp JR
bsp_break_00.s x bsp BREAK

check that no instruction is executed (partially) after the break
check that appropriate PC is saved

bsp_break_01.s x bsp BREAK
bsp_break_02.s x bsp BREAK
bsp_break_03.s x bsp BREAK
bsp_break_04.s x bsp BREAK
bsp_break_05.s x bsp BREAK
bsp_resume_00.s x bsp RESUME
bsp_resume_01.s x bsp RESUME
bsp_resume_02.s x bsp RESUME
bsp_resume_03.s x bsp RESUME
bsp_addi_00.s x x x bsp ADDI
bsp_addi_01.s x x x bsp ADDI
bsp_add_00.s x x x bsp ADD

check results (“corner cases”)
check that flags are set properly

bsp_add_01.s x x x bsp ADD
bsp_add_02.s x x x bsp ADD
bsp_addc_00.s x x x bsp ADDC

check results (“corner cases”)
check that flags are set properly
perform double precision addition w/wo carry across halfwords

bsp_addc_01.s x x x bsp ADDC

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 439

bsp_sub_00.s x x x bsp SUB
check results (“corner cases”)
check that flags are set properly

bsp_sub_01.s x x x bsp SUB
bsp_cmp_00.s x bsp CMP

check results (“corner cases”)
check that flags are set properly

bsp_or_00.s x x x bsp OR
check results (“corner cases”)
check that flags are set properly

bsp_and_00.s x x x bsp AND
bsp_lshft_00.s x x x bsp LSHIFT

check results (“corner cases”)
check that flags are set properly
check all 16 shifts

bsp_lshft_01.s x x x bsp LSHIFT
bsp_lshft_02.s x x x bsp LSHIFT
bsp_arshft_00.s x x x bsp ARSHIFT

check shift for positive and negative numbers
bsp_mult_00.s x x x bsp MULT
bsp_mult_01.s x bsp MULT
bsp_mult_02.s x bsp MULT
testZZ_01.s x x x bsp ZZXLATE

check all input/output combinations
ZZ scan and Alt scan

testZZ_02.s x x x bsp ZZXLATE
testZZ_03.s x x x bsp ZZXLATE
testZZ_04.s x x x bsp ZZXLATE
testAlt_01.s x x x bsp ZZXLATE
testAlt_02.s x x x bsp ZZXLATE
testAlt_03.s x x x bsp ZZXLATE
testAlt_04.s x x x bsp ZZXLATE
bsp_xor_00.s x x x bsp XOR

check results (“corner cases”)
check that flags are set properly

bsp_abs_00.s x x x bsp ABS
check results (positive and negative inputs)
check that flags are set properly.

bsp_abs_01.s x x x bsp ABS
bsp_abs_02.s x x x bsp ABS
bsp_abs_03.s x x x bsp ABS
bsp_neg_00.s x x x bsp NEG

check results (“corner cases”)
check that flags are set properly

bsp_copy_00.s x x x COPYTO COPYFROM instruction test rPAGE

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 440

bsp_copy_01.s x x x COPYTO COPYFROM instruction test Alpha_h
bsp_copy_02.s x x x COPYTO COPYFROM instruction test Alpha_l
bsp_copy_03.s x x x COPYTO COPYFROM instruction test Beta_h
bsp_copy_04.s x x x COPYTO COPYFROM instruction test Beta_l
bsp_copy_05.s x x x COPYTO COPYFROM instruction test CMP_h
bsp_copy_06.s x x x COPYTO COPYFROM instruction test CMP_l
bsp_copy_07.s x x x COPYTO COPYFROM instruction test MASK_h
bsp_copy_08.s x x x COPYTO COPYFROM instruction test MASK_l
bsp_copy_09.s x x x COPYTO COPYFROM instruction test BLOCK_DATA
bsp_copy_10.s x x x COPYTO COPYFROM instruction test BLOCK_ADDRESS
bsp_copy_11.s x x x COPYTO COPYFROM instruction test BLOCK_PTR
bsp_copy_12.s x x x COPYTO COPYFROM instruction test ROOT_TBL_PTR
bsp_copy_13.s x x x
bsp_lload_00.s x x x LLOADH
bsp_lload_01.s x x x LLOADH
bsp_lstore_00.s x LSTOREH
bsp_lstore_01.s x LSTOREH
bsp_getbit_01.s x x x getbits(q) rD, N

Check all values of N
Check with/wo byte swallowing
STALLs when not enough data in bitstream buffer

bsp_getbit_02.s x x x getbits(q) rD,rT
Check all allowed values in rT
Check with/wo byte swallowing
STALLs when not enough data in bitstream buffer

bsp_getbit_03.s x x x getbits
bsp_getbit_04.s x x x getbits
bsp_getbit_05.s x x x getbits
bsp_getbit_06.s x x x getbits
bsp_getbit_07.s x x x getbits
bsp_getbit_08.s x x x getbits
bsp_getbit_09.s x x x getbits
bsp_getbit_10.s x x x getbits
bsp_getbit_11.s x x x getbits
bsp_getbit_12.s x x x getbits
bsp_getbit_13.s x x x getbits
bsp_getbit_14.s x x x getbits
bsp_getbit_15.s x x x getbits
bsp_getbit_16.s x x x getbits
bsp_getbit_reg_5_08 x x getbits
bsp_getbit_reg_5_09 x x x getbits
bsp_getbit_reg_5_10 x x x getbits
bsp_getbit_reg_5_11 x x x getbits
bsp_getbit_reg_5_12 x x x getbits

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 441

bsp_getbit_reg_5_13 x x x getbits
bsp_getbit_reg_5_14 x x x getbits
bsp_getbit_reg_5_15 x x x getbits
bsp_getbit_reg_5_16 x x x getbits
bsp_probeBits_0.s x probeBits rD, N

Check all values of N
bsp_shiftstream_0.s x shiftstream(N,q)

Check all values of N
Check with/wo byte swallowing
STALLs when not enough data in bitstream buffer

bsp_lcp_261_0.s x load_code_packH261(q,p)
use to encode blocks of DCT coefficients (Zig-zag order)
intra block
inter block
cover all run-level pairs in the VLC table
cover in-table escape codes
cover hardwired escape codes
STALLS when output Fifo is full

bsp_lcp_261_1.s x load_code_packH261(q,p)
bsp_lcp_261_2.s x load_code_packH261(q,p)
bsp_lcp_261_3.s x load_code_packH261(q,p)
run_lvl_parse_0.s x block_run_level_parse(q)

use to decode H261, MPEG-1 and MPEG-2 block.
cover all run-level pairs for each standard
escape code processing for each standard
use to check RESUME instruction

btestB15_02.s x x x MPEG2 INTRA-BLOCK-LUMA DC term (positive)
btestB15_03.s x x x MPEG2 INTRA-BLOCK-LUMA DC term (negative)
ltestB15_01.s x x x leaf run_level_parse
ltestB15_02.s x x x leaf run_level_parse
ltestB15_03.s x x x leaf run_level_parse
mpeg2_block_dec_0.s x x x MPEG2 intra_Luma DC check
mpeg2_block_dec_1.s x x x MPEG2 intra_Chroma DC check
mpeg2_block_dec_2.s x x x MPEG2 intra_Chroma check w Escape code
mpeg2_block_dec_3.s x x x MPEG2 intra_Chroma back to back escapes
h261_block_dec_0.s x x x H261 intra DC= 255
h261_block_dec_1.s x x x H261 intra with 111 (run 0 level -1) AC
h261_block_dec_2.s x x x H261 intra with lots of AC terms. s-bit causes 32-bit load of bitstream
h261_block_dec_3.s x x x H261 intra with escape codes
h261_block_dec_4.s x x x H261 intra with back_to_back escape codes
h261_block_dec_5.s x x x H261 inter with back_to_back escape codes
table_B1_test_00.s x x x generic_leaf_parse tests on MPEG-2 tables

use to decode H261, MPEG-1 and MPEG-2 macrblock headers.
cover all table locations for H261 and MPEG macroblock headers

table_B1_test_1.s x x x generic_leaf_parse

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 442

table_B2_test_0.s x x x generic_leaf_parse
table_B3_test_0.s x x x generic_leaf_parse
table_B4_test_0.s x x x generic_leaf_parse
table_B10_test_0.s x x x generic_leaf_parse
table_B10_test_1.s x x x generic_leaf_parse
table_B11_test_0.s x x x generic_leaf_parse
table_B12_test_0.s x x x generic_leaf_parse
table_B13_test_0.s x x x generic_leaf_parse
run_size_0.s x block_run_size_parse

use to decode JPEG blocks
cover all run_size combinations for JPEG blocks
JPEG byte swallowing -- check rigourously

b01test.s x x x code_search - search for different lenght codes in the bitstream.
b02test.s x x x code_search - search for different lenght codes in the bitstream.
b32test.s x x x code_search - search for different lenght codes in the bitstream.
b32Atest.s x x x code_search - search for different lenght codes in the bitstream.
csearch_byte_0.s x code_search - using byte alignement
pack_bitstream_0.s x pack_bitstream

pack all bit sizes from 1-16.
check JPEG byte insertion

Lcode_pack_0.s x load-code_pack(q,p) offset
Perform JPEG block encodings.
Cover all JPEG encoder table entries.
Check ZRL packing.
Multiple ZRLs

byte_align_0.s x byte align
pack_bitstream_0.s x pack_bitstream(q) M, IMM

pack all bit sizes
Check JPEG byte insertion.
this byte insetrtion testing should be rigorous.

pack_bitstream_1.s x pack_bitstream(q) M, IMM
pack_bitstream_2.s x pack_bitstream(q) M, IMM
bsp_bypass_00 x x x bsp - ADD operation -both RS and RT bypassed
bsp_bypass_01 x x x bsp - ADD operation -both RS and RT bypassed
bsp_bypass_02 x x x bsp - ADD operation -both RS and RT bypassed
bsp_bypass_03 x x x bsp - LSHIFT operation -both RS and RT bypassed
bsp_bypass_04 x x x bsp - CMPI operation - RS bypassed
bypass_load.s x x x bsp - Load Bypassd
bypass_load1.s x x x bsp - Load Bypassd
bypass_load2.s x x x bsp - Load Bypass
bypass_load3.s x x x bsp - Load Bypass
bypass_load4.s x x x bsp - Load Bypass

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 443

bsp_loadi_byps_0.s x bsp - Load Immediate bypass
both RS/High and Low Byte and RT/High and Low Byte bypassed
LDI_l r5, IMM
ADD r6, r5, r4

bsp_copy_byps_0.s x bsp - COPYFROM Bypass - both RS and RT bypassed
COPYFROM r5, ALT_REG
ADD r6, r5, r4

bypass_add_00.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_sub_00.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_or_00.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_and_00.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_addc_00.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_add.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_sub.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_or.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_and.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_mul.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_lsh.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_xor.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_neg.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_abs.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_zzx.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_cpf.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_andi.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_addi.s x x x bsp - ALU operation Bypass - both RS and RT bypassed
bypass_get.s x x bypass_get
bypass_geti.s x x bypass_get
bypass_prb.s x x x bypass_get
pack_get.s x x x pkbit and getbits
bsp_pack_01s x x x pack_bitstream
pack_glook_01.s x x generic_lookup_pack
bsp_ibox_0.s x x x BSP_IN_BOX

check setting of b15 on write by MSP/host
check clearing of b15 on read by BSP
check data transfer

bsp_obox_0.s x x x BSP_OUT_BOX
check setting of b15 on BSP write
check clearing of b15 on read by MSP/host
check data transfer

bsp_halt_rst_0.s x x x BSP_HALT_RESET
check HALT functionality when written by HOST/MSP
check RESET functionality when written by HOST/MSP/BSP

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 444

bsp_ctl_stat_0.s x x x BSP_CTL_STAT
check setting of EXT0, EXT1, EXT2 by BSP and HOST/MSP
Bitstream buffer reset.
WB_empty
N,Z,C,V

bsp_avld_bits_0.s x x x BSP_AVALID_BITS
bsp_fvld_bits_0.s x x x BSP_FVALID_BITS
bsp_fifoc_stat_0.s x x x BSP_FIFO_CTL_STAT
bsp_in_count_0.s x BSP_IN_COUNT
bsp_out_count_0.s x BSP_OUT_COUNT
bsp_watch_pt_0.s x BSP_WatchPoint
bsp_pc_0.s x x BSP_PC
bsp_epc_0.s x x BSP_EPC
bsp_cause_0.s x x BSP_CAUSE
bsp_adr_err_0.s x Address Error Exception
bsp_fifo_empty_0.s x Bitstream FIFO empty for 4K cycles
bsp_fifo_full_0.s x Bitstream FIFO full for 4K cycles
bitstream_exp_0.s x x Bitstream Error Exception:
xcape_code_0.s x x Escape Code (H261/MPEG)
bsp_ls_stall_0.s x x x Stall on Load/Store from DMA_DB - single cycle stall
bsp_ls_stall_1.s x x x Stall on Load/Store from DMA_DB - single cycle stall
bsp_ls_stall_5.s x x x Stall on Load/Store from DMA_DB - multiple cycle stall
bsp_ls_stall_6.s x x x Stall on Load/Store from DMA_DB - multiple cycle stall
getbits_stall_0.s x Stall on Input FIFO empty - getbits
leaf_parse_stall_0.s x Stall on Input FIFO empty - generic_leaf_parse
run_level_stall_0.s x Stall on Input FIFO empty - block_run_level_parse
run_size_stall_0.s x Stall on Input FIFO empty - block_run_size_parse
code_search_stall_0.s x Stall on Input FIFO empty - code_search
Shiftstream_stall_0.s x Stall on Input FIFO empty - Shiftstream
leaf_parse_stall_1.s x Stall on Write Buffer Full - generic_leaf_parse
run_level_stall_1.s x Stall on Write Buffer Full - block_run_level_parse
run_size_stall_1.s x Stall on Write Buffer Full - block_run_size_parse
p_bitstream_stall_0.s x Stall on Write Buffer Full - pack_bitstream
load_code_stall_0.s x Stall on Write Buffer Full - load_code_pack
load_code_stall_1.s x Stall on Write Buffer Full - load_code_pack_H261
lookup_stall_0.s x Stall on Write Buffer Full - generic_lookup_pack
leaf_parse_stall_2.s x Stall on output FIFO Full - generic_leaf_parse
run_level_stall_2.s x Stall on output FIFO Full - block_run_level_parse
run_size_stall_2.s x Stall on output FIFO Full - block_run_size_parse
p_bitstream_stall_1.s x Stall on output FIFO Full - pack_bitstream
load_code_stall_2.s x Stall on output FIFO Full - load_code_pack
load_code_stall_3.s x Stall on output FIFO Full - load_code_pack_H261
lookup_stall_1.s x Stall on output FIFO Full - generic_lookup_pack

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 445

escape_interrupt H261/MPEG escape code handling -- interrupt mechanism
write_buffer_bsp Bus arbitration between bsp and write buffer
bsp_break bsp break instruction
bsp_halt x x MSP halts the BSP
bsp_halt x x R4K HALTS the BSP
bsp_debug execute debugger (code restart etc.)
bsp_getbit getbits instrcution (immediate)
bsp_probe_00 x x x probe_bits instruction
bsp_getbit getbits (register)
bsp_shiftstream shiftstream instruction
bsp_ba byte_align instruction
bsp_lrp leaf_run_level_parse
bsp_lrp_mpeg2_00 x x x leaf_run_level_parse using MPEG2 table
bsp_lrp_mpeg2_01 x x x leaf_run_level_parse using MPEG2 table
bsp_lrp_mpeg2_02 x x x leaf_run_level_parse using MPEG2 table
bsp_lrp_mpeg2_03 x x x leaf_run_level_parse using MPEG2 table
bsp_brlp block_run_level_parse instruction
bsp_lcp261 load_code_pack_H261
bsp_gleaf_mba_01 x x x generic_leaf_parse on H261 MBA
bsp_gleaf_mba_02 x x x generic_leaf_parse on H261 MBA
bsp_gleaf_mba_03 x x x generic_leaf_parse on H261 MBA
bsp_gleaf_mtype_01 x x x generic_leaf_parse on H261 MTYPE
bsp_gleaf_mvd_01 x x x generic_leaf_parse on H261 MVD
bsp_gleaf_mvd_02 x x x generic_leaf_parse on H261 MVD
bsp_gleaf_mvd_03 x x x generic_leaf_parse on H261 MVD
bsp_gleaf_cbp_01 x x x generic_leaf_parse on H261 CBP
bsp_gleaf_cbp_02 x x x generic_leaf_parse on H261 CBP
bsp_gleaf_cbp_03 x x x generic_leaf_parse on H261 CBP
bsp_gleaf_cbp_04 x x x generic_leaf_parse on H261 CBP
bsp_genleaf_01 x x x generic_leaf_parse instruction on H261 tables
bsp_genleaf_02 x x x generic_leaf_parse instruction on H261 tables
bsp_genleaf_03 x x x generic_leaf_parse instruction on H261 tables
bsp_brsp block_run_size_parse instruction (INCLUDE test of byte swaloow-

ing)
bsp_brs_M1 x x x block_run_size_parse
bsp_brs_M2 x x x block_run_size_parse
bsp_brs_M3 x x x block_run_size_parse
bsp_brs_M4 x x x block_run_size_parse
bsp_brs_M5 x x x block_run_size_parse
bsp_brs_M6 x x x block_run_size_parse
bsp_brs_M7 x x x block_run_size_parse
bsp_brs_M8 x x x block_run_size_parse
bsp_brs_M9 x x x block_run_size_parse

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 446

bsp_brs_M10 x x x block_run_size_parse
bsp_brs_M1 x x x block_run_size_parse
bsp_brs_M12 x x x block_run_size_parse
bsp_brs_M13 x x x block_run_size_parse
bsp_brs_M14 x x x block_run_size_parse
bsp_brs_M15 x x x block_run_size_parse
bsp_brs_M16 x x x block_run_size_parse
bsp_brs_M17 x x x block_run_size_parse
bsp_brs_M18 x x x block_run_size_parse
bsp_brs_M19 x x x block_run_size_parse
bsp_brs_M20 x x x block_run_size_parse
bsp_brs_M21 x x x block_run_size_parse
bsp_brs_M22 x x x block_run_size_parse
bsp_brs_M23 x x x block_run_size_parse
bsp_brs_M24 x x x block_run_size_parse
bsp_brs_M25 x x x block_run_size_parse
bsp_brs_M26 x x x block_run_size_parse
bsp_brs_M27 x x x block_run_size_parse
bsp_brs_M28 x x x block_run_size_parse
bsp_brs_M29 x x x block_run_size_parse
bsp_brs_M30 x x x block_run_size_parse
bsp_brs_M31 x x x block_run_size_parse
bsp_brs_M32 x x x block_run_size_parse
bsp_brs_M33 x x x block_run_size_parse
bsp_brs_M34 x x x block_run_size_parse
bsp_brs_M35 x x x block_run_size_parse
bsp_brs_M36 x x x block_run_size_parse
bsp_brs_X1 x x x block_run_size_parse
bsp_brs_X2 x x x block_run_size_parse
bsp_brs_X3 x x x block_run_size_parse
bsp_brs_X4 x x x block_run_size_parse
bsp_brs_X5 x x x block_run_size_parse
bsp_brs_X6 x x x block_run_size_parse
bsp_brs_X7 x x x block_run_size_parse
bsp_brs_X8 x x x block_run_size_parse
bsp_brs_X9 x x x block_run_size_parse
bsp_brs_X10 x x x block_run_size_parse
bsp_brs_X11 x x x block_run_size_parse
bsp_brs_X12 x x x block_run_size_parse
bsp_brs_X13 x x x block_run_size_parse
bsp_search_01 x x x code_search instruction
b01test x x x code_search instruction
b02test x x x code_search instruction

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 447

b32test x x x code_search instruction
b32Atest x x x code_search instruction
bsp_lcp load_code_pack instruction (INCLUDE byte INSERTION)
bsp_tbl bsp accessing its table memory via load/store operations
test_01.s x x x general bsp test - LDI
test_02.s x x x general bsp test - StoreB & LoadB
test_03.s x x x general bsp test - StoreH & LoadH
test_04.s x x x general bsp test - AND & OR
test_06.s x x x general bsp test - XOR, ABS, CMP & NEG
test_07.s x x x general bsp test - ADD & SUB
test_08.s x x x general bsp test - BRANCH eq, neq, ge, lt, ext0, ext1, ext2
test_09.s x x x general bsp test - COPYTO/COPYFROM rpage, alpha, beta, cmp, mask
test_10.s x x x general bsp test - LStoreH & LLoadH
test_12.s x x x general bsp test - shiftstream & getbits
test_13.s x x x general bsp test - getbits(0) r, N
test_14.s x x x general bsp test - getbits(0) r, r
test_15.s x x x general bsp test - probeBits r,N
test_16.s x x x general bsp test - code_search
test_18.s x x x general bsp test - MULT
test_23.s x x x general bsp test - code_search
test_24.s x x x general bsp test - ABS
test_25.s x x x general bsp test - ABS
test_26.s x x x general bsp test - CMPI
test_27.s x x x general bsp test - JPEG encode with DC term only
test_28.s x x x general bsp test - JPEG encode with DC term & [7][7] term
test_29.s x x x general bsp test - ADD instruction
test_30.s x x x general bsp test - ADDC instruction
test_32.s x x x general bsp test - JPEG encode with DC term only
test_33.s x x general bsp test - JPEG encode with DC term & [7][7] term

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description
[EXCEPTION] - check relevant state (EPC, Cause, BadAddr ...)

msp_AdrErr_0.s x Address Error Load - scalar

msp_AdrErr_2.s x Address Error Load - vector

msp_AdrErr_3.s x Address Error Load in delay slot

msp_AdrErr_6.s x Address Error Store - scalar

msp_AdrErr_8.s x Address Error Store - vector

TABLE 83. BSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 448

msp_AdrErr_9.s x Address Error Store in delay slot

msp_AdrErr_4.s x Address Error Store - Watch Point

msp_break_0.s x Break Point

msp_watch_0.s x Watch Point scalar

msp_watch_1.s x Watch Point vector

msp_watch_2.s x Watch Point in delay slot

msp_watch_3.s x Watch Point load/store

msp_reservedI_0.s x SU Reserved Instruction

msp_reservedI_2.s x SU Reserved Instruction - Watch Point

msp_reservedI_4.s x SU Reserved Instruction in delay slot

msp_reservedI_6.s x VU Reserved Instruction

msp_reservedI_8.s x VU Reserved Instruction - Watch Point

msp_reservedI_9.s x VU Reserved Instruction in delay slot

msp_content_0.s x x Contention : MSP - BSP

msp_content_4.s x x Contention : MSP - DMA

msp_Iadr_excpt_0.s x Instruction Fetch Addr Exception : ...

[Halt/Reset] - Check machine state after Halt/Reset.

msp_halt_0.s x Halt/Break occuring during normal instruction stream

msp_halt_1.s x Halt/Break occuring in a delay slot

msp_halt_2.s x Halt/Break occuring after a branch taken

msp_halt_3.s x Halt/Break occuring after a branch not taken

msp_halt_4.s x Reset MSP set.

[Host Writing to Regs]

msp_regs_00.s x x Read/Write to MSP_CTL_STAT

msp_regs_01.s x x Read/Write to MSP_ExcpFlag

msp_regs_02.s x x Read/Write to MSP_PC

msp_regs_03.s x x Read/Write to MSP_WatchPoint

msp_regs_04.s x x Read MSP_BadAddr

msp_regs_05.s x x Read MSP_EPC

msp_regs_06.s x x Read MSP_Cause

[Coprocessor 1,3]

msp_cop1_0.s x Read/Write all Cop 1 Space Regs

msp_cop3_0.s x Read/Write all Cop 3 Space Regs

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 449

[Other Vector Load Store Tests]

msp_ldV_0.s LHXV, LHZV, LFXV, LFZV

msp_stV_0.s SHXV, SHZV, SFXV, SFZV

[Interlock Tests]

msp_stall_0.s x VU Inst stall followed by a jump

msp_stall_1.s x VU Inst stall followed by a taken branch

msp_stall_2.s x VU Inst stall followed by a not taken branch

msp_stall_3.s x Stall in a jump dly slot

msp_stall_4.s x Stall in a taken branch dly slot

msp_stall_5.s x Stall in a not taken branch dly slot

msp_stall_6.s x Multiple exceptions

Computational tests that test out corner cases

add1.s x x x MSP - ADD

add2.s x x x MSP - ADD

msp_add3.s x MSP - ADD

addi1.s x x x MSP - ADDI

addi2.s x x x MSP - ADDI

msp_addi3.s x MSP - ADDI

addiu1.s x x x MSP - ADDIU

addiu2.s x x x MSP - ADDIU

msp_addiu3.s x MSP - ADDIU

addu1.s x x x MSP - ADDU

addu2.s x x x MSP - ADDU

msp_addu3.s x MSP - ADDU

and1.s x x x MSP - AND

and2.s x x x MSP - AND

andi1.s x x x MSP - ANDI

beq1.s x x x MSP - BEQ

bgez1.s x x x MSP - BGEZ

bgezal1.s x x x MSP - BGEZAL

bgezal2.s x x x MSP - BGEZAL

bgtz1.s x x x MSP - BGTZ

blez1.s x x x MSP - BLEZ

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 450

bltz1.s x x x MSP - BLTZ

bltzal1.s x x x MSP - BLTZAL

bltzal2.s x x x MSP - BLTZAL

bne1.s x x x MSP - BNE

bpmult.s x x x MSP - Bypass tests

bptest0.s x x x MSP - Bypass tests

bptest1.s x x x MSP - Bypass tests

bptest2.s x x x MSP - Bypass tests

bptest3.s x x x MSP - Bypass tests

bptest4.s x x x MSP - Bypass tests

cfc21.s x x x MSP - CFC2

cfc22.s x x x MSP - CFC2

ctc21.s x x x MSP - CTC2

ctc22.s x x x MSP - CTC2

di_ctlhz000.s x x x MSP - Dual Issue, Control Hzd

di_ctlhz001.s x x x MSP - Dual Issue, Control Hzd

di_ctlhz002.s x x x MSP - Dual Issue, Control Hzd

di_ctlhz010.s x x x MSP - Dual Issue, Control Hzd

di_ctlhz011.s x x x MSP - Dual Issue, Control Hzd

di_ctlhz012.s x x x MSP - Dual Issue, Control Hzd

di_ctlhz100.s x x x MSP - Dual Issue, Control Hzd

di_ctlhz101.s x x x MSP - Dual Issue, Control Hzd

di_ctlhz102.s x x x MSP - Dual Issue, Control Hzd

di_ctlhz110.s x x x MSP - Dual Issue, Control Hzd

di_ctlhz111.s x x x MSP - Dual Issue, Control Hzd

di_ctlhz112.s x x x MSP - Dual Issue, Control Hzd

di_ldst00.s x x x MSP - Dual Issue, Load Store

di_ldst01.s x x x MSP - Dual Issue, Load Store

di_ldst02.s x x x MSP - Dual Issue, Load Store

di_ldst03.s x x x MSP - Dual Issue, Load Store

di_ldst10.s x x x MSP - Dual Issue, Load Store

di_ldst11.s x x x MSP - Dual Issue, Load Store

di_ldst12.s x x x MSP - Dual Issue, Load Store

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 451

di_ldst13.s x x x MSP - Dual Issue, Load Store

di_ldst20.s x x x MSP - Dual Issue, Load Store

di_ldst21.s x x x MSP - Dual Issue, Load Store

di_ldst22.s x x x MSP - Dual Issue, Load Store

di_ldst23.s x x x MSP - Dual Issue, Load Store

di_ldst30.s x x x MSP - Dual Issue, Load Store

di_ldst31.s x x x MSP - Dual Issue, Load Store

di_ldst32.s x x x MSP - Dual Issue, Load Store

di_ldst33.s x x x MSP - Dual Issue, Load Store

di_norm00.s x x x MSP - Dual Issue, normal flow

di_norm01.s x x x MSP - Dual Issue, normal flow

di_norm02.s x x x MSP - Dual Issue, normal flow

di_norm03.s x x x MSP - Dual Issue, normal flow

di_norm10.s x x x MSP - Dual Issue, normal flow

di_norm11.s x x x MSP - Dual Issue, normal flow

di_norm12.s x x x MSP - Dual Issue, normal flow

di_norm13.s x x x MSP - Dual Issue, normal flow

di_norm20.s x x x MSP - Dual Issue, normal flow

di_norm21.s x x x MSP - Dual Issue, normal flow

di_norm22.s x x x MSP - Dual Issue, normal flow

di_norm23.s x x x MSP - Dual Issue, normal flow

di_norm30.s x x x MSP - Dual Issue, normal flow

di_norm31.s x x x MSP - Dual Issue, normal flow

di_norm32.s x x x MSP - Dual Issue, normal flow

di_norm33.s x x x MSP - Dual Issue, normal flow

di_reghz0.s x x x MSP - Dual Issue

di_reghz1.s x x x MSP - Dual Issue

di_reghz2.s x x x MSP - Dual Issue

di_reghz3.s x x x MSP - Dual Issue

iltest1.s x x x MSP - Interlock tests

iltest10.s x x x MSP - Interlock tests

iltest11.s x x x MSP - Interlock tests

iltest12.s x x x MSP - Interlock tests

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 452

iltest13.s x x x MSP - Interlock tests

iltest14.s x x x MSP - Interlock tests

iltest15.s x x x MSP - Interlock tests

iltest16.s x x x MSP - Interlock tests

iltest17.s x x x MSP - Interlock tests

iltest18.s x x x MSP - Interlock tests

iltest19.s x x x MSP - Interlock tests

iltest2.s x x x MSP - Interlock tests

iltest20.s x x x MSP - Interlock tests

iltest21.s x x x MSP - Interlock tests

iltest22.s x x x MSP - Interlock tests

iltest23.s x x x MSP - Interlock tests

iltest24.s x x x MSP - Interlock tests

iltest25.s x x x MSP - Interlock tests

iltest3.s x x x MSP - Interlock tests

iltest4.s x x x MSP - Interlock tests

iltest5.s x x x MSP - Interlock tests

iltest6.s x x x MSP - Interlock tests

iltest7.s x x x MSP - Interlock tests

iltest8.s x x x MSP - Interlock tests

iltest9.s x x x MSP - Interlock tests

j1.s x x x MSP - J

jal1.s x x x MSP - JAL

jalr1.s x x x MSP - JALR

jr1.s x x x MSP - JR

lav1.s x x x MSP - LAV

lb1.s x x x MSP - LB

lbu1.s x x x MSP - LBU

lbv1.s x x x MSP - LBV

lbv2.s x x x MSP - LBV

ldv1.s x x x MSP - LDV

ldv2.s x x x MSP - LDV

lfv1.s x x x MSP - LFV

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 453

lh1.s x x x MSP - LH

lhu1.s x x x MSP - LHU

lhv1.s x x x MSP - LHV

lhlv1.s x MSP - LHLV

lhxv1.s x MSP - LHXV

llv1.s x x x MSP - LLV

llv2.s x x x MSP - LLV

lpv1.s x x x MSP - LPV

lpv2.s x x x MSP - LPV

lqv1.s x x x MSP - LQV

lqv2.s x x x MSP - LQV

lrv1.s x x x MSP - LRV

lrv2.s x x x MSP - LRV

lsv1.s x x x MSP - LSV

lsv2.s x x x MSP - LSV

ltv1.s x x x MSP - LTWV

lui1.s x x x MSP - LUI

luv1.s x x x MSP - LUV

luv2.s x x x MSP - LUV

lw1.s x x x MSP - LW

lxv1.s x x x MSP - LXV

lxv2.s x x x MSP - LXV

lzv1.s x x x MSP - LZV

lzv2.s x x x MSP - LZV

mfc21.s x x x MSP - MFC2

mfc22.s x x x MSP - MFC2

mfc23.s x x x MSP - MFC2

mfc24.s x x x MSP - MFC2

mfc25.s x x x MSP - MFC2

mfc26.s x x x MSP - MFC2

mtc21.s x x x MSP - MTC2

mtc22.s x x x MSP - MTC2

mtc23.s x x x MSP - MTC2

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 454

mtc24.s x x x MSP - MTC2

mtc25.s x x x MSP - MTC2

mtc26.s x x x MSP - MTC2

nor1.s x x x MSP - NOR

nor2.s x x x MSP - NOR

or1.s x x x MSP - OR

or2.s x x x MSP - OR

ori1.s x x x MSP - ORI

sav1.s x x x MSP - SAV

sav2.s x x x MSP - SAV

sb1.s x x x MSP - SB

sbv1.s x x x MSP - SBV

sbv2.s x x x MSP - SBV

sbv3.s x x x MSP - SBV

sbv4.s x x x MSP - SBV

sdv1.s x x x MSP - SDV

sdv2.s x x x MSP - SDV

sdv3.s x x x MSP - SDV

sdv4.s x x x MSP - SDV

sfv1.s x x x MSP - SFV

sfv2.s x x x MSP - SFV

sh1.s x x x MSP - SH

shv1.s x x x MSP - SHV

shv2.s x x x MSP - SHV

sll1.s x x x MSP - SLL

sllv1.s x x x MSP - SLLV

sllv2.s x x x MSP - SLLV

slt1.s x x x MSP - SLT

slt2.s x x x MSP - SLT

slt3.s x MSP - SLT

slti1.s x x x MSP - SLTI

slti2.s x x x MSP - SLTI

slti3.s x MSP - SLTI

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 455

sltiu1.s x x x MSP - SLTIU

sltiu2.s x x x MSP - SLTIU

sltiu3.s x MSP - SLTIU

sltu1.s x x x MSP - SLTU

sltu2.s x x x MSP - SLTU

sltu3.s x MSP - SLTU

slv1.s x x x MSP - SLV

slv2.s x x x MSP - SLV

slv3.s x x x MSP - SLV

slv4.s x x x MSP - SLV

spv1.s x x x MSP - SPV

spv2.s x x x MSP - SPV

spv3.s x x x MSP - SPV

spv4.s x x x MSP - SPV

sqv1.s x x x MSP - SQV

sqv2.s x x x MSP - SQV

sqv3.s x x x MSP - SQV

sqv4.s x x x MSP - SQV

sra1.s x x x MSP - SRA

srav1.s x x x MSP - SRAV

srav2.s x x x MSP - SRAV

srl1.s x x x MSP - SRL

srlv1.s x x x MSP - SRLV

srlv2.s x x x MSP - SRLV

srv1.s x x x MSP - SRV

srv2.s x x x MSP - SRV

srv3.s x x x MSP - SRV

srv4.s x x x MSP - SRV

ssv1.s x x x MSP - SSV

ssv2.s x x x MSP - SSV

ssv3.s x x x MSP - SSV

ssv4.s x x x MSP - SSV

stv1.s x x x MSP - STV

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 456

sub1.s x x x MSP - SUB

sub2.s x x x MSP - SUB

sub3.s x MSP - SUB

subu1.s x x x MSP - SUBU

subu2.s x x x MSP - SUBU

subu3.s x MSP - SUBU

suv1.s x x x MSP - SUV

suv2.s x x x MSP - SUV

suv3.s x x x MSP - SUV

suv4.s x x x MSP - SUV

sw1.s x x x MSP - SW

swv1.s x x x MSP - SWV

sxv1.s x x x MSP - SXV

sxv2.s x x x MSP - SXV

sxv3.s x x x MSP - SXV

sxv4.s x x x MSP - SXV

xor1.s x x x MSP -X OR

xor2.s x x x MSP - XOR

xori1.s x x x MSP -X ORI

vabs_h x x x MSP - vabs

vabs_q x x x MSP - vabs

vabs_v x x x MSP - vabs

vabs_w x x x MSP - vabs

vacc_h x x MSP - vacc

vacc_q x x MSP - vacc

vacc_v x x MSP - vacc

vacc_w x x MSP - vacc

vaccb_el0 x x MSP - vaccb

vaccb_el1 x x MSP - vaccb

vaccb_el2 x x MSP - vaccb

vaccb_el3 x x MSP - vaccb

vaccb_el4 x x MSP - vaccb

vaccb_el5 x x MSP - vaccb

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 457

vaccb_el6 x x MSP - vaccb

vaccb_el7 x x MSP - vaccb

vadd_h x x x MSP -vadd

vadd_q x x x MSP - vadd

vadd_v x x x MSP - vadd

vadd_w x x x MSP - vadd

vaddb_el0 x x MSP - vaddb

vaddb_el1 x x MSP - vaddb

vaddb_el2 x x MSP - vaddb

vaddb_el3 x x MSP - vaddb

vaddb_el4 x x MSP - vaddb

vaddb_el5 x x MSP - vaddb

vaddb_el6 x x MSP - vaddb

vaddb_el7 x x MSP - vaddb

vaddc_h x x x MSP -vaddc

vaddc_q x x x MSP - vaddc

vaddc_v x x x MSP - vaddc

vaddc_w x x x MSP - vaddc

vch_v x x MSP - vch

vcr_v x x MSP - vcr

veq_h x x MSP -veq

veq_q x x MSP - veq

veq_v x x MSP - veq

veq_w x x MSP - veq

veq_dbl_v x x MSP - veq_dbl

vge_h x x MSP -vge

vge_q x x MSP - vge

vge_v x x MSP - vge

vge_w x x MSP - vge

vge_dbl_v x x MSP - vge_dbl

vand x x x MSP - vlog

vnand x x x MSP - vlog

vnor x x x MSP - vlog

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 458

vor x x x MSP - vlog

vxnor x x x MSP - vlog

vxor x x x MSP - vlog

vlt_h x x MSP -vlt

vlt_q x x MSP - vlt

vlt_v x x MSP - vlt

vlt_w x x MSP - vlt

vlt_dbl_v x x MSP - vlt_dbl

vmaccb_h x x MSP - vmacb

vmaccb_q x x MSP - vmacb

vmacb_v x x MSP - vmacb

vmaccb_w x x MSP - vmacb

vmsucb_h x x MSP - vmsucb

vmsucb_q x x MSP - vmsucb

vmsucb_v x x MSP - vmsucb

vmsucb_w x x MSP - vmsucb

vmacf_clamp x x MSP -vmacf

vmacf_h x x MSP -vmacf

vmacf_q x x MSP - vmacf

vmacf_v x x MSP - vmacf

vmacf_w x x MSP - vmacf

vmacq_v x x MSP - vmacq

vmacq_v1 x x MSP - vmacq

vmacq_v2 x x MSP - vmacq

vmacu_clamp x x MSP -vmacu

vmacu_h x x MSP -vmacu

vmacu_q x x MSP - vmacu

vmacu_v x x MSP - vmacu

vmacu_w x x MSP - vmacu

vmadh_clamp x x MSP -vmadh

vmadh_h x x MSP -vmadh

vmadh_q x x MSP - vmadh

vmadh_v x x MSP - vmadh

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 459

vmadh_v1 x x MSP - vmadh

vmadh_w x x MSP - vmadh

vmadh1_h x x MSP -vmadh1

vmadh1_q x x MSP - vmadh1

vmadh1_v x x MSP - vmadh1

vmadh1_w x x MSP - vmadh1

vmadl_clamp x x MSP -vmadl

vmadl_h x x MSP -vmadl

vmadl_q x x MSP - vmadl

vmadl_v x x MSP - vmadl

vmadl_w x x MSP - vmadl

vmadm_clamp x x MSP -vmadm

vmadm_h x x MSP -vmadm

vmadm_q x x MSP - vmadm

vmadm_v x x MSP - vmadm

vmadm_v1 x x MSP - vmadm

vmadm_w x x MSP - vmadm

vmadn_clamp x x MSP -vmadn

vmadn_h x x MSP -vmadn

vmadn_q x x MSP - vmadn

vmadn_v x x MSP - vmadn

vmadn_v1 x x MSP - vmadn

vmadn_w x x MSP - vmadn

vmrg_h x x MSP - vmrg

vmrg_q x x MSP - vmrg

vmrg_v x x MSP - vmrg

vmrg_w x x MSP - vmrg

vmudh_h x x MSP - vmudh

vmudh_q x x MSP - vmudh

vmudh_v x x MSP - vmudh

vmudh_v1 x x MSP - vmudh

vmudh_w x x MSP - vmudh

vmudh1_h x x MSP - vmudh1

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 460

vmudh1_q x x MSP - vmudh1

vmudh1_v x x MSP - vmudh1

vmudh1_w x x MSP - vmudh1

vmudl_h x x MSP - vmudl

vmudl_q x x MSP - vmudl

vmudl_v x x MSP - vmudl

vmudl_v1 x x MSP - vmudl

vmudl_w x x MSP - vmudl

vmudm_h x x MSP - vmudm

vmudm_q x x MSP - vmudm

vmudm_v x x MSP - vmudm

vmudm_v1 x x MSP - vmudm

vmudm_w x x MSP - vmudm

vmudn_h x x MSP - vmudn

vmudn_q x x MSP - vmudn

vmudn_v x x MSP - vmudn

vmudn_v1 x x MSP - vmudn

vmudn_w x x MSP - vmudn

vmulb_h x x MSP - vmulb

vmulb_q x x MSP - vmulb

vmulb_v x x MSP - vmulb

vmulb_w x x MSP - vmulb

vmulbn_h x x MSP - vmulbn

vmulbn_q x x MSP - vmulbn

vmulbn_v x x MSP - vmulbn

vmulbn_w x x MSP - vmulbn

vmulf_h x x MSP - vmulf

vmulf_q x x MSP - vmulf

vmulf_v x x MSP - vmulf

vmulf_v1 x x MSP - vmulf

vmulf_w x x MSP - vmulf

vmulq_h x x MSP - vmulq

vmulq_q x x MSP - vmulq

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 461

vmulq_v x x MSP - vmulq

vmulq_v1 x x MSP - vmulq

vmulq_w x x MSP - vmulq

vmulu_h x x MSP - vmulu

vmulu_q x x MSP - vmulu

vmulu_v x x MSP - vmulu

vmulu_v1 x x MSP - vmulu

vmulu_w x x MSP - vmulu

vne_h x x MSP - vne

vne_q x x MSP - vne

vne_v x x MSP - vne

vne_w x x MSP - vne

vne_dbl_v x x MSP - vne_dbl

vrnd_h x x MSP - vrnd

vrnd_q x x MSP - vrnd

vrnd_v x x MSP - vrnd

vrnd_w x x MSP - vrnd

vrndn_h x x MSP - vrndn

vrndn_q x x MSP - vrndn

vrndn_v x x MSP - vrndn

vrndn_v1 x MSP - vrndn

vrndn_w x x MSP - vrndn

vrndp_h x x MSP - vrndp

vrndp_q x x MSP - vrndp

vrndp_v x x MSP - vrndp

vrndp_v1 x MSP - vrndp

vrndp_w x x MSP - vrndp

vsac x x MSP - vsac

vsacb_el0 x x MSP - vsacb

vsacb_el1 x x MSP - vsacb

vsacb_el2 x x MSP - vsacb

vsacb_el3 x x MSP - vsacb

vsacb_el4 x x MSP - vsacb

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 462

vsacb_el5 x x MSP - vsacb

vsacb_el6 x x MSP - vsacb

vsacb_el7 x x MSP - vsacb

vsad x x MSP - vsad

vsaw x x x MSP - vsaw

vsub_h x x x MSP - vsub

vsub_q x x x MSP - vsub

vsub_v x x x MSP - vsub

vsub_w x x x MSP - vsub

vsubb_el0 x x MSP - vsubb

vsubb_el1 x x MSP - vsubb

vsubb_el2 x x MSP - vsubb

vsubb_el3 x x MSP - vsubb

vsubb_el4 x x MSP - vsubb

vsubb_el5 x x MSP - vsubb

vsubb_el6 x x MSP - vsubb

vsubb_el7 x x MSP - vsubb

vsubc_h x x x MSP - vsubc

vsubc_q x x x MSP - vsubc

vsubc_v x x x MSP - vsubc

vsubc_w x x x MSP - vsubc

vsucb_el0 x x MSP - vsucb

vsucb_el1 x x MSP - vsucb

vsucb_el2 x x MSP - vsucb

vsucb_el3 x x MSP - vsucb

vsucb_el4 x x MSP - vsucb

vsucb_el5 x x MSP - vsucb

vsucb_el6 x x MSP - vsucb

vsucb_el7 x x MSP - vsucb

vsuc_h x x MSP - vsuc

vsuc_q x x MSP - vsuc

vsuc_v x x MSP - vsuc

vsuc_w x x MSP - vsuc

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 463

vsum x x MSP - vsum

vsumb_el0 x x MSP - vsumb

vsumb_el1 x x MSP - vsumb

vsumb_el2 x x MSP - vsumb

vsumb_el3 x x MSP - vsumb

vsumb_el4 x x MSP - vsumb

vsumb_el5 x x MSP - vsumb

vsumb_el6 x x MSP - vsumb

vsumb_el7 x x MSP - vsumb

vsut_h x x x MSP - vsut

vsut_q x x x MSP - vsut

vsut_v x x MSP - vsut

vsut_w x x MSP - vsut

lav1 x x x MSP - lav

lbv1 x x x MSP - lbv

lbv2 x x x MSP - lbv

ldv1 x x x MSP - ldv

ldv2 x x x MSP - ldv

lfv1 x x x MSP - lfv

lhv1 x x x MSP - lhv

llv1 x x x MSP - llv

llv2 x x x MSP - llv

lpv1 x x x MSP - lpv

lpv2 x x x MSP - lpv

lqv1 x x x MSP - lqv

lqv2 x x x MSP - lqv

lrv1 x x x MSP - lrv

lrv2 x x x MSP - lrv

lsv1 x x x MSP - lsv

lsv2 x x x MSP - lsv

ltv1 x x x MSP - ltv

luv1 x x x MSP - luv

luv2 x x x MSP - luv

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 464

lxv1 x x x MSP - lxv

lxv2 x x x MSP - lxv

lzv1 x x x MSP - lzv

lzv2 x x x MSP - lzv

sav1 x x x MSP - sav

sav2 x x x MSP - sav

sbv1 x x x MSP - sbv

sbv2 x x x MSP - sbv

sbv3 x x x MSP - sbv

sbv4 x x x MSP - sbv

sdv1 x x x MSP - sdv

sdv2 x x x MSP - sdv

sdv3 x x x MSP - sdv

sdv4 x x x MSP - sdv

sfv1 x x x MSP - sfv

sfv2 x x x MSP - sfv

shv1 x x x MSP - shv

shv2 x x x MSP - shv

slv1 x x x MSP - slv

slv2 x x x MSP - slv

ssv1 x x x MSP - ssv

ssv2 x x x MSP - ssv

ssv3 x x x MSP - ssv

ssv4 x x x MSP - ssv

spv1 x x x MSP - spv

spv2 x x x MSP - spv

spv3 x x x MSP - spv

spv4 x x x MSP - spv

sqv1 x x x MSP - sqv

sqv2 x x x MSP - sqv

sqv3 x x x MSP - sqv

sqv4 x x x MSP - sqv

srv1 x x x MSP - srv

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 465

srv2 x x x MSP - srv

srv3 x x x MSP - srv

srv4 x x x MSP - srv

stv1 x x x MSP - stv

suv1 x x x MSP - suv

suv2 x x x MSP - suv

suv3 x x x MSP - suv

suv4 x x x MSP - suv

swv1 x x x MSP - swv

sxv1 x x x MSP - sxv

sxv2 x x x MSP - sxv

sxv3 x x x MSP - sxv

sxv4 x x x MSP - sxv

lshft.msp(bias) x x MSP - lzv, mtc2, sqv, vsub, lhlv

chroma_to_mem.s x MSP - lhxv,sqv

fdct.s x MSP - lqv, ltwv, sqv, stv, vadd, vmacf, vmudh, vmulf, vsub

idct.s x
MSP - lqv,ltwv,sqv,stv,vadd,vmacf.s1,vmadh.s1,vmudh.s1,vmulf.s1,
vrndn.i.s1,vrndp.i.s1,vsub

fast inverse DCT x MSP -

convolution x MSP -

luma_to_mem.s x MSP - lxv, sqv, lqv

me.s x MSP - vsacc, vsadc, vsum

prep_pixel.s x MSP -lqv, shv, suv

dct.msp x x MSP - lqv, ltwv, sqv, stv, vadd, vmacf, vmudh, vmulf, vsub

trans.msp(format
conv./extraction) x x MSP - lhlv, lzv, shlv, sqv, szv, vselge, vsellt, vsub

inverse dct x MSP - lqv, ltwv, stv, vacc, vadd, vmacf, vmulf, vsub

inverse quantize x MSP - lqv, ltwv, swv, vmudh

transpose quantize
data x MSP - lqv, ltwv, sqv

quo.msp(quantize) x x MSP - lqv, sqv, vmulf

transpose data x MSP - ltwv, swv

TABLE 84. MSP diag list

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description

April 17, 1997 466

Summary of Test List

Not yet Pass Not yet
Total Written written VHDL Simulated

HD 135 67 68 7 128
BSP 320 198 122 198 122
MSP 589 513 76 100 489
VICE 3 0 3 0 3

Chip TEST ? 0 ? 0 0

TABLE 85. Acceptance test

BS
P

M
SP

R4
K

C
m

od
el

V
H

D
L

Description
debugger0 x x x

debugger1 x x x

debugger2 x x x

April 17, 1997 467

D.2 Board debug

Sounds like JTAG is a must for board debug / test.

• Need JTAG requirement / spec.

•

D.3 Foundry test

There are several variables that would set test methodology:

5. The maximum number of test pattern

6. The maximum length of each pattern

7. Minimum coverage (ideally 100%).

The choices are :

1. FULL SCAN :
pro : good testability, automated test generation.
con : performance.

2. Partial SCAN :
scan functions that require many cycles such as counter and use functional codes for the rest.
pro : keeps length of test time within limit (Does VTI have one ?)
con : need to develop the rest of the test. How long and how good (% coverage) ?

3. no SCAN, use functional codes :
pro : no performance impact.
con : how good and how long to develop one ?

For non scan test, fault analysis tool is needed to assist test development. And this would have to be done
toward the end of the project when the whole chip is at gate level, i.e. all synthesis are done.

Other technic of improving test coverage and length is to use IDDQ measurement, that is stop the clock and
measure the power supply current at certain time within each pattern. For this technic, another tool is needed
such as CROSS-CHECK. Note that this technic requires ALL components to NOT have static current, or if
it does, it need to be turned off during IDDQ measurement.

Also, using the internal instruction RAM will help in keeping the pattern within limit.

Bibliography
Cavanagh, Joseph J. F. 1984. "Digital Computer Arithmetic Design and Implementation." New
York: McGraw-Hill Publishing Company. ISBN 0-07-010282-1. Ch. 2 Fixed-Point Addition and
Subtraction, Ch. 3 Fixed Point Multiplication.

Eshraghian, Kamran and Niel H. E. Weste 1993. "Principles of CMOS VLSI Design." Reading,
Massachusetts: Addison-Wesley Publishing Company. ISBN 0-201-53376-6. Ch. 8 CMOS
Subsystem Design, Ch. 9 CMOS Subsystem Design Examples.

Hamacher, Carl V., Zvonko G. Vranesic and Safwat G. Zaky 1990. "Computer Organization."
Third Edition. New York: McGraw-Hill Publishing Company. ISBN 0-07-025685-3. Ch. 7
Arithmetic.

Heinrich, Joe1993. "MIPS Microprocessor R4000 User’s Manual." Englewood Cliffs, New Jersey:
Prentice-Hall Inc. ISBN 0-13-105925-4. Ch 12 System Interface, Appendix A CPU Instruction Set
Details.

Hennessy, John L. and David A. Patterson 1990. "Computer Architecture: A quantitative
Approach." San Mateo, California: Morgan Kaufmann Publishers. ISBN 1-55860-069-8. Ch. 6
Pipelining, Ch. 7 Vector Processors, Appendix A: Computer Arithmetic.

Hennessy, John L. and David A. Patterson 1994. "Computer Organization and Design: The
Hardware/Software Interface." San Mateo, California: Morgan Kaufmann Publishers. ISBN 1-
55860-281-X. Ch. 4 Arithmetic for Computers, Ch. 5 The Processor: Datapath and Control, Ch. 6
Enhancing Performance with Pipelining.

Jack, Keith 1993. "Video Demystified." Solana Beach, Ca: HighText Publications Inc. ISBN 1-
878707-09-4

Johnson, Mike 1991. "Superscalar Microprocessor Design." Englewood Cliffs, New Jersey:
Prentice-Hall Inc. ISBN 0-13-875634-1.

Kermode, Roger G. July 1993. "Requirements for Real Time Digital Video Compression." MIT
Media Laboratory, Entertainment & Informations Systems Group. Prepared for Digital Sight and
Sound Division, Silicon Graphics Inc.

Koren, Israel 1993. "Computer Arithmetic Algorithms." Englewood Cliffs, New Jersey: Prentice-
Hall Inc. ISBN 0-13-151952-2. Ch. 5 Fast Addition, Ch. 6 High Speed Multiplication.

Lewis, Rhys 1990. "Practical Digital Image Processing." Ch. chester, West Sussex, England: Ellis
Horewood Limited. ISBN 0-13-683525-2. Ch. 5 Geometric Functions, Ch. 7 Transforming Image
Representations.

Pennebaker, Willaim B. and Mitchell, Joan L. 1993. "JPEG Still Image Data Compression
Standard" New Yourk: Van Nostrand Reinhold. ISBN 0-442-01272-1

Van Hook, Tim Dec. 1993. "MIPS Media Engine Sketch" Draft 0.1. Mountain View, California:
Silicon Graphics Inc.

Watkinson, John 1990. "The Art of Digital Video." Jordan Hill, Oxford, Great Britain: Focal
Press. ISBN 0-240-51287-1. Ch. 5 Advanced Digital Processing, Ch. 8 Digital Video
Interconnects.

