

SERVICE MANUAL

HP 7475A GRAPHICS PLOTTER

SERIAL NUMBERS

This manual applies directly to plotters with serial numbers prefixed 2541V.

For additional important information about serial numbers, see PLOTTERS COVERED BY MANUAL in Section I.

©1983, 1987 by HEWLETT-PACKARD COMPANY 16399 W. BERNARDO DRIVE, SAN DIEGO, CALIFORNIA 92127-1899

MANUAL PART NO. 07475-90000

Printed: AUGUST 1987

	-

HP Computer Museum www.hpmuseum.net

For research and education purposes only.

TABLE OF CONTENTS

Secti	on		Page	Section	n		Page
I	GENI	ERAL INFORMATION	1-1	VI S	SERV	TICE	6-1
_	1-1.	Introduction			3-1.	Introduction	6-1
	1-6.	Specifications			3-3.	Simplified Theory of Operation	6-1
	1-8.	Safety Considerations			3-7 .	RS-232-C/CCITT V.24 Interface	
	1-10.	Plotters Covered by Manual				Circuit (Option 001)	6-1
	1-15.	Description		(3-14 .	HP-IB Interface (Option 002)	6-2
	1-19.	Line Voltage and Fuse Selection			3-25.	Microprocessor Circuit	6-5
	1-23.	Grounding Requirements		(5-29.	Read Only Memory Circuit	6-5
	1-25.	Options			3-31.	Random Access Memory Circuit	6-5
	1-29.	Accessories Supplied			3-33.	Gate Arrays A and B	6-5
	1-31.	Recommended Test Equipment			3-3 5 .	Pen Carousel	6-5
	1-33.	Packaging for Shipment		(3-3 7 .	Motor Servo Systems	6-5
					6-41 .	Motor Supply Sensor Circuit	
II	ODEL	RATING AND PERFORMANCE			6-44 .	Motor Current Sensor Circuit	6-7
11	TES		2-1		6-46 .	Pen Down Circuit	6-7
	2-1.	Introduction			6-48.	Power Supplies	6-7
	2-1. 2-3.	Rear Panel Switches	2-1		6-50 .	Recommended Test Equipment	6-7
	<i>Z</i> -3.	(Option 001)	2-1		6-52.	Troubleshooting	
	2-9.		Z-1		6-54.	Exchange Printed Circuit	
	Z-9.	Rear Panel Switches	2-1			Assembly	6-7
	0.12	(Option 002)			6-56.	Drive Motors and Pen Solenoid	6-7
	2-13.	Basic Operating Test	2-1		6-58.	Troubleshooting Table	
	2-15.	Hewlett-Packard Graphics	0.0		6-60.	Test A	
	0.17	Language	2-2		6-62.	Test B	
	2-17.	Demonstration Plot			6-64.	Part Removal and Replacement	
	2-19.	Test Program			6- 6 5.	Top Case Removal	
	2-21.	Repeatability	2-2		6- 6 6.	Pen Carousel Housing Removal	
					6-67.	Paper Drive Motor Assembly	00
III		JSTMENTS			J J	Removal	6-10
	3-1.	Introduction	3-1		6-68.	Pen Solenoid	
					6-69.	Pen Drive Motor and Belt	
IV	REPI	ACEABLE PARTS	4-1		6-72.	Pen Carriage, Penholder, and	011
	4-1.	Introduction	4-1		. · <u>.</u> .	Damper Removal	6-13
	4-3.	Exchange Assemblies			6-75.	Pinch Rollers Removal and	0 10
	4-5.	Replaceable Parts Lists	4-1		0 10.	Replacement	6-14
	4-7.	Ordering Information	4-1		6-76.	Printed Circuit Assembly	0-14
	4-9.	Code List of Manufacturers			0-10.	Removal	6-14
	4-11.	Designations and Abbreviations	4-1		6-77.	Pinch Roller Mechanism Removal	6-15
					6-79.	Paper Drive Shaft and Coupler	0-10
V	PR∩I	OUCT HISTORY	5-1	,	0-10.	Removal	6-15
•	5-1.	Introduction			6-80.	Power Module and Transformer	6-16
	5-3.	History of Assemblies by	. 5-1		6-81.		
	5-0.	Serial Prefix Number	5-1		6-83.	Cleaning	
	5-7.	History of Printed Circuit	. 0-1		6-85.	Pen Stall Cleaning	
	J-7.	Assemblies	5-1		6-87.	Diagrams	
		Assemblies	. 9-1		0-07.	Diagrams	0-17
			TΔR	LES			
			IAD				
Tabl	0		Dogo	Table			Dom
Tabl	-		Page	Table			Page
1-1.	Spec	eifications	1-1	4-1.	Part	s List, Main PCA, RS-232-C,	
1-2.		Voltage Selection	1-3	1-1.		otion 001	4-2
1-3.		Fuses	1-3	4-2.		s List, Main PCA, HP-IB	7 2
1-4.		essories Supplied	1-6	T 2.		otion 002	4-5
1-5.		ommended Test Equipment	1-6	4-3.		s List, Mechanical Parts	4-8
2-1.		d Rate Selection	2-1	4-3. 4-4.		s List, Weenamear Fartss List, Pen Carousel Parts	4-10
2-2.		A HP-GL Instruction Set	2-3	4-4. 4-5.		e List of Manufacturers	4-11
<i>L L</i> .	1716	ATTIT GID HIBW UCWOII DEC	2.0	1 -0.	Cou	LADV OI MANUTACOULETS	4-11

TABLES (Continued)

Table		Page	Table	2	Page
4-6.	Reference Designations and Abbreviations	4-12	5-3. 6-1.	Date Codes	5-1
5-1.	Assemblies by Plotter Serial Number			Levels	
	Prefix	5-1	6-2.	Recommended Test Equipment	6-7
5-2.	Item Description	5-1	6-3.	Troubleshooting	6-8

ILLUSTRATIONS

Figure	e -	Page	Figure	<u>e</u>	Page
1-1.	Model 7475A	1-0	6-9.	Pen Carousel Housing	6-10
1-2.	Top Case Removal	1-3	6-10.	Paper Drive Motor and Solenoid	
1-3.	Line Voltage Selection	1-4		Čables	6-10
1-4.	Power Cord Configurations	1-5	6-11.	Paper Drive Motor Clamp and Pen Drop	
2-1.	P1 and P2 Button and Power Switch			Shield	6-10
	Locations	2-3	6-12.	Paper Drive Coupler Parts	6-11
2-2.	Demonstration Plot	2-5	6-13.	Pen Solenoid and Pen Drive	6-12
2-3.	Test Program	2-6	6-14.	Pen Drive Tensioner	6-12
2-4.	Features Test Plot	2-9	6-15.	Pen Carriage	6-12
2-5.	Repeatability Test Points	2-10	6-16.	Measuring Pen Down Force	6-14
4-1.	Model 7475A Exploded View	4-9	6-17.	Pinch Rollers	6-14
4-2.	Pen Carousel Parts	4-10	6-18.	Chassis Assembly Removal	6-14
6-1.	7475A Simplified Block Diagram	6-1	6-19.	Underside of Chassis Assembly	6-15
6-2.	RS-232-C/CCITT V.24 Interface		6-20.	Power Module Removal	6-16
	Circuits	6-3	6-21.	Power Module Wiring	6-17
6-3.	HP-IB Interface Circuits and Handshake		6-22.	Schematic Diagram Notes	6-18
-,	Timing Diagram	6-4	6-23.	ANSI Y32.14 Logic Symbols	6-20
6-4.	Quadrature Waveforms	6-6	6-24.	RS-232-C, Option 001 Schematic	0 - 0
6-5.	Motor Servo System Block			Diagram	6-27
	Diagram	6-6	6-25.	HP-IB, Option 002 Schematic	٠ ـ .
6-6.	Drive Signal ses	6-9	0	Diagram	6-29
6-7.	Top Case Ren val		6-26.	Power Supply, Schematic	0 20
6-8.	Pen Carousel Cable	6-9		Diagram	6-31

Model 7475A Safety Symbols

General Definitions of Safety Symbols Used On Equipment

International caution symbol (refer to manual): the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked).

Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of a fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.

Alternating current

Direct current

Alternating or direct current

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury.

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

1-A-26-1

Section I Model 7475A

Figure 1-1. Model 7475A

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This service manual contains information necessary to test and service the Hewlett-Packard Model 7475A Plotter. This manual is divided into six sections as follows:

I GENERAL INFORMATION

II OPERATING AND PERFORMANCE TESTS

III ADJUSTMENTS

IV REPLACEABLE PARTS

V PRODUCT HISTORY

VI SERVICE

1-3. Information for interfacing, operating, and programming the Model 7475A is contained in the following publications:

HP Title Part Number

Interfacing and Programming Manual 07475-90001

Operation and Interconnection Manual 07475-90002

Programmer's Reference Card 07475-90004

1-4. This General Information section includes a description of the plotter, its specifications, options available, accessories supplied, and general installation instructions.

1-5. SPECIFICATIONS

- 1-6. Table 1-1 lists the specifications for the Model 7475A. These specifications include the performance standards against which the plotter is tested.
- 1-7. Also included in Table 1-1 are supplemental characteristics. Supplemental characteristics are not specifications but are typical characteristics included as additional information for the user.

1-8. SAFETY CONSIDERATIONS

1-9. Safety information relevant to the service procedure being described is provided in the appropriate sections of this manual. The Model 7475A and this manual should be reviewed for safety markings and instructions before service work is begun.

Table 1-1. Specifications

PERFORMANCE SPECIFICATIONS

Repeatability

With the same pen: 0.1 mm (0.004 in.) With a different pen: 0.2 mm (0.008 in.)

SUPPLEMENTAL CHARACTERISTICS Maximum plotting area

B/A3: 402.2 mm (15.8 in.)

 \times 274.8 mm (10.8 in.) metric

414.2 mm (16.3 in.)

 \times 258.0 mm (10.2 in.) English

A/A4: 274.8 mm (10.8 in.)

 \times 192.2 mm (7.6 in.) metric

258.0 mm (10.2 in.)

 \times 198.2 mm (7.8 in.) English

Pen velocity

Pen down: maximum, 38.1 cm/s (15 in./s) programmable, 1 to 38 cm/s in 1 cm/s increments.

Pen up: 50.8 cm/s (20 in./s)

Addressable step size

0.025 mm (0.00098 in.)

Acceleration

Approximately 2g

Power requirements

Source: 100, 120, 220, or 240 Vac -10%, +5%

Frequency: 48 to 66 Hz

Consumption: 35 W maximum

Size

Length: 57 cm (22.5 in.) Width: 37 cm (14.5 in.) Height: 13 cm (5 in.)

Weight

7.2 kg (15.8 lb)

1-10. PLOTTERS COVERED BY MANUAL

1-11. The plotter serial number is located on the rear panel. Hewlett-Packard uses a two-part serial number consisting of a four-digit prefix and a five-digit suffix separated by a letter (0000A00000). The prefix is the same for all identical plotters and changes only when a modification is made that affects parts compatibility. The suffix is assigned sequentially and is different for

each plotter. This manual applies directly to plotters with the serial prefix shown on the title page.

- 1-12. If the serial number prefix of your plotter is higher than the one shown, one or more update packages of revised pages are supplied with the manual. Use these new pages to replace the original pages. If two or more update packages are supplied, insert them in order by revision letter; that is, Revision A first, then Revision B, etc. The title page will then show the latest serial prefix and the manual will apply directly to plotters with that prefix.
- 1-13. In addition to plotter changes, revised pages may correct errors in the manual or include improved procedures.
- 1-14. If the plotter at hand has a lower serial prefix than the one shown on the title page, information in the Product History section will adapt this manual to that plotter.

1-15. DESCRIPTION

- 1-16. The Model 7475A accepts digital information to produce graphic plots on ISO A3, 297×420 mm (11×17 in.) paper or ISO A4, 210×297 mm ($8-1/2\times11$ in.) paper or special transparency plastic. Disposable pens are available in various ink colors.
- 1-17. The six-pen capability permits several colors to be used in a plot without stopping the plotter to change pens manually. Pens are automatically capped while they are stored in the pen carousel.
- 1-18. Seven different line types are provided. Labeling can be done in nineteen character sets plus user-defined characters. Text (labeling) can be written in any direction, upright, or slanted. Character size is also variable. In addition, arc and circle generation as well as area fill with various fill types are provided.

1-19. LINE VOLTAGE AND FUSE SELECTION

To prevent damage to the plotter, make sure the line voltage and fuse selection is correct before connecting line power.

WARNING

The line power cord and power outlet must have a protective earth (ground) terminal.

1-20. The 7475A primary power circuit can be configured to operate from any one of the following power sources at a line frequency of 48 to 66 Hz, single phase. Maximum power used is 35 W.

100 Vac -10%, +5% 120 Vac -10%, +5% 220 Vac -10%, +5% 240 Vac -10%, +5%

1-21. Line voltage selection, and the required fuse ratings for each line voltage setting, are specified on the line voltage label which is visible through the small recessed window in the rear panel. See Figure 1-2.

CAUTION

Applying a line voltage of 220 V or 240 V to the plotter while the line voltage selection is set for 100 V or 120 V operation may damage the plotter circuits.

1-22. The line voltage selection may be changed to conform to the line voltage in a particular area. Use the following procedure.

WARNING

The following procedure should be performed only by service-trained personnel who are aware of the electrical shock hazards involved.

- Set the plotter LINE switch to OFF (O) and disconnect the line cord.
- b. Remove the plotter top case by removing the screws indicated in Figure 1-2. Lift the rear of the top case and the front will then release. When replacing the top case, make sure the PAPER HOLD lever extends through the case, and that the tabs inside the front of the top case align properly above and below the base plate.
- c. Line voltage selection is determined by the power input connections to the transformer primary windings. Table 1-2 lists the wire colors and transformer contact connections for each line voltage. The transformer pin numbers are identified on the power module molding. Figure 1-3 illustrates the connections for each voltage. Change the wire connections as required to conform to the desired line voltage selection.
- d. Make sure the line fuse is correct according to Table 1-3. The fuseholder cap is the bayonet type. Press and turn counterclockwise to remove, clockwise to lock.
- e. Change the position of the line voltage label block so that the voltage selected is right side up. This block snaps in and out of the power module molding.
- f. Replace the top case, making sure it fits properly on the front edge of the base and the PAPER HOLD lever extends through the case.
- g. Install the proper power cord for the power range selected and type of mains outlet to which the cord is to be connected. See Figure 1-4.

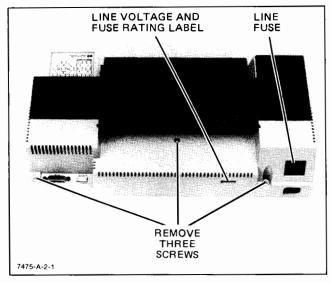


Figure 1-2. Top Case Removal

1-23. GROUNDING REQUIREMENTS

1-24. To protect operating personnel, the plotter must be properly grounded. The plotter is supplied with a three-conductor power cable which, when connected to an appropriate power outlet, grounds the plotter. To preserve this protection feature, do not operate the plotter from a power outlet which has no grounded connection.

1-25. OPTIONS

1-26. The Model 7475A is available with one of two types of interface, designated as the following options:

Option 001 RS-232-C/CCITT V.24 Option 002 Hewlett-Packard Interface Bus

1-27. Option 016 provides a special "eavesdrop" cable for Option 001.

1-28. The line voltage selection ordered is designated as one of the following:

Option 010	100 Vac
Option 012	120 Vac
Option 022	220 Vac
Option 024	240 Vac

1-29. ACCESSORIES SUPPLIED

1-30. The items listed in Table 1-4 are supplied with each plotter.

1-31. RECOMMENDED TEST EQUIPMENT

1-32. Equipment required to maintain the Model 7475A is listed in Table 1-5.

Table 1-2. Line Voltage Selection

NOMINAL	TRANSFORMER PRIMARY CONNECTIONS*						
LINE VOLTAGE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
100 V	8	928	958	8	958	NC	928
120 V	8	NC	928	8	928	958	958
220 V	8	958	NC	958	928	8	928
240 V	8	NC	958	958	928	8	928

^{*}Wire identification is by color code:

8 = GRAY

928 = WHITE/RED/GRAY

958 = WHITE/GREEN/GRAY

Table 1-3. Line Fuses

LINE	FUSE	FUSE	FUSEHOLDER CAP
VOLTAGE	RATING	HP PART NUMBER	HP PART NUMBER
100/120 V	0.6 AT	2110-0016	2110-0565
*220/240 V (0.25×1.25 in.)	0.3 AT	2110-0044	2110-0565
(5×20 mm)	0.315 AT	2110-0639	2110-0567

^{*}Either Part No. 2110-0044 or 2110-0449 will provide adequate protection. Part No. 2110-0044 is a standard U.S. fuse for 240 V line; Part No. 2110-0449 is a standard European fuse for 220 V line.

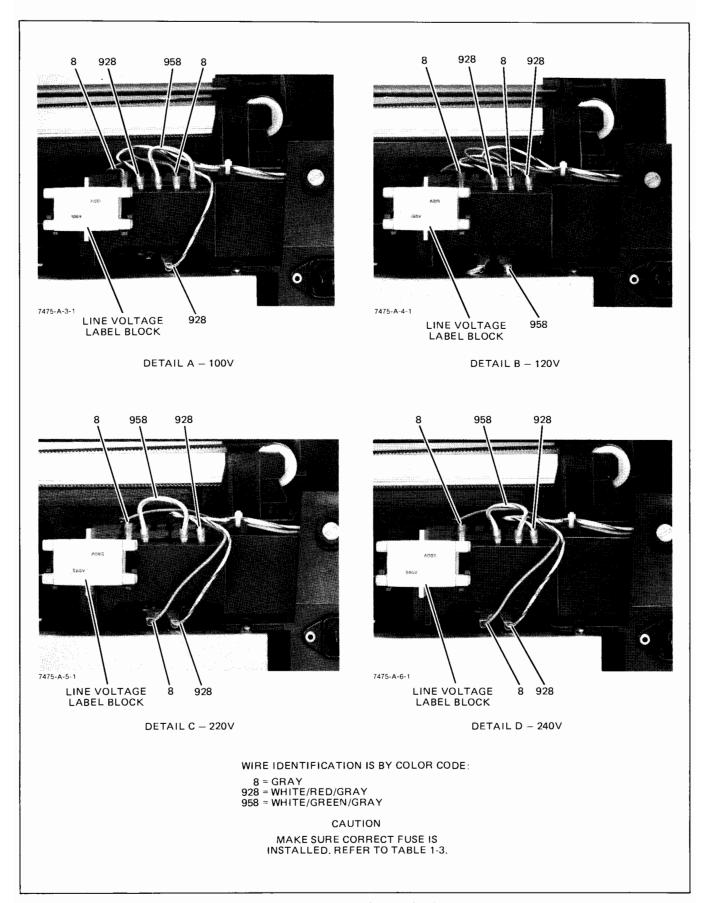


Figure 1-3. Line Voltage Selection

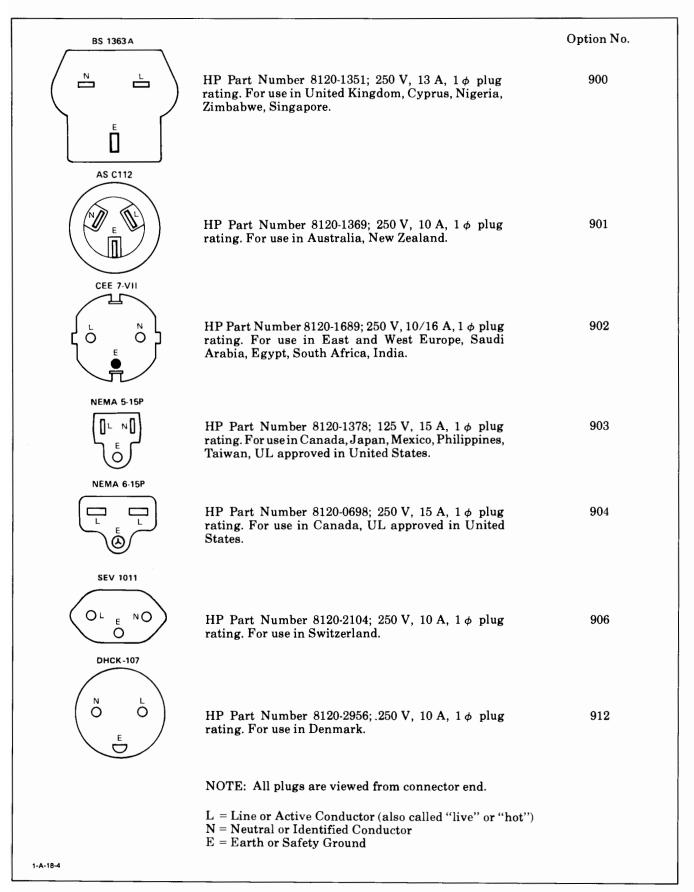


Figure 1-4. Power Cord Configurations

1-33. PACKAGING FOR SHIPMENT

- 1-34. If the plotter is being returned to Hewlett-Packard for service, attach a tag indicating the type of service required, model number, full serial number, and your return address. Also include this information in any correspondence.
- 1-35. If the original packaging material has been retained, pack the plotter in the same manner as it was received. The following general instructions should be used for packing with commercially available materials.
- a. Wrap the plotter in heavy paper or plastic.
- b. Use a strong shipping container.
- c. Use a layer of shock-absorbing material at least 70 to 100 mm (3 to 4 in.) thick around all sides of the plotter to provide firm cushioning and prevent movement inside the container.
- d. Seal container securely. Mark container FRAGILE to ensure careful handling.

Table 1-4. Accessories Supplied

DESCRIPTION	QTY	HP PART NUMBER
Interfacing and Programming Manual	1	07475-90001
Operation and Interconnection Manual	1	07475-90002
Programmer's Reference Card	1	07475-90004
*Plotter paper, pad, $8-1/2 \times 11$ in. or 210×297 mm (A4), 50 -sheets	1	17800P 17802P
*Plotter paper, pad, 11×17 in. or 297×420 mm (A3), 50 -sheets	1	17804P 17806P
Package of 5 fiber-tip pens, 0.3 mm nib width, 1 each blue, green, black, aqua, violet	1	17847P
Package of 5 black fiber-tip pens, 0.7 mm nib width	1	17826P
Package of 5 fiber-tip pens, 0.3 mm nib width, 1 each brown, yellow, orange, red, red-violet.	1	17849P
Pen Carousel	1	5061-5080
*Power Cord	1	See Figure 1-4

^{*}Paper size and power cord supplied is based on the destination of the plotter.

Table 1-5. Recommended Test Equipment

ТҮРЕ	RECOMMENDED MODEL
Computer/controller	HP 85 Personal Computer with the appropriate interface:
	HP 82937A HP-IB Parallel Interface HP 82939A RS-232-C Interface and HP 8120-3258 RS-232-C Interface cable
Rom Drawer	HP 82936A
I/O Rom	HP 00085-15003
Digital Multimeter	HP 3465A
Oscilloscope	HP 1740A
Optical Comparator	B&L 81-34-35

SECTION II

OPERATING AND PERFORMANCE TEST

2-1. INTRODUCTION

2-2. The following information is provided to determine whether the plotter is operating properly. If operation is not correct, refer to Section VI of this manual for service information.

2-3. REAR PANEL SWITCHES (Option 001)

- 2-4. A3/A4. This switch chooses between B/A3 size paper and A/A4 size paper. The switch is used to set the default paper size only at power up. Subsequent paper size changes can be made from the front panel.
- 2-5. BAUD RATE. Table 2-1 shows the switch settings required. Disregard any markings on the switch itself and use the 1 and 0 markings on the rear panel to determine baud rate.
- 2-6. PARITY. Two rear panel switches are used for parity selection. When the S1/PARITY switch is set to 1 (ON), the S2/PARITY switch selects odd or even parity.
- 2-7. MET/US. This switch is used to program the plotting area for four paper sizes:

Paper Size	Switch Position	Maximum Plotting Area
B/A3	MET US	$275 \times 402 \text{ mm}$
A/A4	MET US	10.2×16.3 in. 192×275 mm 7.5×10.2 in.

2-8. D/Y. When the EAVESDROP switch is in the Y position, received data is retransmitted and the plotter

does not respond unless it is given a "Plotter On" instruction. When this switch is in the D position, the plotter responds to all recognized commands.

2-9. REAR PANEL SWITCHES (Option 002)

- 2-10. ADDRESS. The plotter's HP-IB address is set by five of the seven switches on the rear panel. Disregard any markings on the switch itself and use the 1 and 0 labels on the rear panel to determine the address in binary coded decimal.
- 2-11. A3/A4. This switch chooses between B/A3 size paper and A/A4 size paper. The switch is used to set the default paper size only at power up. Subsequent paper size changes can be made from the front panel.
- 2-12. MET/US. This switch is used to program the plotting area for four paper sizes:

Paper Size	Switch Position	Maximum Plotting Area
B/ A 3	MET US	$275 \times 402 \text{ mm}$ $10.2 \times 16.3 \text{ in}$.
A/A4	MET US	$192 \times 275 \text{ mm}$ 7.5×10.2

2-13. BASIC OPERATING TEST

- 2-14. The front panel controls can be used to test basic operation of the plotter; however, this procedure does not test the I/O circuits.
 - a. Make sure six pens are installed in pen carousel.

Table 2-1. Baud Rate Se	lection
-------------------------	---------

		OP BIT L SWIT B2		BAUD RATE	TWO STOP BITS REAR PANEL SWITCHES B4 B3 B2 B1							
			D1	KATE	D4			ът				
_	_	_	_	External	0	0	0	0				
_	_	_	_	75	0	0	0	1				
_	_	_	_	110	0	0	1	0				
0	0	1	1	150	l –	_	_	_				
0	1	0	0	200	l –	_	_	_				
0	1	0	1	300	1	0	1	1				
0	1	1	0	600	1	1	0	0				
0	1	1	1	1200	1	1	0	1				
1	0	0	0	2400	1	1	1	0				
1	0	0	1	4800	1	1	1	1				
1	0	1	0	9600	_	_	_	_				

CAUTION

Before applying power to the plotter, check the line voltage selection (visible through the small window in the rear panel) and make sure the selected line voltage and fuse value are correct. If not, refer to Line Voltage and Fuse Selection in Section I.

- b. Apply power to the plotter.
- c. With the PAPER LOAD lever in the LOAD position, place a sheet of paper (ISO A4/8-1/2 × 11 in. or ISO A3/11 × 17 in.) against the left-hand rail and the rear guide. Lower the lever to the PAPER HOLD position and be sure that the plotter is set for the proper paper size.
- d. Select a pen by pressing one of the six pen pushbuttons and then operate each of the front-panel controls. Vertical, horizontal, and diagonal lines (using the directional controls with a pen down) should be smooth.

NOTE

If the pen is down, it will lift when either P1 or P2 is pressed. The VIEW pushbutton is a latching control. After VIEW is pressed once, the other controls will not operate until VIEW is pressed a second time. The ERROR light should be on when in the VIEW mode. The ERROR light should be on when the PAPER lever is in the LOAD position. If P1 or P2 is pressed while the lever is in LOAD, the ERROR light should flash. This error may be cleared by moving the lever to HOLD and back to LOAD, or by pressing ENTER and VIEW at the same time, in which case the plotter initializes again. While the plotter is ON, and the PAPER lever is in the HOLD position, the ERROR light flashes very briefly approximately every five seconds when the motor power supply voltage is sensed.

2-15. HEWLETT-PACKARD GRAPHICS LANGUAGE

2-16. The Model 7475A recognizes the Hewlett-Packard Graphic Language (HP-GL) instructions listed in Table 2-2.

2-17. DEMONSTRATION PLOT

2-18. The Model 7475A contains a demonstration plot stored in Read Only Memory (ROM). The running of this plot will verify proper operation of most of the logic circuits as well as the operation of the paper and pen drive mechanisms; however, it does not test the I/O circuitry. To run the demonstration plot proceed as follows:

- a. Make sure six pens are installed in carousel.
- b. With the PAPER LOAD lever in the LOAD position, place a sheet of paper (A4/8-1/2×11 in. only) against the left hand rail and the rear guide. Lower the lever to the paper HOLD position.
- c. While holding down buttons P1 and P2, apply power to the plotter. See Figure 2-1. Release buttons after initialization starts.
- The resultant plot is illustrated in Figure 2-2.

2-19. TEST PROGRAM

2-20. The program in Figure 2-3 is written in BASIC language specifically for the HP Model 85 Personal Computer, but may be adapted to other controllers. This program tests the input/output circuits of the 7475A and the majority of the logic circuits, as well as the operation of the paper and pen drive mechanisms. The resultant plot is illustrated in Figure 2-4.

NOTE

Lines beginning with an exclamation point are only explanatory and not part of the plot program. Those lines may be omitted when entering the program.

The addresses shown in lines 130, and 140 are only examples, and may vary with the system or computer used.

2-21. REPEATABILITY

2-22. To verify repeatability specification (Table 1-1) load six new pens in the carousel and run the test program previously described. Using an optical comparator, verify that the repeatability points on the test plot are within 0.1 mm using the same pen, and within 0.2 mm using a different pen. See Figure 2-5.

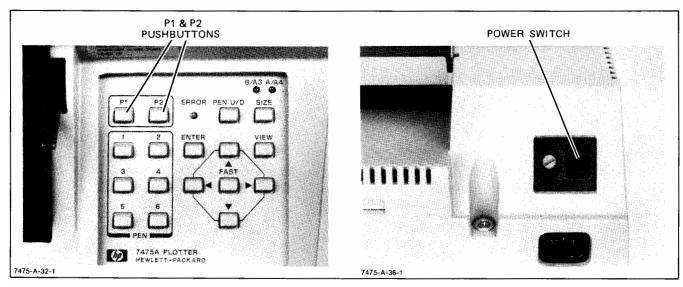


Figure 2-1. P1 and P2 Button and Power Switch Locations

Table 2-2. 7475A HP-GL Instruction Set

INSTRUCTION	DEFINITION
VECTOR GROUP	
PA x,y(,x,y(,—)) PR x,y(,x,y(,—)) PU PD	Plot absolute (integer format, -32768 to +32767) Plot relative (integer format, -32768 to +32767) Pen up Pen down
CHARACTER GROUP	
CA n CP spaces, lines CS n DI run, rise DR run, rise LB cc SA SI wide, high SL tan angle (+ or -) SR wide, high SS UC	Designate alternate character set (n = integer from 0 to 4, 6 to 9, or 30 to 39) Character plot (decimal format, -128 to +127.9999) Designate standard set (n = integer, 0 to 4, 6 to 9, or 30 to 39 Absolute direction (decimal format -128 to +127.9999) Relative direction (decimal format -128 to +127.9999) Label ASCII string (c = ASCII characters) Select alternate character set Absolute character size (decimal format in centimetres) Absolute character slant from vertical (decimal format, tangent of angle from vertical) Relative character size (decimal format, percentage of P2x - P1x and P2y - P1y) Select standard character set User-defined character
DIGITIZE GROUP DC DP OC OD	Digitize clear Digitize point Output current position and pen status Output digitized point and pen status
AXES GROUP TL tp(,tn) XT YT	Tick length (tp = positive length, tn = negative length) X-axis tick Y-axis tick
SETUP GROUP IP p1x,p1y(,p2x,p2y) IW xlo,ylo,xhi,yhi OP	Input P1 (and P2) (integer format -32768 to $+32767$) Input window (integer format -32768 to $+32767$) Output P1 and P2

Table 2-2. 7475A HP-GL Instruction Set (Continued)

INSTRUCTION	DEFINITION
CONFIGURATION AND STATUS GROUP	
DF IM e(,s(,p)) IN OE OS SC x1,x2,y1,y2 DT c OA OO OF OI	Set default values Input e, s, and p masks initialize Output error Output status Scale (integer format -32 768 to +32 767) Define label terminator (c = ASCII character) Output actual position and pen status Output options Output factors Output identification Output window
ARC AND CIRCLE GROUP	
AA x center, y center arc angle(,chord angle) AR x center, y center arc angle(,chord angle) CI radius(,chord angle)	Draw arc starting with current position Draw arc with center relative to current position Draw circle around current position
AREA FILL GROUP	
FT type (spacing (angle)) RA x,y RR x,y WG radius, start angle, stop angle (,chord angle) EA x,y ER x,y EW radius, start angle, stop angle (,chord angle) PT thickness	Fill type Shade rectangle, absolute Shade rectangle, relative Shade wedge Edge rectangle, absolute Edge rectangle, relative Edge wedge pen thickness
MISCELLANEOUS GROUP	
RO n	Rotate axes in degrees $(n = 0.90)$

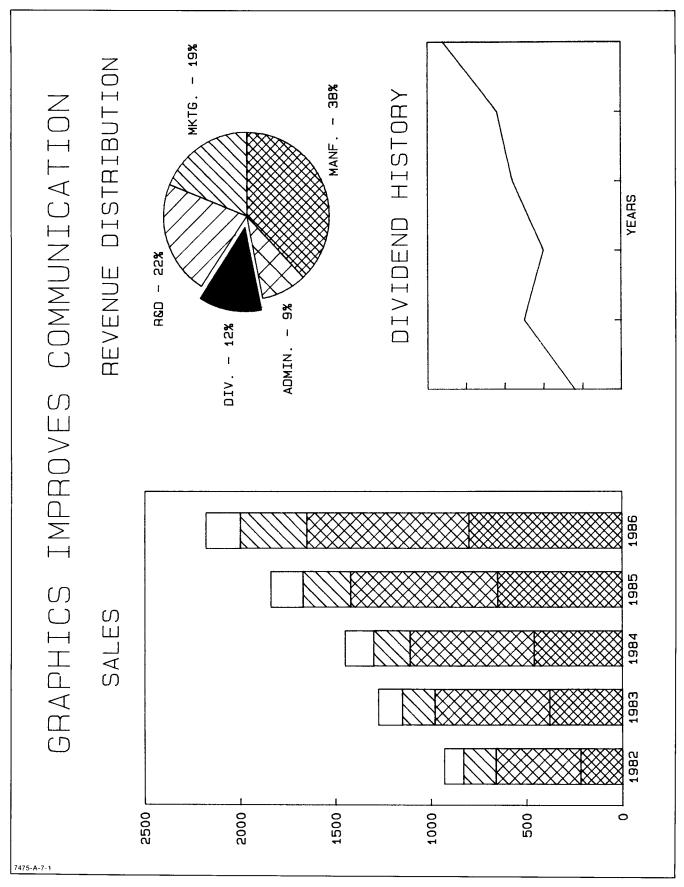


Figure 2-2. Demonstration Plot

```
10 ! "Autost"
20 !
30 1
         7475A FEATURES PLOT
40 !
50 !
           (JULY 4,1983)
60 !
70 !
80 ! SELECT ADDRESS FOR PLOTTER INTERFACE
90 L
100 CLEAR
110 DISP "ENTER ADDRESS"
120 DISP
130 DISP "
              eg. R5-232-C
                                 1101"
140 DISP " eg. HP-IB
                                 1705/"
150 DISP
160 INPUT N
170 DISP "ADDRESS IS"; N
180 IF N<99 THEN GOSUB 1280
190 !
200 ! INIT 7470A & OUTPUT P1,P2 & WINDOW COORDINATES
210 I
220 DUTPUT N USING "#,K" ; "INOP;"
230 ENTER N ; X1,Y1,X2,Y2
240 OUTPUT N USING "#,K"
                               ; "OW:"
250 ENTER N ; X3, Y3, X4, Y4
260 !
270 ! DRAW + AT P1 & P2 & LABEL COURDINATES
280 1
290 OUTPUT N USING "#,K"; "SP1PA5080,4064PDPUSM+PA";X1;",";Y1
300 OUTPUT N USING "#,K"; "CP2,-.3LBP1=(",VAL$(X1),",",VAL$(Y1),")",CHR$(3)
310 OUTPUT N USING "#,K"; "PA";X2;",";Y2;"SM;"
320 OUTPUT N USING "#,K"; "CP-16,-.3LBP2=(",VAL$(X2),",",VAL$(Y2),")",CHR$(3)
330 OUTPUT N USING "#,K" ; "PA2022,2464"
340 GOSUB 1180
350 OUTPUT N USING "#,K" ; "PA8088,4064"
360 GOSUB 1220
370 DUTPUT N USING "#,K" ; "FT4,100,45PA9372,6440RR700,700SP2ER700,700"
380 I
390 I DRAW & LABEL AXIS
400 I
410 OUTPUT N USING "#,K" ; "SP2PA9144,1016PD"
420 FOR I=1 TO 8
430 OUTPUT N USING "#,K" ; "XTPR-1011,0"
440 NEXT I
450 FOR I=1 TO 15
460 OUTPUT N USING "#,K" ; "PRO,400YT"
470 NEXT I
480 OUTPUT N USING "#,K" ; "PUPA2022,4064"
490 GOSUB 1180
500 OUTPUT N USING "#,K" ; "PA8088,5664"
510 GOSUB 1220
520 DUTPUT N USING "#,K"; "FT4,50,90PA9722,5600WG350,0,360,40SP3EW350,0,360,40"
530 DUTPUT N USING "#,K"; "SP3PA600,3500DI0,1LBCentimetres",CHR$(3)
540 DUTPUT N USING "#,K"; "PA700,6966DI"
                               ; "PA700,6966DI"
550 FOR I = 15 TO 0 STEP -1
560 IF IK10 THEN OUTPUT N USING "#,K" ; "CP1,O"
570 OUTPUT N USING "#,K" ; "LB", VAL$(I), CHR$(13), CHR$(3), "PRO, -400"
580 NEXT I
590 OUTPUT N USING "#,K" ; "PR2022,5664"
600 GOSUB 1180
610 DUTPUT N USING "#,K" ; "FR2022,2464"
620 GOSUB 1220
630 DUTPUT N USING "#,K" ; "FT1,0,0PR9722,4060PT.5WG700,60,60SP4EW700,60,60" 640 DUTPUT N USING "#,K" ; "PR1032,756SP4"
650 FOR I = 0 TO 8
```

Figure 2-3. Test Program (Sheet 1 of 3)

```
660 DUTPUT N USING "#,K" ; "LB",VAL$(I),CHR$(13),CHR$(3),"PR1011,O"
   670 NEXT I
   680 OUTPUT N USING "#,K" ; "PA4830,516;LBInches",CHR$(3)
   690 OUTPUT N USING "#,K" ; "PA8088,2464"
   700 GOSUB 1180
   710 DUTPUT N USING "#,K" ; "PA2022,4064"
   720 GOSUB 1220
   730 OUTPUT N USING "#,K" ; "FT1,0,90PA3722,3570PT.5WG700,240,60SP5EW700,240,60"
   740 |
   750 ! DRAW CIRCULAR FAN
   760 1
   770 DUTPUT N USING "#,K" ; "SP4PR5080,4064"
   780 FOR I = 108 TO 508 STEP 100
   790 DUTPUT 705 USING "#,K" ; "CI",I
   800 NEXT I
   810 OUTPUT 705 USING "#,K" ; "SP6IW3580,2564,6580,5564PA3580,2564ER3000,3000SP5"
   820 DEG
   830 FOR I=0 TO 345 STEP 15
   840 X5=5080+508*CDS(I)
   850 Y5 = 4064 + 508 * SIN(I)
   860 OUTPUT N USING "#,K" ; "PA"; VAL$(INT(X5)); ", "; VAL$(INT(Y5)); "PD"
   870 X5=5080+2200*C0S(I)
   880 Y5=4064+2200*SIN(I)
   890 OUTPUT N USING "#,K" ; "PA"; VAL$(INT(X5)); ", "; VAL$(INT(Y5)); "PU"
   900 NEXT I
   910 OUTPUT N USING "#,K" ; "IWPAB088.4064:"
                                                                                                Computer
                                                                                               Museum
   920 GOSUB 1180
   930 OUTPUT N USING "#,K" ; "PA2022,5664"
   940 GOSUB 1220
   950 DUTPUT N USING "#,K" ; "FT4,50,90PA9722,2030WG350,0,360SP6EW350,0,360;"
   960 !
   970 ! DRAW LABELS
   980 !
   990 OUTPUT N USING "#,K"; "SP6PA3810,6514"
1000 OUTPUT N USING "#,K"; "VSSI1,1SL.45LB7475A",CHR$(3)
1010 OUTPUT N USING "#,K"; "PA4645,1778"
   1020 OUTPUT N USING "#,K"; "SISLLBFeatures",,CHR$(3)
1030 OUTPUT N USING "#,K"; "CP-6,-1LBPlot",CHR$(3)
1040 OUTPUT N USING "#,K"; "PRB088,5664"
   1050 GOSUB 1180
   1060 OUTPUT N USING "#,K" ; "PA8088,2464;"
   1070 GOSUB 1220
   1080 OUTPUT N USING "#.K" ; "FT4,100,45PA9372,490RR700,700SP1ER700,700"
   1090 |
   1100 | FRAME WINDOW
   1110 !
   1120 DUTPUT N USING "#,K" ; "PA50B0,4064PDPU";X3;",";Y3
1130 DUTPUT N USING "#,K" ; "EA";X4;",";Y4;"SPOPA";X4;",";Y4;";"
   1140 END
   1150 !
   1160 ! PEN TO PEN REPEATABILITY SUBROUTINES
   1170 !
   1180 DUTPUT N USING "#,K" ; "PR9,-9PD247,0,0,18,-247,0,0,247,-18,0,0,-247,"
1190 DUTPUT N USING "#,K" ; "-247,0,0,-18,247,0,0,-247,18,0,0,247PU"
    1200 RETURN
    1210 I
   1220 OUTPUT N USING "#,K"; "PRO,512PDO,-1024PU-512,512PD1024,0PU"
1230 I OUTPUT N USING "#,K"; "-512,0,512,0,0,-512,0,512CI512PU;"
    1240 RETURN
    1250 !
    1260 | HP 85 RS232C INTERFACE SETUP
   1270 !
   1280 CONTROL 10,1 ; 16 | RECEIVED DATA GENERATES INTERRUPT 1290 CONTROL 10,2 ; 5 ! ACTIVATES DTR & CTS
    1300 CONTROL 10,3; 11 | ACTIVATES RTS, DRS & DTR
7475-A-34-1
```

Figure 2-3. Test Program (Sheet 2 of 3)

```
1310 CONTROL 10,4; 3 ! 8 BITS/WORD WITH NO PARITY
1320 CONTROL 10,5; 16 ! ENABLES HARDWIRE HANDSHAKE
1330 CONTROL 10,16; 0 ! NO CHARACTERS SENT AT EDL
1340 !
1350 ! 7470A-OPOO1 TURN-ON & CONFIGURATION
1360 !
1370 OUTPUT N USING "#,K"; "\(\frac{1}{2}\). " I TURN PLOTTER ON LIST1260
1380 OUTPUT N USING "#,K"; "\(\frac{1}{2}\). " ABORT DEVICE CONTROL INSTRUCTION
1390 OUTPUT N USING "#,K"; "\(\frac{1}{2}\). " ABORT GRAPHIC INSTRUCTION
1400 OUTPUT N USING "#,K"; "\(\frac{1}{2}\). " "E.M;;;13;10:" ! TERMINATE OUTPUT WITH Cr & Lf
1410 OUTPUT N USING "#,K"; "\(\frac{1}{2}\). " SET HARDWARE HANDSHAKE MODE

1420 OUTPUT N USING "#,K"; "\(\frac{1}{2}\). " "\(\frac{1}{2}\). " OUTPUT BUFFER SIZE
1430 ENTER N; B
1440 DISP "BUFFER SIZE IS"; B
1450 RETURN
9114
```

Figure 2-3. Test Program (Sheet 3 of 3)

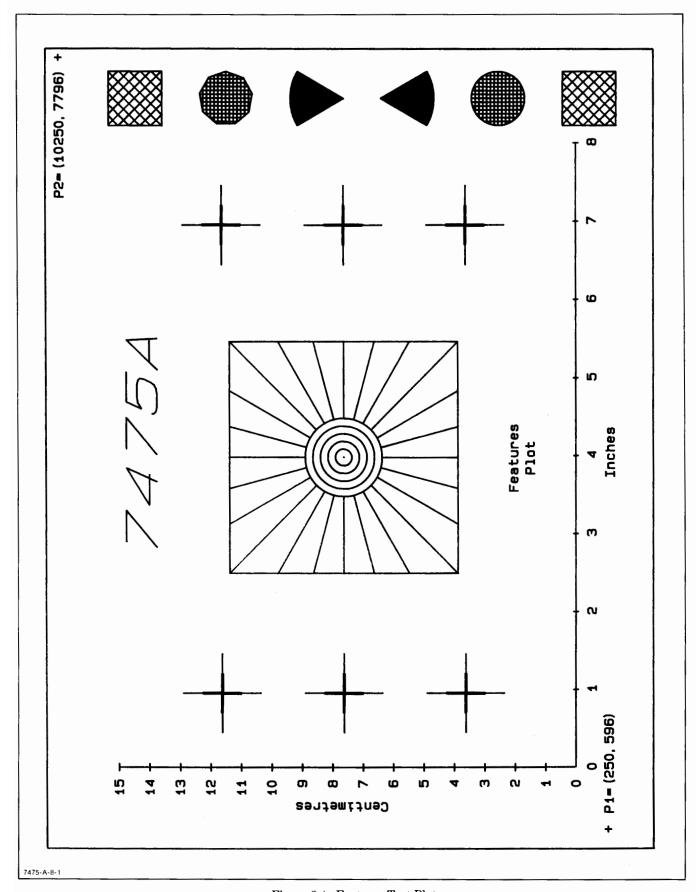


Figure 2-4. Features Test Plot

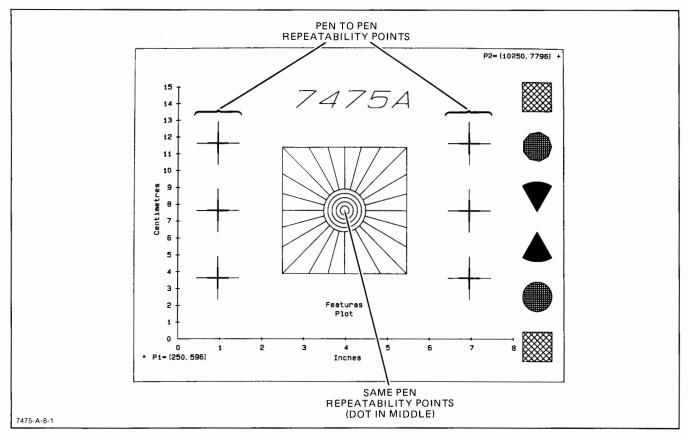


Figure 2-5. Repeatability Test Points

SECTION III

ADJUSTMENTS

3-1. INTRODUCTION

3-2. This section describes mechanical adjustments required to return the HP 7475A to its normal operating condition after repairs have been made. There are no electrical adjustments in the HP 7475A.

3-3. EQUIPMENT REQUIRED

3-4. The adjustment procedures require use of the following tools:

Allen wrench (0.050 in.) 100 mm ruler

3-5. MECHANICAL ADJUSTMENTS

- 3-6. PEN HEIGHT ADJUSTMENT
- 3-7. Pen height adjustment is necessary if the pen carriage assembly is disassembled or replaced.

The following procedure should be perormed only by service-trained personnel who are aware of the electrical shock hazards involved.

- Set the HP 7475A LINE switch to OFF (O) and disconnect the line cord.
- b. Remove the HP 7475A top case by removing the screws indicated in Figure 3-1.

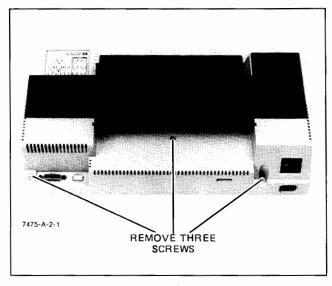


Figure 3-1. Top Case Removal

- c. Position pen holder at center of platen.
- d. Using the 100 mm ruler, measure the distance from the platen to bottom of pen holder. It should be 10.5 mm. See Figure 3-2.
- e. To adjust pen height, insert a 0.050 in. Allen wrench through hole at rear of pen carriage. Turn clockwise to decrease height and counter-clockwise to increase pen height. See Figure 3-3.
- f. Reverse procedure to replace top case.

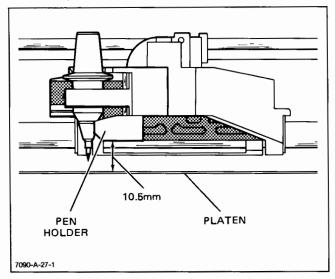


Figure 3-2. Measuring Pen Height

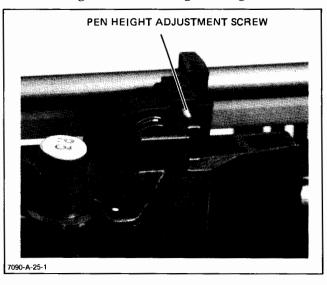


Figure 3-3. Pen Height Adjustment

Model 7475A Section IV

SECTION IV

REPLACEABLE PARTS

4-1. INTRODUCTION

4-2. This section contains information for ordering parts for the HP Model 7475A Plotter. Included are lists of electrical and mechanical parts and an illustration of mechanical parts.

4-3. EXCHANGE ASSEMBLIES

4-4. Part numbers for assemblies that are available on an exchange basis are listed in the parts lists below the new assembly number. These factory repaired and tested assemblies are available only on a trade-in basis; therefore, the defective assembly must be returned for credit. For this reason, assemblies required for spare parts stock must be ordered by the new part number.

4-5. REPLACEABLE PARTS LISTS

4-6. Electrical parts for the 7475A are listed in Table 4-1 and 4-2. Table 4-3 is a list of mechanical parts which are illustrated in Figure 4-1. Table 4-4 is a list of carousel parts that are illustrated in Figure 4-2.

Table 4-1 = Option 001 PCA
Table 4-2 = Option 002 PCA
Table 4-3 = Mechanical parts
Table 4-4 = Carousel parts

4-7. ORDERING INFORMATION

4-8. To obtain replacement parts or assemblies address an order or inquiry to the nearest Hewlett-Packard Sales and Support Office. Include the HP Part Number, the check digit (listed under the heading "CD" in the parts list), the description, and the quantity required.

4-9. CODE LIST OF MANUFACTURERS

4-10. Table 4-5 lists the five-digit code numbers assigned to the manufacturers of parts in the Model 7475A Plotter. These code numbers appear with the parts in Table 4-1 through 4-4 as an aid for ordering replacement parts directly from the manufacturer.

4-11. DESIGNATIONS AND ABBREVIATIONS

4-12. Table 4-6 lists designations and abbreviations used throughout this manual. Abbreviations in the parts lists are always capital letters. In other parts of the manual both upper- and lower-case abbreviations are used.

Table 4-1. Parts List, Main PCA, RS-232-C, Option 001

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1 A1C1 A1C2 A1C3 A1C4	07475-60101 0180-3251 0180-2087 0160-3847 0160-3847 0160-3847	1 7 9 9	1 1 1 19	PCA-MAIN RS-232-C (OPTION 001) CAPACITOR-FXD 68UF 35VDC CAPACITOR-FXD 2200UF+75-10% 40VDC AL CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	07475-60101 0180-3251 0180-2887 0160-3847 0160-3847 0160-3847
A1C5 A1C6 A1C7 A1C8 A1C9 A1C10	0160-3847 0160-3847 0160-3847 0160-3533 0160-2306 0140-0202	9 0 3 2	8 1 1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 470PF +-5% 300VDC MICA CAPACITOR-FXD 27PF +-5% 300VDC MICA CAPACITOR-FXD 15PF +-5% 500VDC MICA	28480 28480 28480 28480 28480 72136	0160-3847 0160-3847 0160-3533 0160-2306 DM15C150J0500WV1CR
A1C11 A1C12 A1C13 A1C14 A1C15	0160-3847 0160-3847 0160-3533 0160-3847 0160-3847	9 0 9		CAPACITOR-FXD .0:1UF +100-0% 50VDC CER CAPACITBR-FXD .0:1UF +100-0% 50VDC CER CAPACITOR-FXD 470PF +-5% 300VDC HICA CAPACITOR-FXD .0:1UF +100-0% 50VDC CER CAPACITOR-FXD .0:1UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3533 0160-3847 0160-3847
A1C16 A1C17 A1C1B A1C19 A1C20	0160-3533 0160-3847 0160-3847 0160-3847 0160-3847	9 9 9		CAPACITOR-FXD 470PF +-5% 300VDC HICA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3533 0160-3847 0160-3847 0160-3847 0160-3847
A1C21 A1C22 A1C23 A1C24 A1C25	0160-3847 0160-3847 0160-3533 0160-3533 0160-3847	9 0 0 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 470PF +-5% 300VDC HICA CAPACITOR-FXD 470PF +-5% 300VDC HICA CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3533 0160-3533 0160-3847
A1C26 A1C27 A1C28 A1C29 A1C30	0160-3847 0180-2879 0160-4835 0160-3847 0180-0291	9 7 7 9 3	2 1 2	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22UF+50-10% 25VDC AL CAPACITOR-FXD .1UF+-10% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA	28480 28480 28480 28480 56289	0160-3847 0180-2879 0160-4835 0160-3847 150D105X9035A2
A1C31 A1C32 A1C33 A1C34 A1C35	0180-2984 0180-3154 0180-2984 0180-2879 0180-0291	53573	2	CAPACITOR-FXD 47UF+-20% 50VDC AL CAPACITOR-FXD 6800UF+-20% 25VDC AL CAPACITOR-FXD 47UF+-20% 50VDC AL CAPACITOR-FXD 22UF+50-10% 25VDC AL CAPACITOR-FXD 1UF+-10% 35VDC TA	28480 28480 28480 28480 56289	0180-2984 0180-3154 0180-2984 0180-2879 150D105X9035A2
A1C36 A1C37 A1C38 A1C39 A1C40	0160-6309 0160-0158 0180-2986 0160-0158 0160-0158	4 9 7 9 9	1 3 2	CAPACITOR-FXD.47UF+-20%63VDC CER CAPACITOR-FXD.5600PF +-10% 200VDC POLYE CAPACITOR-FXD 330UF+-20%50VDC AL CAPACITOR-FXD 5600PF +-10% 200VDC POLYE CAPACITOR-FXD 5600PF +-10%200VDC POLYE	28480 28480 28480 28480 28480	0160-6309 0160-0158 0180-2986 0160-0158 0160-0158
A1 C41 A1 C45 A1 C46 A1 C47 A1 C48	0180-2986 0160-3847 0160-3533 0160-3533 0160-3533	7 9 0 0		CAPACITOR-FXD 330UF+-20% 50VDC AL CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 470PF +-5% 300VDC MICA CAPACITOR-FXD 470PF +-5% 300VDC MICA CAPACITOR-FXD 470PF +-5% 300VDC MICA	28480 28480 28480 28480 28480	0180-2986 0160-3847 0160-3533 0160-3533 0160-3533
A1CR1 A1CR2 A1CR3 A1CR4 A1CR5	1901-1065 1901-0944 1901-0944 1901-0944 1901-0944	4 4 4	1 4	DIODE-PWR RECT 1N4936 400V 1A 200NS DIODE-PWR RECT 45V 10A DIODE-PWR RECT 45V 10A DIODE-PWR RECT 45V 10A DIODE-PWR RECT 45V 10A	14936 28480 28480 28480 28480	1N4936 1901-0944 1901-0944 1901-0944 1901-0944
A1CR6 A1CR7 A1CR8 A1CR9 A1CR10	1901-0050 1901-0704 1901-0704 1901-1001 1901-1081	3 4 4 2 2	1 6 4	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-PWR RECT 1N4002 100V 1A DO-41 DIODE-PWR RECT 1N4002 100V 1A DO-41 DIODE-PWR RECT 100V 3A DIODE-PWR RECT 100V 3A	28480 01295 01295 04713 04713	1701-0050 1N4002 1N4002 1N4002 HR501 HR501
A1CR11 A1CR12 A1CR13 A1CR14 A1CR15	1901-1081 1901-1081 1901-0704 1901-0704 1901-0704	2 2 4 4 4	1	DIODE-PWR RECT 100V 3A DIODE-PWR RECT 100V 3A DIODE-PWR RECT 1N4002 100V 1A DD-41 DIODE-PWR RECT 1N4002 100V 1A DD-41 DIODE-PWR RECT 1N4002 100V 1A DD-41	04713 04713 01295 01295 01295	MR501 MR501 1 N4002 1 N4002 1 N4002
A1CR16 A1CR17-20 A1DS1 A1DS2 A1DS3	1901-0704 1901-1065 1990-0975 1990-0975 1990-0976	4 2 8 8 9	4 2 1	DIODE-PWR RECT 1N4002 100V 1A DU-41 DIODE-PWR RECT IN4936 400V 1A LED-GREEN WISPACER LED-GREEN WISPACER LED-YELLOW WSPACER	01295 01295 28480 28480 28480	1N4002 1N4936 1990-0975 1990-0976 1990-0976
A1E5	1200-0567	1	1	SOCKET-IC 28-CONT DIP DIP-SLDR	28480	1200-0567
A1E9 A1E10	1205-0463 1205-0472	6 7	1 1	HEAT SINK HEAT SINK- 6254	28480 28480	1205-0463 1205-0472

Table 4-1. Parts List, Main PCA, RS-232-C, Option 001 (Continued)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1E11 A1E12 A1E13 A1E14 A1E15	2110-0589 2110-0589 2110-0589 2110-0589 2110-0589	7 7 7 7	6	FUSEHOLDER-CLIP TYPE 10A 250 V	28480 28480 28480 28480 28480	2110 0589 2110 0589 2110 0589 2110 0589 2110 0589
A1E16	2110-0589	7		FUSEHOLDER-CLIP TYPE 10A 250 V	28480	2110-0589
A1F1 A1F2 A1F3	2110-0655 2110-0672 2110-0673	8 9	1 1 1	FUSE-3.15A 250V FUSE-0.8A NM BL FUSE-1.6A NM BL	28480 28480 28480	2110-0655 Computer Museum 2110-0672 2110-0673
A1H1 A1H2 A1H3 A1H4 A1H5	0361-1125 0361-1125 0515-1877 0515-1877 0515-1877	8 4 4 4	2	RIVET-BLIND PL-THRU DOME-HD , 124DIA RIVET-BLIND PL-THRU DOME-HD , 124DIA SCREW-MACH M3 X 0.58MM-LG PAN-HD SCREW-MACH M3 X 0.58MM-LG PAN-HD SCREW-MACH M3 X 0.58MM-LG PAN-HD	28480 28480 28480 28480 28480	0.361-11.25 0.361-11.25 0.515-1877 0.515-1877 0.515-1877
A1H6 A1H7 A1H8	0515-1877 05350031 05350031	4 2 2	2	SCREW-MACH M3 X 0.5 8MM-LG PAN-HD NUT-HEX W/LKWR M3 X 0.5 2.4MM-THK NUT-HEX W/LKWR M3 X 0.5 2.4MM-THK	28480 88000 00000	0515-1877 ORDER BY DESCRIPTION ORDER BY DESCRIPTION
A1J1 A1J2 A1J3 A1J4 A1J5	1200-0575 1251-3192 1251-4245 1252-0094 1251-4245	1 1 7 8 7	2 2 2 1	SOCKET-STRP 4-CONT SIP DIP-SLDR CONNECTOR 3-PIN H POST TYPE CONNECTOR 2-PIN H POST TYPE CONNECTOR 25-PIN F D SUBMIN CONNECTOR 25-PIN H POST TYPE	28480 28480 28480 28480 28480	1200 - 0575 1251 - 3192 1251 - 4245 1 252-0094 1251 - 4245
A1J6 A1J7 A1J8 A1J9	1200-0575 1251-8170 1251-3276 1251-3192	1 5 2	1 1	SOCKET-STRP 4-CONT SIP DIP-SLDR CONN-POST TYPE .100-PIN-SPCG 2-CONT CONNECTOR 6-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE	28480 28480 28480 28480	1200-0575 1251-8170 1251-3276 1251-3192
A1L1	9100-1788	6	1	CHOKE-WIDE BAND ZMAX=680 ORMO 180 MHZ	02114	VK200 20/48
A1Q1 A1Q2 A1Q3 A1Q4 A1Q5	1854-0921 1854-0921 1854-0921 1854-0921 1853-0509	6 6 6 4	4	TRANSISTOR NPN DARL TO-220AB PD=2W TRANSISTOR NPN DARL TO-220AB PD=2W TRANSISTOR NPN DARL TO-220AB PD=2W TRANSISTOR NPN DARL TO-220AB PD=2W TRANSISTOR PNP TO-220AB PD=2W FT=3MHZ	28480 28480 28480 28480 28480	1854-0921 1854-0921 1854-0921 1854-0921 1853-0509
A1Q6 A1Q7 A1Q8 A1Q9 A1Q10	1853-0509 1853-0509 1853-0509 1853-0059 1853-0932	4 4 9 9	i 1	TRANSISTOR PNP TO-220AB PD=2W FT=3MHZ TRANSISTOR PNP TO-220AB PD=2W FT=3MHZ TRANSISTOR PNP TO-220AB PD=2W FT=3MHZ TRANSISTOR PNP 2N3791 SI TO-3 PD=150W TRANSISTOR-NPN TIP 31A	28480 28480 28480 04713 28480	1853-0509 1853-0509 1853-0509 2N3791 1854-0932
A1R1 A1R2 A1R3 A1R4 A1R5	0699-0902 0699-0982 0699-0982 0699-0982 0698-3132	8 8 8 8 4	3	RESISTOR-FXD 1K OHM 5% 2W RESISTOR-FXD 1K OHM 5% 2W RESISTOR-FXD 1K OHM 5% 2W RESISTOR-FXD 1K OHM 5% 2W RESISTOR 2611%.125W FTC=0+-100	28480 28480 28480 28480 28480	0499-0982 0699-0982 0699-0982 0699-1982 0688-3132
A1R6 A1R7 A1R8 A1R9 A1R10	0698-3132 0811-3456 0683-1055 0698-3132 0698-3155	4 7 5 4 1	1 1 3	RESISTOR 261 1%.125W F TC=0+-100 RESIGTOR .1 3% 1W PW TC=0+-90 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 261 1%.125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100	28480 26480 01121 28480 24546	0698-3132 0011-3456 CB1 055 0698-3132 0698-3155
A1R11 A1R12 A1R13 A1R14 A1R15	0698-3444 0698-3155 0757-0441 0757-0279 0698-3155	1 1 8 0 1	1 1 1	RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 8.25K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	04-178-T0-316R F C4-178-T0-4641-F C4-178-T0-8251-F C4-178-T0-3171-F C4-178-T0-3471-F
A1R16 A1R17 A1R18 A1R19 A1R20	0757-0288 0757-0280 0698-4483 0699-0263 0757-0818	1 3 0 8 3	1 1 1 1	RESISTOR 9.09K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 10.7K 1% .125W F TC=0+-100 RESISTOR 26.1 2% .25W F TC=0+-100 RESISTOR 825 1% .5W F TC=0+-100	19701 24546 24546 28480 28480	MF4C1/8-T0-9091-F C4-1/8-T0-1001-F C4-1/8-T0-1872-F 0599-0263 0757-0818
A1R21 A1R22 A1R23 A1R24 A1R25	0757-0274 0757-0401 0698-3622 0699-0975 0699-0975	5 0 7 9 9	1 1 1 2	RESISTOR 1.21K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=8+-100 RESISTOR 120 5% 2W MO TC=0+-200 RESISTOR-FXD 10 OHM 2% RESISTOR-FXD 10 OHM 2%	24546 24546 28480 28480 28480	C4-1/8T0-1211-F C4-1/8T0-161-F 0698-3622 0697-0975 0699-0975
A1R26 A1R27 A1RN1 A1RN2 A1RN3 A1RN3	0678-3435 0698-3155 1810-0277 1810-0643 1810-0279 1810-0279	0 1 5 7 5 5	1 3 1	RESISTOR 38.3 1% ,125W F TG=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100 NETWORK-RES 10-51P4.7K 0HM X 9 NETWORK-RES 5 51P 4.7K 0HM X 4 NETWORK-RES 5 10-51P4.7K 0HM X 9 NETWORK-RES 10-51P4.7K 0HM X 9	24546 24546 01121 28480 01121 01121	C4 1/8-T0-38R3-F C4-1/8-T0-4641-F 210A422 1810-06A3 210A422 210A422

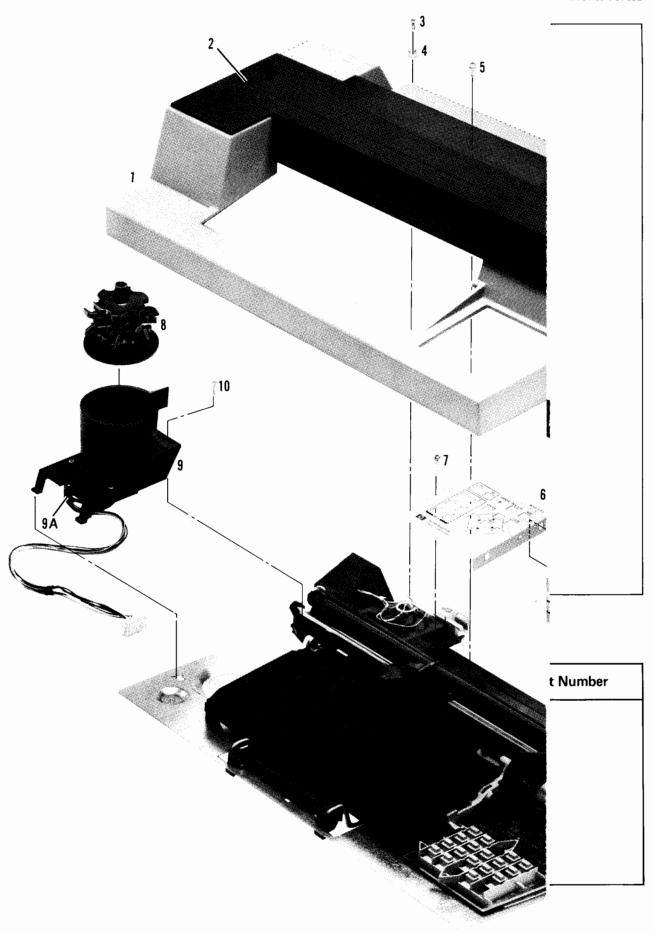
Table 4-1. Parts List, Main PCA, RS-232-C, Option 001 (Continued)

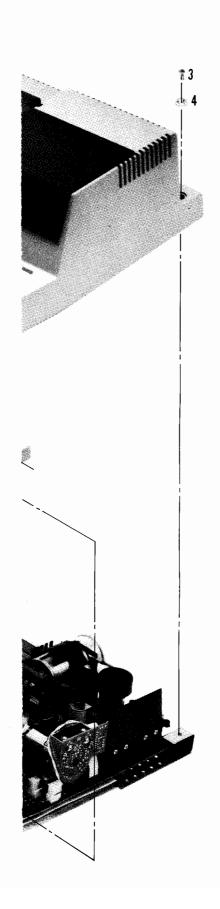
Reference	HP Part	C D	Qty	Description	Mfr	Mfr Part Number
Designation	Number	٢			Code	
A1S1 A1S2	3101-2655 0363-0193	4 2	1	SWITCH-SL 9-1A DIP-SLIDE ASSY .1A 50VDC CONTACT-SWITCH HOOK SHAPE; 302 SST	28480 28480	3101-2655 0363-0193
A1U1 A1U2 A1U3 A1U4 A1U5	1820-2715 1820-2715 1820-2744 1820-2744 1820-2754	9 9 4 4 6	3 2 1	IC DRVR TTL NAND DUAL 2-INP IC DRVR TTL NAND DUAL 2-INP IC-1MC3-0005 IC-1MC3-0005 IC MISC CMOS	01295 01295 28480 28480 31471	SN75447P SN75447P 1820-2744 1820-2744 UA-4 MASKED
A1U6 A1U7 A1U8 A1U9 A1U10	1820-2753 1820-1470 1820-2715 1820-0990 1826-0138	5 1 9 8	1 1 2 1	IC MISC CMOS IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC DRVR TTL NAND DUAL 2-INP IC RCVR DTL NAND LINE QUAD IC COMPARATOR GP QUAD 14-DIP-P PKG	31471 01275 01275 01295 01295	UA-4 MASKED SN74LS157N SN75447P SN75189AJ LM339N
A1U11 A1U12 A1U13 A1U14 A1U15	1820-0507 1820-1438 1820-2470 1820-2099 1818-3290	5 1 3 2 2	1 3 1 1 1	IC DRVR DTL LINE DRVR QUAD IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC-DIGITAL MC6850P IC MICPROC NMOS 8-BIT ROM	04713 01295 28480 04713 28480	MC1488L SN74LS257AN 1820-2470 MC6802P 1818-3290
A1U16 A1U17 A1U18 A1U19 A1U20	1818-3291 1818-3022 1820-1196 1820-2274 1820-1438	3 8 8 5	1 1 1	ROM IC CMOS (16K) STAT RAM 200-NS 3-S IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC DRVR TTL QUAD IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD	28480 28480 01295 13606 01295	1818–3291 1818–3022 SN74LS174N ULN-2068B SN74LS257AN
A1U21 A1U22 A1U23 A1U24 A1U25	1826-0904 1820-1199 1820-1202 1820-1197 1820-1197	6 1 7 9	1 1 1 2	IC-LM330T-5.0 IC INV TTL LS HEX 1-INP IC GATE TTL LS NAND TPL 3-INP IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS NAND QUAD 2-INP	28400 01295 01295 01295 01295	1826-0904 SN74LS04N SN74LS10N SN74LS00N SN74LS00N
A1U26 A1U27	1820-0990 1820-1438	8		IC RCVR DTL NAND LINE QUAD IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD	01295 01295	SN75189AJ SN74LS257AN
A1 UR 1 A1 UR 2 A1 UR 3 A1 UR 4 A1 UR 5	1902-0952 1902-3094 1902-0551 1902-0551 1902-3114	6 3 1 1 8	1 1 2 2	DIODE-ZNR 5.6V 5% DO-35 PD=,4W TC=+.046% DIODE-ZNR 5.11V 2% DO-35 PD=,4W DIODE-ZNR 6.2V 5% PD=1W IR=10UA DIODE-ZNR 6.2V 5% PD=1W IR=10UA DIODE-ZNR 6.17V 2% DO-35 PD=.4W	28480 28480 28480 28480 28480	1902-0952 1902-3094 1902-0551 1902-0551 1902-3114
A1UR6 A1UR7 A1Y1	1902-3114 1902-1379 0410-1334	8	1	DIODE-ZNR 6.19V 2% DO-35 PD=.4W DIODE-ZNR 3.9V CRYSTAL-QUARTZ 4 MHZ HC-18/U-HLDR	28480 28480 28480	1902-3114 1902-1379 0410-1334

Table 4-2. Parts List, Main PCA, HP-IB, Option 002

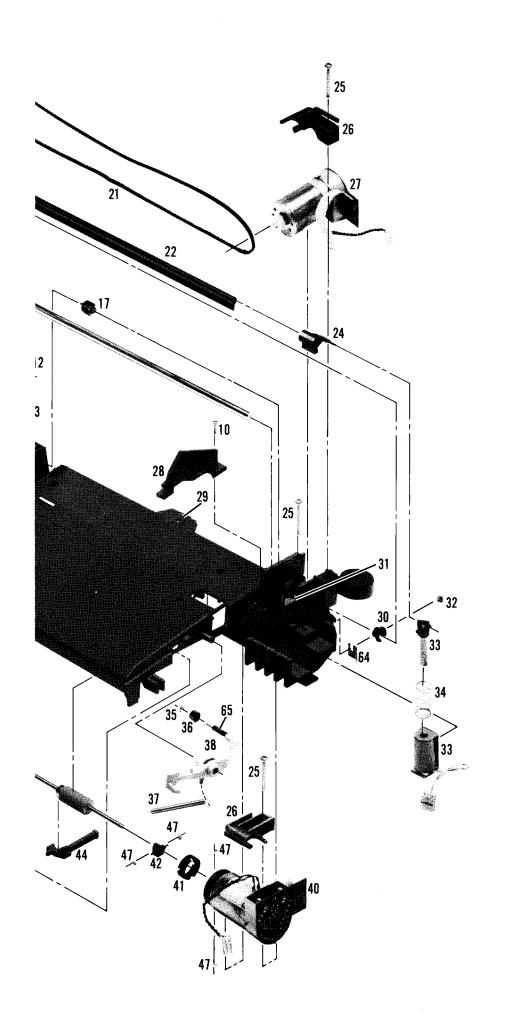
Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
A1	07475-60102	2	1	PCA-MAIN HP-IB (OPTION 002)	28480	07475-60102
A1C1 A1C2 A1C3 A1C4 A1C5	0180-3251 0180-2887 0160-3847 0160-3047 0160-3847	1 7 9 9	1 1 18	CAPACITOR-FXD 68UF 35VDC CAPACITOR-FXD 2200UF+75-10% 40VDC AL CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0180 3251 0180-2887 0160-3847 0160-3847 0160-3847
A1C6 A1C7 A1CB A1C9 A1C10	0160-3847 0160-3847 0160-3847 0160-3847 0160-2306	99993	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 27PF +-5% 300VDC MICA	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-2306
A1C11 A1C12 A1C13 A1C14 A1C15	0140-0202 0160-3047 0160-3847 0160-3847 0160-3847	2999	1	CAPACITOR-FXD 15PF +-5X 500VDC HICA CAPACITOR-FXD .01UF +100-0X 50VDC CER CAPACITOR-FXD .01UF +100-0X 50VDC CER CAPACITOR-FXD .01UF +100-0X 50VDC CER CAPACITOR-FXD .01UF +100-0X 50VDC CER	72136 28480 28480 28480 28480	DM15C150J0500WV1CR 0160-3847 0160-3847 0160-3047 0160-3847
A1C16 A1C17 A1C18 A1C19 A1C20	0160-3847 0160-3847 0160-3847 0160-3847 0100-2079	9 9 9 7	2	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .21UF +100-0% 50VDC CER CAPACITOR-FXD .22UF+50-10% .25VDC AL.	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-2879
A1021 A1022 A1023 A1024 A1025	0160-4835 0180-0291 0160-3847 0180-3154 0180-2879	7 3 9 3 7	1 2	CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD &800UFF-20% 25VDC AL CAPACITOR-FXD 22UF+50-10% 25VDC AL	28480 56289 28480 28480 28480	0160-4835 150b105X9035A2 0160-3847 0180-3154 0180-2879
A1026 A1027 A1028 A1029 A1030	0180-0291 0160-6309 0160-0159 0160-0159 0160-0159	3 4 0 0	1 3	CAPACITOR-FXD 1UF+10% 35VDC TA CAPACITOR-FXD 47UF+-20% 63VDC CER CAPACITOR-FXD 6800PF +-10% 200VDC POLYE CAPACITOR-FXD 6800PF +-10% 200VDC POLYE CAPACITOR-FXD 6800PF +-10% 200VDC POLYE	56289 20480 20480 20480 20480 20480	150D105X9035A2 0160-6309 0160-0159 0160-0159 0160-0159
A1031 A1032 A1033 A1034	0180-2984 0100-2984 0160-3847 0160-3847	5599	2	CAPACITOR-FXD 47UF+-20% 50VDC AL CAPACITOR-FXD 47UF+-20% 50VDC AL CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480	0180-2984 0180-2984 0160-3847 0160-3847
A1CR1 A1CR2 A1CR3 A1CR4 A1CR5	1901-1065 1901-0944 1901-0944 1901-0944 1901-0944	24444	1 4	DIODE-PWR RECT 1N4936 400V 1A 200NS DIODE-PWR RECT 45V 10A DIODE-PWR RECT 45V 10A DIODE-PWR RECT 45V 10A DIODE-PWR RECT 45V 10A	14936 28480 28480 28480 28480 28480	1N4936 1901-0944 1901-0944 1901-0944 1901-0944
A1CR6 A1CR7 A1CR8 A1CR9 A1CR10	19010050 19010704 19010704 19011081 19011081	34422	1 4 4	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-PWR RECT 1N4002 100V 1A DO-41 DIODE-PWR RECT 1N4002 100V 1A DO-41 DIODE-PWR RECT 100V 3A DIODE-PWR RECT 100V 3A	29480 01295 01295 04713 04713	1901-0050 1N4002 1N4002 MR501 MR501
A1CR11 A1CR12 A1CR13 A1CR14	1901-1081 1901-1081 1901-0704 1901-0704	2244		DIODE-PWR RECT 100V 3A DIODE-PWR RECT 100V 3A DIODE-PWR RECT 1N4002 100V 1A DD-41 DIODE-PWR RECT 1N4002 100V 1A DO-41	04713 04713 01295 01295	MR501 MR501 1N4002 1N4002
A1DS1 A1DS2 A1DS3	1990-0975 1990-0975 1990-0976	8 8 9	2	LED-GREEN W/SPACER LED-GREEN W/SPACER LED-YELLOW W/SPACER	28480 28480 28480	1990-0975 1990-0975 1990-0976
A1E4	1200-0567	1		SOCKET-IC 28-CONT DIP DIP-SLDR	28480	1200-0567
A1E12 A1E13	1205-0463 1205-0472	6 7	1 1	HEAT SINK HEAT SINK- 6254	28480 28480	1205-0463 1205-0472
A1E14 A1E15 A1E16 A1E17 A1E18	2110-0589 2110-0589 2110-0589 2110-0589 2110-0589	7 7 7 7 7	6	FUSEHOLDER-CLIP TYPE 10A 250 V	28480 28480 28480 28480 28480 28480	2110-0589 2110-0589 2110-0589 2110-0589 2110-0589
A1E19	2110-0589	7		FUSEHOLDER-CLIP TYPE 10A 250 V	28480 28480	2110-0589
A1F1 A1F2 A1F3	2110-0655 2110-0672 2110-0673	8 9 0	1 1 1	FUSE-3.15A 250V FUSE-0.9A NM BL FUSE-1.6A NM BL.	28480 28480 28480	2110-0655 2110-0672 2110-0673
A1H1 A1H2 A1H3 A1H4 A1H5	0361-1125 0361-1125 0515-1877 0515-1877 0515-1877	8 4 4 4 4	2	RIVET-BLIND PL-THRU DOME-HD .124DIA RIVET-BLIND PL-THRU DOME-HD .124DIA SCREW-MACH M3 X 0.58MM-LG PAN-HD SCREW-MACH M3 X 0.58MM-LG PAN-HD SCREW-MACH M3 X 0.58MM-LG PAN-HD	28480 28480 28480 28480 28480	0361~1125 0361-1125 0515-1877 0515-1877

Table 4-2. Parts List, Main PCA, HP-IB, Option 002 (Continued)


Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1H6 A1H7 A1HB	0515-1877 0535-0031 0535-0031	4 2 2	2	SCREW-MACH M3 X 0.5 8MM-LG PAN-HD NUT-HEX W/LKWR M3 X 0.5 2.4MM-THK NUT-HEX W/LKWR M3 X 0.5 2.4MM-THK	29490 00000 00000	0515-1877 ORDER BY DESCRIPTION ORDER BY DESCRIPTION
A1J1 A1J2 A1J3 A1J4 A1J5	1200-0575 1251-3192 1251-4245 1252-1323 1251-4245	1 1 7 8 7	2 2 2 1	SOCKET-STRP 4-CONT SIP DIP-SLDR CONNECTOR 3-PIN M POST TYPE CONNECTOR 2-PIN M POST TYPE CONNECTOR 24-PIN F MICRO RIBBON CONNECTOR 2-PIN M POST TYPE	28480 28480 28480 28480 28480 28480	1200-0575 1251-3192 1251-4245 1252-1323 1251-4245
A1J6 A1J7 A1J8 A1J9	1200-0575 1251-8170 1251-3276 1251-3192	1 52 1	1 1	SOCKET-STRP 4-CONT SIP DIP-SLDR CONN-POST TYPE .100-PIN-SPCG 2-CONT CONNECTOR 6-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE	28480 28480 28480 28480	1200-0575 1251-8170 1251-3276 1251-3192
A1L1	9100-1788	6	1	CHOKE-WIDE BAND ZMAX=680 OHM@ 180 MHZ	02114	VK280 20/48
A1Q1 A1Q2 A1Q3 A1Q4 A1Q5	1854-0921 1854-0921 1854-0921 1854-0921 1853-0509	6 6 6 4	4	TRANSISTOR NPN DARL TO-220AB PD=2W TRANSISTOR NPN DARL TO-220AB PD=2W TRANSISTOR NPN DARL TO-220AB PD=2W TRANSISTOR NPN DARL TO-220AB PD=2W TRANSISTOR NPN DARL TO-220AB PD=2W FT=3MHZ	28480 28480 28480 28480 28480	1854-0921 1854-0921 1854-0921 1854-0921 1853-0509
A1Q6 A1Q7 A1Q8 A1Q9 A1Q10	1853-0509 1853-0509 1853-0509 1853-0059 1854-0932	4 4 9 9	1 1	TRANSISTOR PNP TO-220AB PD=2W FT=3MHZ TRANSISTOR PNP TO-220AB PD=2W FT=3MHZ TRANSISTOR PNP TO-220AB PD=2W FT=3MHZ TRANSISTOR PNP 2N3791 ST TO-3 PD=150W TRANSISTOR-NPN TIP 31A	28480 28480 28480 04713 28480	1853-0509 1853-0509 1853-0509 2N7791 1854-0932
A1R1 A1R2 A1R3 A1R4 A1R5	0699-0982 0698-3132 0699-0982 0699-0982 0699-0982	8 4 8 8	4 3	RESISTOR-FXD 1K OHM 5% 2W RESISTOR 261 1%,125W F TC=0+-100 RESISTOR-FXD 1K OHM 5% 2W RESISTOR-FXD 1K OHM 5% 2W RESISTOR-FXD 1K OHM 5% 2W	28480 28480 28480 28480 28480	0699-0982 0698-3132 0699-0982 0699-0982 0699-0982
A1R6 A1R7 A1RB A1R9 A1R10	0698-3132 08113456 06831055 0698-3132 0698-3444	4 7 5 4	1 1	RESISTOR 261 1%.125W F TC=0+-100 RESIBTOR .1 3% 1W PW TC=0+-90 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 261 1%.125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100	28480 28480 01121 28480 24546	0698-3132 9811 - 3456 CB1055 0698-3132 C4-178-T0-316R-F
A1R11 A1R12 A1R13 A1R14 A1R15	0690~3155 0757~0441 0757~0279 0757~0288 0757~0280	1 B 0 1 3	1 1 2 1	RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 8.25K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 7.07K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546 24546 19701 24546	C4·1/8·*T0-4641·F C4·1/8·*T0-8251·F C4·1/8·*T0-3161·F MF4C1/8·*T0-9091·F C4·1/8·*T0-1001·F
A1R16 A1R17 A1R18 A1R19 A1R20	0698-4483 0699-0263 0757-0818 0698-0085 0757-0401	0 8 3 0	1 2 1 1	RESISTOR 10.7K 1% .125W F TC=0+-100 RESISTOR 26.1 2% .25W F TC=0+-100 RESISTOR 925 1% .5W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	24546 28480 28480 24546 24546	C4-1/8-T0-1872-F 0699-0263 -0757-0818 C4-1/8-T0-26/1-F C4-1/8-T0-101-F
A1R21 A1R22 A1R23 A1RN1 A1RN2 A1RN3 A1RN3 A1RN4	0699-0263 0698-3435 0757-0279 1810-0279 1010-0279 1810-0643 1010-0279	8005575	1 3 1	RESISTOR 26.1 2% .25W F TC=0+-100 RESISTOR 38.3 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100 NETWORK-RES 10-SIP4.7K 0HM X 9 NETWORK-RES 10-SIP4.7K 0HM X 9 NETWORK-RES 5-SIP 4.7K 0HM X 9 NETWORK-RES 5-SIP 4.7K 0HM X 9	28480 24546 28480 01121 01121 28488 01121	0699-0263 C4-178-T0-3BR3-F 0757-0279 210A472 210A472 1810-0643 210A472
A151 A152	3101-1973 0363-0193	7 2		SWITCH-SL 7-1A DIP-SLIDE-ASSY .1A 50VDC CONTACT-SWITCH HOOK SHAPE; 302 SST	28486 28480	3101-1973 0363-0193
A1U1 A1U2 A1U3 A1U4 A1U5	1820-2715 1820-2715 1820-2744 1820-2744 1820-2754	9 9 4 4 6	3	IC DRVR TTL NAND DUAL 2-INP IC DRVR TTL NAND DUAL 2-INP IC-1MC3-0005 IC-1MC3-0005 IC MISC CMOS	01295 01295 28480 28480 31471	SN25447P SN25447P 1020-2744 1020-2244 UA-4 MASKED
A1U6 A1U7 A1U8 A1U9 A1U10	1820-2753 1820-1470 1820-2715 1826-0138 1820-2424	5 1 9 8 7	1	IC MISC CMOS IC MUSK/DATA-SEL TTU LS 2-TO-1-LINE QUAD IC DRVR TTL NAND DUAL 2-INP IC COMPARATOR GP QUAD 14-DIP-P PKG IC MISC TTL DCTL	31471 01295 01295 01295 01295 04713	UA 4 MAGKED SNZ4L9157N SNZ5447P LH339N MC3447P
A1U11 A1U12 A1U13 A1U14 A1U15	1820-2424 1820-2219 1820-2099 1818-3288 1818-3289	7 8 2 8 9		IC MISC TTL OCTL IC MICPROC-ACCESS NHOS 8 BIT IC MICPROC NHOS 8-BIT ROM ROM	04713 04713 04713 28480 28480	HC3447P HC6848DP HC6802P 1818-3288 1818-3289
A1U16 A1U17 A1U18 A1U19 A1U20	1818-3022 1820-1196 1820-2274 1820-1430 1826-0904	9 5 1 6	1 1	IC CMOS (16K) STAT RAM 200-NS 3-S IC FF TTL.LS D TYPE POS EDGE TRIG COM IC DRUR TTL QUAD IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC-LH330T-5.0	28480 01275 13606 01275 28480	1818-3022 SN74LS174N ULN-2068B SN74LS257AN 1826-0904


Table 4-2. Parts List, Main PCA, HP-IB, Option 002 (Continued)


Poference LIP Port -						
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1U21 A1U22 A1U23 A1U24 A1UR1 A1UR2 A1UR3 A1UR4	1820-1199 1820-1202 1820-1197 07475-60103 1902-0952 1902-3094 1902-3114 1702-3114	1 7 9 3 6 3 8 8	1 1 1 1 1 1 2	IC INV TTL LS HEX 1-INP IC GATE TTL LS NAND TPL 3-INP IC GATE TTL LS NAND QUAD 2-INP ASSEMBLY-DIODE DIODE-ZNR 5.6V 5% DD-35 PD=.4W TC=+.046% DIODE-ZNR 5.11V 2% D0-35 PD=.4W DIODE-ZNR 6.19V 2% D0-35 PD=.4W DIODE-ZNR 6.19V 2% D0-35 PD=.4W CRYSTAL-QUARTZ 4 MHZ HC-18/U-HLDR	01295 01295 01295 01295 28480 28480 28480 28480 28480	SN74LS04N SN74LS10N SN74LS00N 07475-60103 1902-0952 1902-3094 1902-3114 1902-3114
						·


Table 4-3. Parts List, Mechanical Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
1 2 3 4	07475-40101 07475-40102 0515-1013 07470-20012	9 0 0	1 1 2 2	TOP CASE WINDOW SCREW-MACH M4 X 0.7 12MM-LG STANDOFF	28480 28480 28480 28480	07475-40101 07475-40102 0515-1013 07470-20012
5 6 7 8 9 9A 10 11 12 13	0515-0771 07475-00010 0515-0751 5061-5080 07475-60175 3140-0687 0624-0591 5020-6306 07470-40027 1460-1940 1460-2027	5 5 1 1 9 0 8 0 3 6 2	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SCREW-MACHINE ASSEMBLY M4 X 0.7 12M-LG FRONT PANEL SCREW-MACH M4 X 0.7 20MM-LG PAN-HD PEN CAROUSEL ASSEMBLY PEN CAROUSEL HOUSING ASSEMBLY W/MOTOR CAROUSEL MOTOR ONLY SCREW-TPG 3-24 .5-IN-LG PAN-HD-PHL STL IDLER PULLEY BELT TENSIONER SPRING-CPRSN .36-IN-OD .875-IN-OA-LG SPRING	28480 28480 28480 28480 28480 28480 00000 28480 28480 28480 28480	0515-0771 07475-00010 0515-0751 5061-5080 07475-60175 3140-0687 ORDER BY DESCRIPTION 5020-6306 07470-40027 1460-1940 1460-2027
15 16	07475-60020 1460-1950	3 8	1	PEN HOLDER SPRING-PEN DOWN	28480 28480	07475-60020 1460-1950
17 18 19 20 21 22 23 24	5040-8672 07475-40005 5040-8650 1460-2024 1500-0649 5020-6302 5020-6301 07470-40016	9 2 3 9 6 6 5 0	1 1 1 1 1 1 1	END CAP SILICONE RUBBER DAMPER SIL-R8R PEN CARRIAGE SPRING 8ELT-GEAR .188-WD 392-T .082-P PEN LIFT BAR SLIDER ROD PEN LIFT CAP	28480 28480 28480 28480 28480 28480 28480 28480	5040-8672 07475-40005 5040-8650 1460-2024 1500-0649 5020-6302 5020-6301 07470-40016
25 26 27 28 29 30 31 32 33	0515-0296 07470-40049 07470-60180 5040-8668 5090-1471 5040-8673 07470-40037 0515-0733 07475-60015	9 9 1 3 7 0 5 9 6	4 2 1 1 1 1 1	SCREW-MACH M4 X 0.7 35MM-LG PAN-HD MOTOR CLAMP PEN DRIVE MOTOR ASSEMBLY PEN DROP SHIELD NUT SHEET METAL BUSHING PEN LIFT BUMPER SCREW SOLENOID	28480 28480 28480 28480 28480 28480 28480 28480 28480	0515-0296 07470-40049 07470-60180 50408668 5090-1471 5040-8673 07470-40037 0515-0733 07475-60015
34 35 36 37 38 39	1460-2043 0510-0015 07475-40030 1460-2033 5040-8652 5040-8647	2 0 3 0 3 8	1 2 2 2 1	SPRING-SOLENOID RETAINER-RING E-R EXT .125-IN-DIA STL PINCH ROLLER SPRING-PINCHROLLER ARM ARM-PINCHROLLER (RIGHT) ARM-PINCHROLLER (LEFT)	28480 28480 28480 28480 28480 28480	1460-2043 0510-0015 07475-40030 1460-2033 5040-8652 5040-8647
40 41 42 43 44	07470-60175 50408674 0747040005 50615074 50408669	1 7 3 4	1 1 1 1	PAPER DRIVE MOTOR ASSEMBLY RING-COUPLER COUPLER-GRIT WHEEL SHAFT GRIT WHEEL SHAFT ASSEMBLY CLAMP-BEARING	28480 28480 28480 28480 28480 28480	07470 -60175 5040-8674 07470-40005 5061-5074 50408669
45 46 47 48 49	5040-8663 5040-8646 0905-0996 0515-0070 21100567 2110-0565	8 7 3 7 1 9	1 1 4 1 1	HANDLE-PINCHROLLER CHASSIS O-RINGS, RUBBER SCREW-MACH M4 X 0.7 6MM-LG PAN-HD FUSEHOLDER CAP 12A MAX FOR UL (METRIC) FUSEHOLDER CAP 12A MAX FOR UL (U.S.)	28480 28480 28480 28480 28480 28480	5040-8663 5040-8646 0905-0996 05150070 2110-0567 2110-0565
50 51 52 53	2110-0016 2110-0639 2110-0044 0360-2073 07475-40067 07470-60124 1251-4470 2110-0610 2110-0569 3101-2697	5 8 9 5 6 3 0 5 3 4	1 1 1 1 1 1	FUSE .6A 250V TD 1.25X .25 UL FUSE .315A 250V IEC FUSE .3A250V TD 1.25X .25 UL JUMPER-TRANSFORMER BLOCK-DISPLAY POWER MODULE ASSEMBLY CONNECTOR-SGL CONT SKT .08-IN-BSC-SZ RND FUSEHOLDER COMPONENT NUT; THREAD M12.7 SWITCH	75915 28480 75915 28480 28480 28480 28480 28480 28480 28480	313.600 2110-0639 313.300 0360-2073 07475-40067 07470-60124 1251-4470 2110-0610 2110-0569 3101-2697
54 55 56 57 58	9100-4238 07475-40021 07475-20005 07475-60025 07475-66101 07475-66102 07475-66102	7 2 0 8 1 3 2 4	1 1 1 1 1	TRANSFORMER 76.2MMX70MMX63.5MM BRACKET—PAPER BAIL BAIL—PAPER BASE ASSEMBLY PCA—MAIN RS—232—C (OPTION 001) PCA—MAIN (OPTION 001) REBUILT PCA—MAIN HP—IB (OPTION 002) PCA—MAIN (OPTION 002) REBUILT	28480 28480 28480 28480 28480 28480 28480 28480 28480	9100-4238 07475-40021 07475-20005 07475-60025 07475-66101 07475-66102 07475-66102
59 60 61 62 63	07475-60011 07475-60012 2190-0034 1251-7828 1251-7999 07475-00015	2 3 5 8 4 0	1 1 2 2 1 1	PANEL-REAR, OPTION 001 PANEL-REAR, OPTION 002 WASHER-LK194 ID. OPTION 002 ONLY STANDOFF-OPTION 001 ONLY DUSTCOVER-CONNECTOR OPTION 002 ONLY INSULATOR	28480 28480 28480 28480 28480 28480	07475-60011 07475-60012 2190-0034 1251-7828 1251-7999 07475-00015
64 65 67 68	07475-00001 5040-8665 5040-8662 5020-6308	072	1 1 1 1	RETAINER, SOLENOID SPACER CLAW-PEN PIN-DOWEL	28480 28480 28480 28480	07475-00001 5040-8665 5040-8662 5020-6308

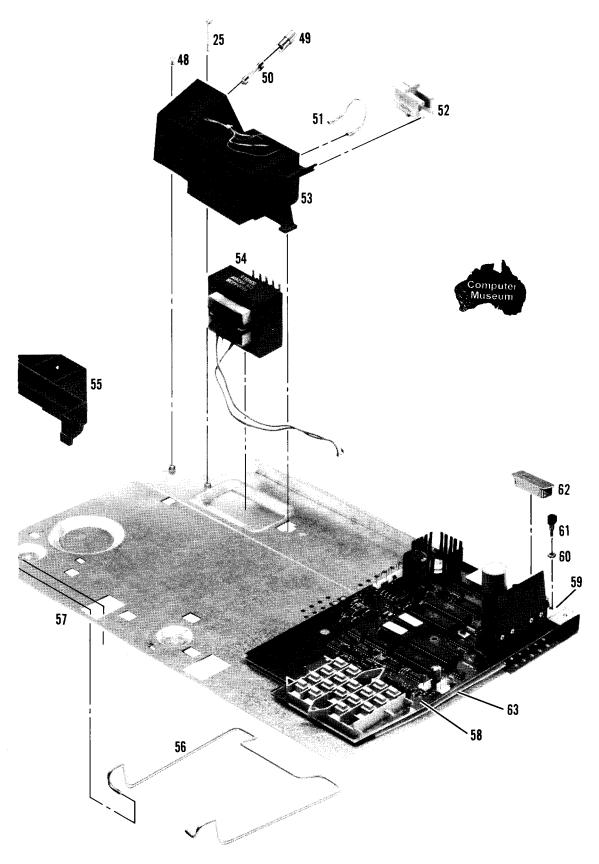


Figure 4-1. Model 7475A Exploded View

Section IV Model 7475A

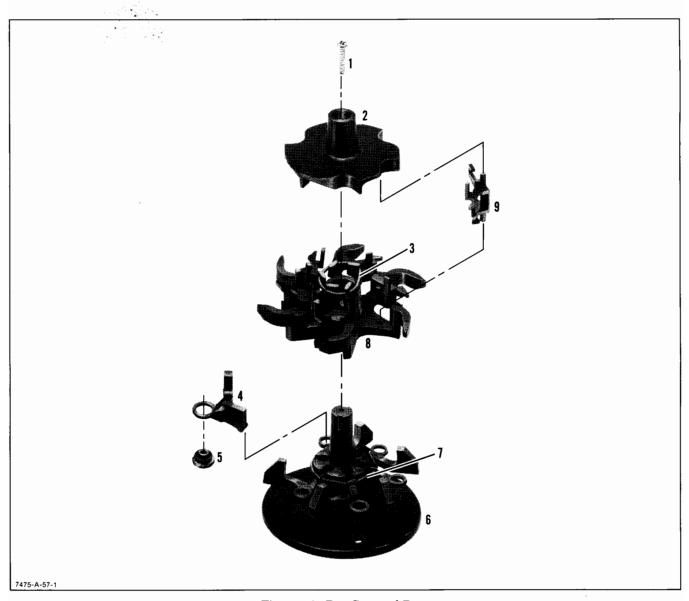


Figure 4-2. Pen Carousel Parts

Table 4-4. Parts List, Pen Carousel Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
1 2 3 4 5 6 7 8 9	0624-0591 5040-8661 1460-2034 5040-8658 07475-40002 5040-8657 1460-2106 5040-8659 5040-8660	861190825	1 1 1 6 6 6 1 1 1	SCREW-SELF TAPPING PLATE-CAROUSEL TOP SPRING-PAWL CAPPER-PEN BOOT-PEN HUB-CAROUSEL SPRING-CAPPER SPIDER-CAROUSEL PAWL-CAROUSEL	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	0624-0591 5040-8661 1460-2034 5040-8658 07475-40002 5040-8657 1460-2106 5040-8659 5040-8660

omputer

Table 4-6. Reference Designations and Abbreviations

REFERENCE DESIGNATIONS Aassembly E miscellaneous P electrical connector V electron AT..... attenuator; electrical part (movable portion); F fuse isolator: termination VR voltage B fan; motor FL..... filter Q.....transistor; regulator: BT.....battery H..... hardware SCR: breakdown C capacitor HY.....circulator triode thyristor diode CP.....coupler J..... electrical connector R resistor Wcable; RT..... thermistor CR diode; (stationary portion) transmission path; diode thyristor; varactor jack S.....switch wire DC directional coupler T transformer Krelay X.....socket DLdelay line Lcoil; TB..... terminal board Y crystal unit DS.....annunciator; inductor TC..... thermocouple (piezo-electric or M meter signaling device TP.....test point quartz) (audible or visual); MP..... miscellaneous U..... integrated circuit; Ztuned cavity; lamp; LED mechanical part tuned circuit microcircuit **ABBREVIATIONS** A ampere COEF.....coefficient ELECT.....electrolytic kg.....kilogram ENCAP.....encapsulated acalternating current COM.....common kHz.....kilohertz ACCESS accessory COMP composition $k\Omega$kilohm EXT.....external ADJ adjustment COMPL.....complete F farad kVkilovolt A/D....analog-to-digital CONN..... connector FET..... field-effect lbpound AF.....audio frequency CP.....cadmium plate transistor LC.....inductance-CRT..... cathode-ray tube F/F..... flip flop AFC..... automatic capacitance CTLcomplementary frequency control FHflat head LED..... light-emitting diode AGC..... automatic gain transistor logic FIL H..... fillister head LF.....low frequency CW.....continuous wave FM..... frequency LG.....long control AL.....aluminum cw.....clockwise modulation LHleft hand ALC.....automatic level cm centimetre FP..... front panel LIM limit D/A.....digital-to-analog FREQ frequency control LINlinear taper (used in parts list) AMamplitude FXD.....fixed dBdecibel modulation AMPL....amplifier dBmdecibel referred g.....gram lin.....linear to I mW GE..... germanium LK WASH lock washer APC..... automatic phase dcdirect current GHz gigahertz LO.....low; local oscillator control degdegree GL..... glass LOG.....logarithmic taper ASSYassembly (temperature interval) GRD ground(ed) (used in parts list) or difference H.....henry AUXauxiliary log......logarithm(ic) avgaverage °degree (plane angle) h..... hour LPF....low pass filter AWG..... American wire HET..... heterodyne LV....low voltage ° Cdegree Celsius (centigrade) HEX.....hexagonal m.....metre (distance) BAL balance ° Fdegree Fahrenheit HD.....head mA..... milliampere °K degree Kelvin HDW hardware BCD..... binary coded MAX.....maximum decimal DEPC deposited carbon HFhigh frequency $M\Omega$ megohm DET.....detector HG..... mercury BD board MEG..... meg (10⁶) BE CU..... beryllium diam diameter HIhigh (used in parts list) MET FLM metal film HP Hewlett-Packard DIA.....diameter copper HPF.....high pass filter BFO beat frequency (used in parts list) MET OX metallic oxide DIFF AMPLdifferential oscillator HR hour MF.....medium frequency; (used in parts list) BH binder head amplifier microfarad HVhigh voltage BKDN..... breakdown div division (used in parts list) MFR.....manufacturer BP..... bandpass DPDT..... double-pole, Hz Hertz BPF.....bandpass filter double-throw IC integrated circuit mg.....milligram BRSbrass DRdrive IDinside diameter MHz....megahertz BWO..... backward-wave DSB double sideband IF.....intermediate m H millihenry oscillator DTL diode transistor frequency mho.....mho CAL.....calibrate MIN....minimum logic IMPG..... impregnated DVM..... digital voltmeter ccw.....counter-clockwise ininch min.....minute (time) ECL emitter coupled logic INCD.....incandescent CERceramicminute CHAN.....channel EMFelectromotive INCL....include(s) (plane angle) MINAT.....miniature cm..... centimetre INP input force CMO cabinet mount only EDP.....electronic data INS insulation mm.....millimetre COAX..... coaxial processing INT....internal MOD modulator NOTE All abbreviations in the parts list will be in upper-case.

1-A-24-3

Table 4-6. Reference Designations and Abbreviations (Continued)

MOMr	
MOS п	
	iconductor
ms	
MTG	
MTR	
	ing device)
mV	
mVacr	
mVdcn	nillivolt, dc
mVpk mill	
mVp-p	
	ak-to-peak
mVrms mi	
m W	
MUX	
MY	
μ <u>Α</u> m	icroampere
μF	
μΗ	microhenry
μmho	.micromho
μs m	icrosecond
μ V	microvolt
μ Vac m	icrovolt, ac
μ Vdc m	icrovolt, dc
μ Vpk micr	ovoit, peak
μ Vp-p	microvolt,
μVrms mic	ak-to-peak
μW	
nAn	
NCno N/Cnorn	connection
NEG	
nF	
NI PL	
N/Onor	mally onen
NOM	nominal
NORM	normal
NPN negati	ve-nositive-
	negative
NPOnegat	ive-positive
zero (zero t	emperature
	coefficient)
NRFRnot rec	
	eplacement
NSRno	t separately
	replaceable
	•

ns nanosecond
$n\boldsymbol{W}nanowatt$
OBD order by description
ODoutside diameter
OHoval head
OP AMPL operational
amplifier
OPToption
OF I Option
OSC oscillator
OXoxide
oz ounce
$\Omega \dots \dots ohm$
D neak
Ppeak (used in parts list)
(used in parts list)
PAM pulse-amplitude
modulation
modulation PCprinted circuit
PCM pulse-code-
T CIVI pulse-code-
modulation; pulse-count
modulation
PDMpulse-duration
modulation pFpicofarad
nF nicofarad
PIV peak inverse voltage
pkpeak
PNP positive-negative-
positive
P/Opart of
POLY polystyrene
POLYpolystyrene PORCporcelain
POGporcelati
POS positive; position(s)
(used in parts list) POSNposition
POSN position
POT potentiometer
p-p peak-to-peak
PP peak-to-peak
(was dis mosts list)
(used in parts list)
PPMpulse-position
modulation;
parts per million PREAMPLpreamplifier
PREAMPLpreamplifier
PRF pulse-repetition
frequency
PRRpulse repetition rate
ps picosecond
PT point
PTMpulse-time
modulation
modulation

PWN	pulse-width
	modulation
PWV	modulation peak working
RC	vonage resistance
	capacitance
RECT	rectifier
	reference
	regulated
REPI	replaceable
RF	radio frequency
	radio frequency
14.	interference
RH	round head;
1011	right hand
DIC	resistance-
KLC	-inductance
	capacitance
D140	capacitance rack mount only
	oot-mean-square
	round
ROM re	ad only memory
R & P	rack and panel
RWV	. reverse working
	voltage
Sscat	tering parameter
s	second (time)
<i>"</i>	second
	(plane angle)
S-B	(plane angle) slow-blow (fuse)
(1	used in parts list)
SCRs	ilicon controlled
	rectifier; screw
SE	selenium
SECT	sections
SEMICON	semiconductor
	erhigh frequency
	silicon
	silver
	slide
SNR sign	nal-to-noise ratio
SPDT	single-pole,
O. D	double-throw
SPG	spring
	spring split ring
	spiit ring single-pole,
2521	
CCD	single-throw
22R	single sideband

	stainless steel
STL	steel
SQ	square
SWR stand	ling-wave ratio
SYNC	synchronize
T timed (s	low-blow fuse)
TA	tantalum
TC	temperature
	coefficient
TD	time delay
TERM	terminal
TFTthin	-film transistor
TGL	toggle
THD	thread
THRU	
T1	titanium
TOL	
TRIM	trimmer
TSTR	transistor
TTLtrans	
	logic micro (10 ⁻⁶)
U	micro (10 °)
(us	ed in parts list) microfarad
UF	microfarad
(us	ed in parts list)
UHF ultra	high frequency
UNREG	
V	voit
	voltampere
Vac	voltampere
Vac VAR	voltampere volts, ac variable
Vac VAR Vdc	voltampere volts, ac variable volts, dc
Vac VAR Vdcvol	voltamperevolts, acvariablevolts, dc ts, dc, working
VacVARVdcVdcvol	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list)
VacVARVdcvol (us Vpkvol	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s, peak-to-peak
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s, peak-to-peak volts, rms
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s, peak-to-peak volts, rms vacuum-tube
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s, peak-to-peak volts, rms vacuum-tube voltmeter
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s, peak-to-peak volts, rms vacuum-tube voltmeter volts, switched
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s, peak-to-peak volts, rms vacuum-tube voltmeter volts, switched watt
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s, peak-to-peak volts, rms vacuum-tube voltmeter volts, switched watt
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s. peak-to-peak volts, rms vacuum-tube voltmeter volts, switched watt with vorking inverse
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s. peak-to-peak s. peak-to-peak volts, rms vacuum-tube voltmeter volts, switched with vorking inverse voltage wirewound
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s. peak-to-peak volts, rms vacuum-tube voltmeter volts, switched watt with vorking inverse voltage wirewound wirthout
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s. peak-to-peak volts, rms vacuum-tube voltmeter volts, switched watt with vorking inverse voltage wirewound wirthout
Vac	voltampere volts, ac variable volts, dc ts, dc, working ed in parts list) volts, peak s. peak-to-peak s. peak-to-peak volts, rms vacuum-tube voltmeter volts, switched with vorking inverse voltage wirewound

NOTE

All abbreviations in the parts list will be in upper-case.

MULTIPLIERS

Abbreviation	Prefix	Multiple
T	tera	1012
G	giga	10°
M	mega	10 ⁶
k	kilo	10^{3}
da	deka	01
d	deci	10-1
c	centi	10^{-2}
m	milli	10-3
μ	micro	10-6
n	nano	10-9
p	pico	10-12
p f	femto	10-15
a	atto	10-18

1-A-25-3

Model 7475A Section V

SECTION V PRODUCT HISTORY

5-1. INTRODUCTION

5-2. This section describes the differences between earlier models of the HP 7475 and the latest version documented in this manual. These earlier models are identified by their serial prefix number, and the date codes on their printed-circuit assemblies (PCAs). For ease of reference this section is divided into two major topics; History of Serial Prefix Numbers and History of Printed Circuit Assemblies.

5-3. HISTORY OF ASSEMBLIES BY SERIAL PREFIX NUMBER

- 5-4. Table 5-1 is a quick-reference table that lists, by plotter serial prefix number, the assemblies that differ from those documented in this manual. Also referenced are Item Numbers under which these differences are described in this section.
- 5-5. Table 5-2 lists the assemblies that are described under each Item.
- 5-6. Knowing the serial prefix number of the plotter, the user can see in Table 5-1 which assemblies are documented in this section. In Table 5-2 the user can see if more than one change has been made to the assembly in question and which Items in this section to refer to.

Table 5-1. Assemblies by Plotter Serial Prefix Number

S/N PREFIX	ASSEMBLIES	ITEM
2325A	A1 Main PCA	See PCA History
	Chassis Assembly	5

NOTE

Assemblies designated with an asterisk (*) denote changes made during the plotter production cycle.

Table 5-2. Item Description

ITEM	ASSEMBLIES
5	Main Chassis
	Pinch Roller Arm (Left)

5-7. HISTORY OF PRINTED CIRCUIT ASSEMBLIES

- 5-8. Hewlett-Packard's printed-circuit assemblies have three major identification features:
 - a. Part Number. All PCAs having the same part number are directly interchangeable. If a PCA is revised in any way that makes it non-interchangeable with previously issued PCAs, a new part number is assigned to the revised PCA.
 - b. Revision Letter. This letter identifies the most recent revision to the etched circuit pattern. The original issue is identified with the letter 'A'. If the master artwork for a PCB is revised in order to alter performance or manufacture, the revision letter is changed to the next letter in the alphabetical sequence.

Section V Model 7475A

c. **Assembly Date Code.** The date code on the PCA is a four-digit number which identifies the assembly level. The first two digits represent the last two digits of the current year and are derived by subtracting 60 from the current year; the last two digits are the number of the week in that year, i.e. 2314 = fourteenth week in 1983. Any digits following a hyphen in the date code represent the division that manufactured the assembly.

5-9. Table 5-3 is a quick-reference table that lists PCAs by part number and date code. Listed next to the part number and date code of the PCAs are the Items located in this section that describe the differences between the PCA in question and the level of that PCA described in the main body of this manual.

PCA	DATE CODE	ITEM
A1 (07475-60101)	2314-11	1
A1 (07475-60102)	2314-11	2
A1 (07475-60101)	2420-11	3
A1 (07475-60102)	2420-11	4

ITEM 1

Date code 2314-11 is the date code on the original PCA installed in the plotter at the time of product introduction. Except for the following part numbers, PCAs having a date code of 2314-11 have the same components as those listed in Section IV.

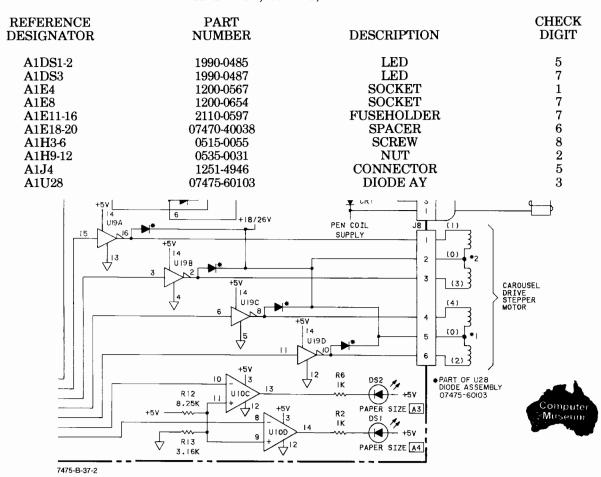
MAIN PCA, RS-232-C, OPTION 001

REFERENCE DESIGNATOR	PART NUMBER	DESCRIPTION	CHECK DIGIT
A1DS1-2	1990-0485	LED	5
A1DS3	1990-0487	LED	7
A1E4	1200-0567	SOCKET	1
A1E8	1200-0654	SOCKET	7
A1E11-16	2110-0597	FUSEHOLDER	7
A1E18-20	07470-40038	SPACER	6
A1H3-6	0515-0055	SCREW	8
A1H9-12	0535-0031	NUT	2
A1J4	1251-4946	CONNECTOR	5

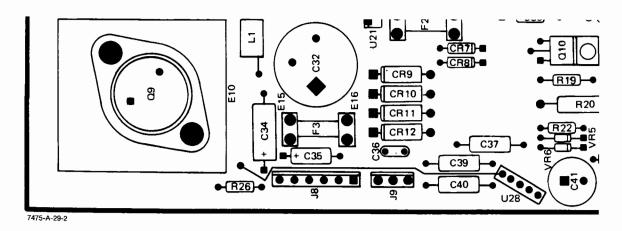
ITEM 2

Date code 2314-11 is the date code on the original PCA installed in the plotter at the time of product introduction. Except for the following part numbers, PCAs having a date code of 2314-11 have the same components as those listed in Section IV.

MAIN PCA, HP-IB, OPTION 002


REFERENCE DESIGNATOR	PART NUMBER	DESCRIPTION	CHECK DIGIT
A1DS1-2	1990-0485	LED	5
A1DS3	1990-0487	LED	7
A1E3	1200-0567	SOCKET	1
A1E6	1200-0654	SOCKET	7
A1E14-19	2110-0597	FUSEHOLDER	7
A1E21-23	07470-40038	SPACER	6
A1H3-6	0515-0055	SCREW	8
A1H9-12	0535-0031	NUT	2

Model 7475A Section V


ITEM 3

Date code 2420-11 introduced a design change that eliminated inductive voltage spikes in the motor drivers when the plotter was switched off. The part numbers that differ from those listed in Section IV; and the effect of these component differences on the schematic diagram and parts location figure in Section VI, are as follows:

MAIN PCA, RS-232-C, OPTION 001

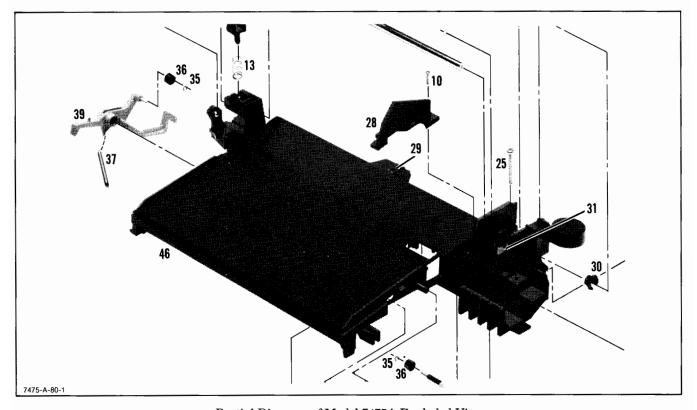
Partial View of RS-232-C Main PCA Option 001 Schematic Diagram (Date Code 2420-11)

Partial View of RS-232-C Main PCA Option 001 Parts Location Diagram (Date Code 2420-11)

Section V Model 7475A

ITEM 4

Date code 2420-11 introduced a design change that eliminated inductive voltage spikes in the motor drivers when the plotter was switched off. The part numbers that differ from those listed in Section IV are:


MAIN PCA, HP-IB, OPTION 002

PART NUMBER	DESCRIPTION	CHECK DIGIT
1990-0485	LED	5
1990-0487	LED	7
1200-0567	SOCKET	1
1200-0654	SOCKET	7
2110-0597	FUSEHOLDER	7
07470-40038	SPACER	6
0515-0055	SCREW	8
0535-0031	NUT	2
	NUMBER 1990-0485 1990-0487 1200-0567 1200-0654 2110-0597 07470-40038 0515-0055	NUMBER DESCRIPTION 1990-0485 LED 1990-0487 LED 1200-0567 SOCKET 1200-0654 SOCKET 2110-0597 FUSEHOLDER 07470-40038 SPACER 0515-0055 SCREW

ITEM 5

Serial number prefix 2325A is the original serial number prefix of the plotter at the time of product introduction. Except for the following part numbers, all plotters with the serial number prefix 2325A have the same parts as those listed in Section IV of this manual.

REFERENCE DESIGNATOR	PART NUMBER	DESCRIPTION	CHECK DIGIT
16	1460-2023	SPRING-SILVER 2.54 CM-L	8
	1460-2029	SPRING-COPPER 3.0 CM-L	4
	1460-2030	SPRING-CHROME 3.33 CM-L	7
39	5040-8666	ARM-PINCH ROLLER (LEFT)	1
46	5040-8667	CHASSIS	2

Partial Diagram of Model 7475A Exploded View

Model 7475A Section VI

SECTION VI SERVICE

6-1. INTRODUCTION

6-2. This section contains information needed for maintenance and repair of the Model 7475A, including:

Circuit Description
Troubleshooting Information
Parts Removal and Replacement
Cleaning
Schematic Diagrams
Component Location Figures

6-3. SIMPLIFIED THEORY OF OPERATION

6-4. The Model 7475A uses microprocessor-based logic to convert digital instructions into a graphic plot. The microprocessor receives instructions from either an internal ROM program or an external controller through the I/O (input/output) circuits. It then issues data to the pen drive and paper drive motor servo systems and the pen down circuit to produce the plot. Figure 6-1 is a simplified block diagram of the 7475A plotter.

- 6-5. The two drive motors are reversible dc motors. Encoders on each motor transmit rotation data back to their respective servo IC. One motor drives grit wheels which move the plotting medium, while the other motor moves the pen across the plotting surface.
- 6-6. There are two optional I/O (input/output) circuits available for the Model 7475A. Option 001 is the RS-232-C/CCITT V.24 serial interface. Option 002 is the HP-IB (Hewlett-Packard Interface Bus) parallel data interface which is compatible with IEEE standard 488-1978.

6-7. RS-232-C/CCITT V.24 INTERFACE CIRCUIT (Option 001)

6-8. The Option 001 I/O (Input/Output) is an asynchronous full-duplex bit-serial interface for hardwired connection to a computer or terminal. Interface connections are shown on the schematic diagram at the end of this section. This interface is compatible with EIA Standard RS-232-C and with CCITT V.24. Input and output are controlled in the 7475A by the Asynchronous

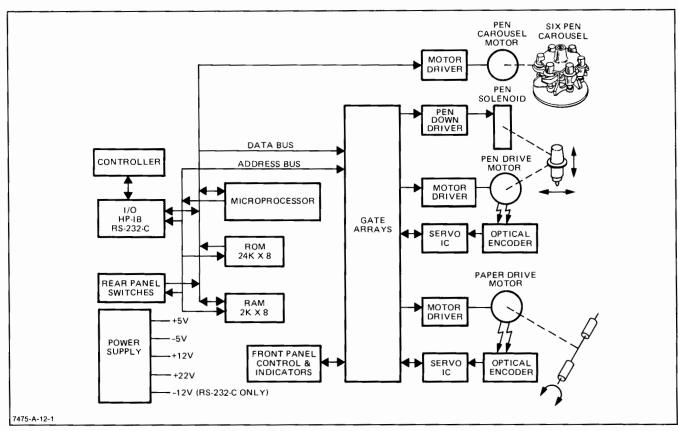


Figure 6-1. 7475A Simplified Block Diagram

Communication Information Adapter (ACIA) U13, and 2 multiplexers U12 and U27. See Figure 6-2 and 6-24.

- 6-9. DATA INPUT AND OUTPUT CIRCUITS. Because signals within the 7475A are positive-true TTL levels, inverting line drivers and receivers, U9, U11, and U26, are used to convert the logic and voltage between the levels required by the interface system (shown in Table 6-1) and the internal levels. Figure 6-2 is a diagram of the I/O circuits and the ACIA.
- 6-10. ACIA. The logic level on the Read/Write input controls the direction of data flow through the data bus interface. When the RS (Register Select) input is high, the R/W input selects either the receive or transmit data register. When RS is low, the control/status registers are selected. The 1 MHz signal at the E input clocks data in and out of the ACIA on the data bus (D0-D7) and the RX/TX clock (Baud Rate Clock) clocks data in and out on the RXD (Received Data) and TXD (Transmitted Data) lines.
- 6-11. MULTIPLEXER U12. When the address line (EIOO) is high, the 7475A transmitted data goes out on the Transmitted Data line (pin 2). The Secondary Transmitted Data line (pin 14) is held at a negative voltage. When EIOO is low, information on the Secondary Received Data line is retransmitted on the Transmitted Data line (pin 2), and the 7475A transmitted data goes out on the Secondary Transmitted Data line (pin 14).
- 6-12. MULTIPLEXER U27. When the address line (EIO3) is low and chip select (CS) from U6, gate array B, is low, three control lines are passed onto the data bus. The functions of these control lines are as follows:
 - a. DATA SET READY (DSR) Activated by the modem to tell the plotter that the modem is operational.
 - b. CLEAR TO SEND (CTS) Activated by the modem to tell the plotter that it is ready to receive and re-transmit data from the terminal.
 - DATA TERMINAL READY (DTR) Activated by the plotter to tell the modem that the terminal is operational.
- 6-13. BAUD RATE. The internal baud rate (transmit/receive) clock signal is derived in U5, Gate Array A, from the 4 MHz clock signal. The baud rate clock frequency is sixteen times the desired baud rate. Baud rate

may be selected by means of the rear-panel switches, or an external clock signal may be used.

6-14. HP-IB INTERFACE (Option 002)

- 6-15. HP-IB interface connections are shown on the schematic diagram at the end of this section. Input/Output voltage levels must meet TTL requirements (low =-0.8 V; high =-2.0 V). All signals are active low (true). Figure 6-3 is a block diagram of the HP-IB Interface Circuits.
- 6-16. All data and control signals to and from the HP-IB go through U10 and U11, the bus transceivers, which are enabled to transmit or to receive by U12, the interface adapter in response to HP-IB commands. The interface adapter automatically handles all handshake requirements on the HP-IB. When the plotter power is on, the bus transceiver inputs are high impedance to prevent loading the data lines. When the plotter power is off, the bus transceivers present an open circuit to all data lines; consequently, the plotter does not interfere with other HP-IB operations.
- 6-17. A 16 line bus is used to carry data and control information and is divided into three sets of lines.
 - a. Data bus 8 signal lines DIO1 through DIO8.
 - b. Data transfer control 3 signal lines (Handshake).
 - Interface management 5 signal lines.
- 6-18. The data bus transfers 8-bit data or control words between the controller and the plotter. The words are in bit parallel byte serial form. The words are transferred bi-directionally and asynchronously.
- 6-19. The three data transfer control lines, or "handshake lines" are used to control the transfer of information on the data bus. These lines are identified as follows:
 - DATA VALID (DAV) Used to indicate that valid information is available on the data lines.
 - NOT READY FOR DATA (NRFD) Used to indicate the readiness of the Plotter to accept information.
 - c. NOT DATA ACCEPTED (NDAC) Used to indicate the acceptance of information by the Plotter.

Table 6-1. RS-232-C/CCITT V.24 Interface Signal Levels

NOTATION	INTERCHANGE VOLTAGE		
NOTATION	NEGATIVE (More Negative than -3 V)	POSITIVE (More Positive than +3 V)	
Binary State	1	0	
Signal Condition	Marking	Spacing	
Function	off	on	

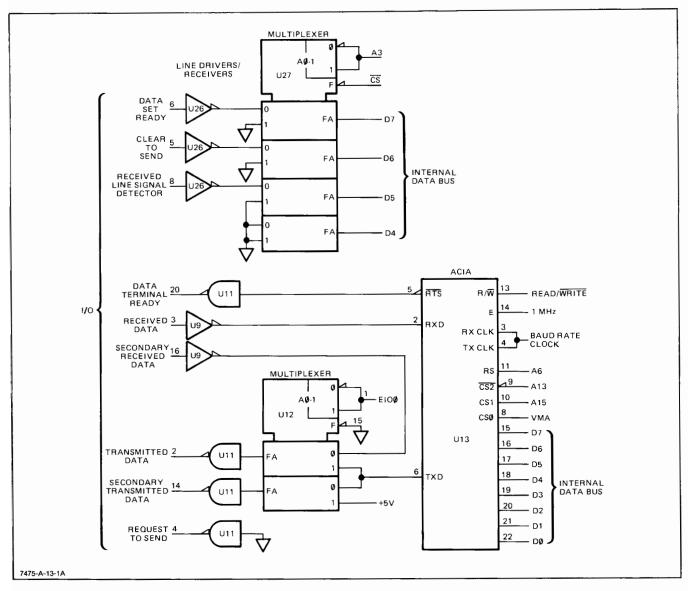


Figure 6-2. RS-232-C/CCITT V.24 Interface Circuits

- 6-20. The five interface management lines are used to provide an orderly flow of information accross the interface bus. The lines are identified as follows:
 - a. ATTENTION (ATN) Used by the controller to specify how data on the DIO signal lines are to be interpreted, (command, data, or parallel poll response) and which devices on the bus must respond to the data.
 - SERVICE REQUEST (SRQ) Used to indicate that the plotter needs attention and to request an interruption of the current sequence of events.
 - INTERFACE CLEAR (IFC) Used by the controller to place the bus in a known quiescent condition.
 - d. END OR IDENTIFY (EOI) Used by a talker to indicate the end of a multiple-byte transfer sequence or, in conjunction with ATN to execute a polling sequence.

- REMOTE ENABLE (REN) Used to enable a remote control mode.
- 6-21. Positive true logic is used within the plotter circuitry. Therefore a positive false NRFD on the HP-IB bus will be converted to a positive true RFD within the plotter.
- 6-22. When the HP-IB interface IC U12 receives a RESET pulse from the microprocessor U13 it sets the DAC and RFD lines passive true, indicating the ready condition. The controller will set ATN true indicating a bus message or address, and put the device address on data lines DIO1 through DIO5. The interface chip compares the address on the bus with the setting of the HP-IB address switch read at power up. If the address is valid, the HP-IB chip will then decode the lines DIO6 and DIO7, to determine if the 7475A is being addressed as an acceptor (listener) or source (talker). When the controller sends a valid address with DIO6 true and DIO7 false, the plotter is being addressed as a listener. When the controller is



Figure 6-3. HP-IB Interface Circuits and Handshake Timing Diagram

Model 7475A Section VI

ready to transfer data on the bus it sends ATN false and EOI false. Refer to Figure 6-3 for the handshake timing. When the plotter receives these two signals it starts the handshake sequence:

- a. The plotter indicates that it is ready to accept data by setting RFD true and DAC false.
- After RFD has gone true the controller places a data byte on the eight-data line and sets DAV true.
- After the DAV line has gone true, the plotter sets the RFD false, accepts the data and sets DAC true.
- d. After the DAC line has gone true, the controller can set DAV false again and take the data off the line. When DAV goes false, the plotter sets DAC false.
- When the plotter can accept a new byte of data it puts RFD true and the sequence is ready to start from step a.
- 6-23. When the ATN input is true, the plotter compares the data on the HP-IB DIO lines to the address set by the rear panel address switches, and responds when addressed by the bus controller to listen or talk. When the ATN input is false and the plotter is addressed to listen, the interface adapter accepts and processes the data on the DIO lines.
- 6-24. The interface adapter is enabled by a low true Chip Select (CS) signal from Gate Array A. When the interface adapter is enabled and its Read/Write (R/W) input is high, data can be read from the adapter, and when the R/W input is low, data can be written by the processor into the adapter. The R/W input and the three register selection inputs, RS0-RS2, select the proper register in the interface adapter.

NOTE

In the following theory Option 001 designators are listed first. Option 002 (HP-IB) plotter components are in parenthesis.

6-25. MICROPROCESSOR CIRCUIT

- 6-26. The 6802 microprocessor U14 (U13) used in the 7475A has an internal clock circuit controlled by an external 4 MHz crystal. In addition to 4 MHz, the clock circuit has a 1 MHz output which is used to clock several other ICs.
- 6-27. ADDRESS. The processor outputs a 16-bit address. A high VMA (Valid Memory Address) output indicates that the address is valid.
- 6-28. RESET. An external RC circuit R18 (R16) and C27 (C20) provides a reset delay signal to the processor and other circuits at the time power is switched on.

6-29. READ ONLY MEMORY CIRCUIT

6-30. The Read Only Memory (ROM) U15 (U14) and U16 (U15) contains 24K of fixed routines required for plotter operation. Each ROM is enabled by address lines from

the microprocessor. Because the parallel data outputs are 3-state, they are effectively disconnected from the data bus while the ROM is not enabled.

6-31. RANDOM ACCESS MEMORY CIRCUIT

6-32. The Random Access Memory (RAM) U17 (U16) provides 2K of storage for current plotter instructions. The RAM is enabled by a signal from Gate Array A, and directed to read or write by the Read/Write (R/W) signal from the microprocessor. Data bytes are clocked in and out of the RAM by the 1 MHz signal from the microprocessor.

6-33. GATE ARRAYS A AND B

6-34. The two gate arrays U5 and U6 contain all of the circuitry needed to support the logic circuits and driver section of the electronics. The circuit functions for gate array A include the baud rate generator, interrupt timer, servo control and status ports, memory decode, pen drive motor control, and servo gain adjust. The circuit functions in gate array B include the pen solenoid pulse width modulator, power supply voltage measurement circuit, front panel input ports, memory decode, paper drives motor control, and servo gain adjust. Some of these functions will be discussed in later circuit descriptions.

6-35. PEN CAROUSEL

6-36. The pen carousel is driven by a reversible, dual coil stepper motor. To drive the motor, the STEPPER CLOCK (STCK) from U5 and READ/WRITE (R/W) from the microprocessor are enabled to clock four (4) data lines through the gating flip-flops U18 (U17) to the motor drivers U19 (U18) and onto the motor coils. The resulting quadrature waveforms, shown in Figure 6-4 (A & B), drive the motor either clockwise (A) or counterclockwise (B). When at rest all four motor coils are open, i.e., all four lines are at logic 0.

6-37. MOTOR SERVO SYSTEMS

6-38. Two identical servo systems are used to drive the the motors. Figure 6-5 is a block diagram of a motor servo system.

NOTE

The axes on the 7475A are referred to as the pen drive axis and the paper drive axis instead of X and Y. This is due to the fact that the axes will change with a change in paper size. If A/A4 size paper is loaded, longest edge across the platen, the pen drive becomes the X-axis and the paper drive becomes the Y-axis. If B/A3 size is loaded, the pen drive will become the Y-axis and the paper drive will become the X-axis. On the schematic diagrams for these circuits X and Y are used to designate logic functions which control the paper drive and pen drive movements respectively. Since these designations become variable with changes in paper size, they should be used for reference purposes only.

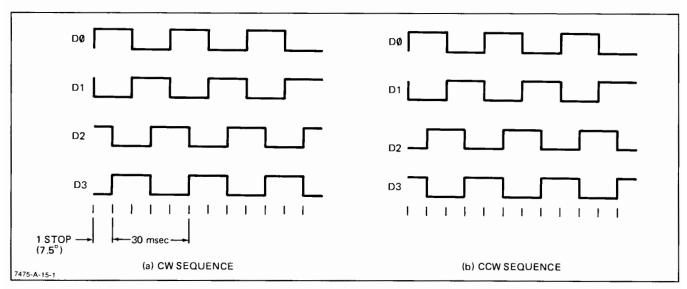


Figure 6-4. Quadrature Waveforms

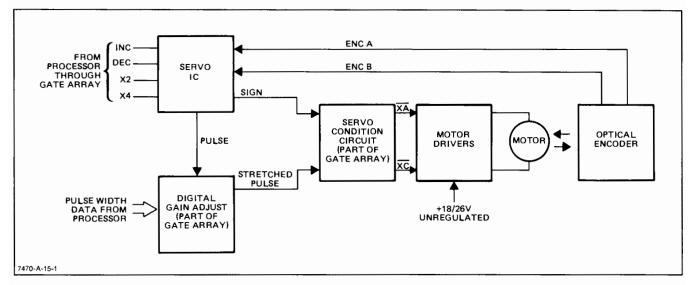


Figure 6-5. Motor Servo System Block Diagram

6-39. Digital move commands are generated and sent by the microprocessor through the gate array U5 to the servo chips U3 and U4. The servo chips provide the interface to the microprocessor, decodes the encoder signals, sums position errors, estimates velocity and sums it, and transforms the servo error to a pulse-widthmodulated output. The servo chips output the pulse-widthmodulated signal back to the gate array where the motor drive pulses are stretched to the proper width in the digital gain circuit. The servo conditioning circuit, also in the gate array, then passes the pulses on to the motor drivers through either the XA or XC line, depending on the direction of rotation indicated by the sign voltage from the servo chip. As the mechanical system moves, optical encoders mounted on the shaft of each motor send back digital pulses to the servo chip to close the servo loop.

6-40. To maintain a consistant and predictable movement, it is essential to control the amount of power applied to the motor by each pulse. The pulse amplitude depends on the actual voltage output of the motor drive power supply. The pulse width is modified to compensate for pulse amplitude so that the pulse represents the proper amount of power.

6-41. MOTOR SUPPLY SENSOR CIRCUIT

6-42. The power supply for the drive motors is unregulated. For the gate array logic to know how much to stretch the servo chip pulse width, the microprocessor must know the level of unregulated voltage supplied to the motors. The voltage sensing circuit uses comparator U10 (U9) to provide single bit analog to digital conversion at intervals of approximately five seconds. The resulting digital information is used to regulate power through the motor drive circuits.

6-43. A divider R16 (R14) and R17 (R15) places one-tenth of the power supply voltage at the non-inverting input to the comparator. Pulses of known value from U6 Gate Array B are applied to an integrating capacitor C11 (C8) at the inverting input to the comparator. The pulse

Model 7475A Section VI

width is increased until the comparator output inverts. This pulse width information is used by the microprocessor to regulate power to the motor drive circuits.

6-44. MOTOR CURRENT SENSOR CIRCUIT

6-45. Motor drive current flows through a $0.1~\Omega$ resistor, R7. The resulting voltage developed across this resistor is applied to the inverting input of the comparator amplifier U10 (U9). The other input to the amplifier is fixed at approximately +0.315~V. Consequently, if motor current reaches about 3.15~A, the comparator output changes from high to low, indicating excessive motor drive current.

6-46. PEN DOWN CIRCUIT

6-47. When the microprocessor receives a pen down instruction, a 15.6 kHz pulse signal is issued to the pen down driver U1. Because more power is required to activate the pen solenoid than is needed to hold it after activation, the pulse is widened for a short period of time to provide this extra power. The duration of the pulse-width-modulated signal is controlled by the gate array U6 as a function of the 18/26 Vdc unregulated supply voltage. An air damper slows the descent of the pen to protect the pen tip.

6-48. POWER SUPPLIES

6-49. Four major voltages are generated by the 7475A circuitry. Low current linear supplies provide the $+12~\rm V$ and $-5~\rm V$ required for the servo IC's. The $+5~\rm V$ supply provides the power for the remaining logic circuitry. Regulation for the $+5~\rm V$ linear supply is provided by U21 (U20). The fourth supply is the unregulated $18/26~\rm V$ supplied to the main drive motors and the pen carousel drive motor. The $18/26~\rm V$ supply can be unregulated because of the voltage sensing and servo gain adjust circuitry described in earlier paragraphs. In addition to these supplies, a $-12~\rm V$ source is provided on the RS-232-C (Option 001) version. This source is used in conjunction with the $+12~\rm V$ supply to operate the I/O (input/output) line drivers.

6-50. RECOMMENDED TEST EQUIPMENT

6-51. Test equipment needed to maintain the 7475A is listed in Table 6-2. Models other than those listed may

be used if their specifications equal or exceed those of the models listed.

6-52. TROUBLESHOOTING

6-53. If the plotter does not operate properly, make sure the input/output connector is seated correctly. If this is not the problem, remove the top case as instructed in **Top Case Removal**, and make sure all cables are secure in their connectors.

6-54. EXCHANGE PRINTED CIRCUIT ASSEMBLY

6-55. The printed circuit assembly is available on an exchange basis; that is, a factory-repaired and tested assembly may be ordered and the defective assembly returned for credit. Refer to Section IV for ordering instructions and the exchange part number for your particular assembly. Because of the complexity of the circuits, it is recommended that you replace and return a defective printed circuit assembly to Hewlett-Packard rather than attempt repair.

6-56. DRIVE MOTORS AND PEN SOLENOID

6-57. The drive motor/encoder assemblies and the pen solenoid are not repairable. Motor and encoder cables are replaceable. The motor cable (twisted pair) is P/N 07470-60016. The encoder (flat) cable is P/N 8128-4027.

WARNING

Maintenance described herein is performed with power applied to the plotter and the top case removed. Such maintenance should be performed only by service-trained personnel who are aware of the hazards involved (for example, fire and electrical shock). Where maintenance can be performed without power applied, the line cord should be disconnected.

Table 6-2. Recommended Test Equipment

ТҮРЕ	RECOMMENDED MODEL
Computer/controller	HP Model 85 Personal Computer with the appropriate interface:
	HP 82937A HP-IB Parallel Interface HP 82939A RS-232-C Interface and HP 8120-3258 RS-232-C Interface cable
Rom Drawer	HP 82936A
I/O Rom	HP 00085-15003
Digital Multimeter	HP 3465A
Oscilloscope	HP 1740A
Optical Comparator	B&L 81-34-35

6-58. TROUBLESHOOTING TABLE

6-59. Table 6-3 lists trouble symptoms with possible causes and procedures.

6-60. TEST A

6-61. This test exercises:

Both motor drive circuits Both motors and encoders The servo chips Error light circuit Gate arrays Microprocessor ROM

- a. Load a sheet of paper.
- Manually move the pen carriage near the center of its travel.
- Hold the ENTER pushbutton down while setting the LINE switch to ON. The ERROR light should remain ON.
- d. Press the ← cursor pushbutton.
 - ERROR light should turn ON and OFF continuously (approximately one second for each state).
 - 2. Pen carriage should move left and right about 6.4 mm (0.25 in.) continuously.

3. Paper should move back and forth about 6.4 mm (0.25 in.) continuously.

NOTE

Test may be stopped by pressing ENTER and resumed by pressing -. Plotter will not operate in any other mode until power has been turned OFF and ON.

6-62. TEST B

- 6-63. This test helps to isolate problems to motors/encoders or logic circuits when a failure is accompanied by the ERROR light flashing ON/OFF at about one second per cycle. An oscilloscope is required.
 - a. Disconnect the interface cable for this test.
 - b. Hold down each of the four cursor directional pushbuttons, one at a time. If a control stops the ERROR light from flashing (stays either ON or OFF while the button is held down) the failure is associated with one of the following general areas.

† - X saturation line	Paper Drive
↓ — X error line	Faper Drive
\leftarrow — Y saturation line	Pen Drive
→ — Y error line	Pen Drive

Table 6-3. Troubleshooting

SYMPTOMS	POSSIBLE CAUSES/PROCEDURES
Does not respond to any front- panel controls. ERROR light is OFF with PAPER lever in LOAD position.	Rear-panel line fuse (see Table 1-3). Power supplies. Check voltages and power supply fuses on PCA. 4 MHz clock Gate Array B
Responds to front-panel controls but not to external controller.	I/O connector not seated properly (may produce an error indication at controller). Test I/O circuits by sending: "SP1;SP2" from controller.
Does not operate properly. ERROR light flashes (PAPER lever in HOLD) about 1 second per ON/OFF cycle.	Go to Test B in this section.
Pen up/down does not operate.	Check fuse (A1F2) and pen supply voltage. Check solenoid continuity.
Paper slips while plotting.	Pinchroller worn. Replace both pinchrollers. Pinchroller arm spring loose or broken.
Diagonal lines not straight: Especially near horizontal lines Especially near vertical lines	Defective pen drive motor/encoder assembly Defective paper drive motor/encoder assembly Deposits on gritwheels, pinchrollers or slider rod. Clean slider rod and pinch- rollers with a dry wiper.

Model 7475A Section VI

- Remove the top case as instructed in Top Case Removal.
- d. Connect the power cord. Hold the ENTER pushbutton down while setting the LINE switch to ON.
- e. Press the | pushbutton.
- f. Disconnect (from the printed circuit assembly) the motor drive cable (twisted pair) indicated by the results of step b.
- g. Use an oscilloscope to look at the drive signal at the connector. This should be a series of narrow pulses. See Figure 6-6. If not, the problem is in the motor drive circuit, servo IC, gate array, or the microprocessor.
- h. If the signal in step g. is correct, monitor the signal at pin 4 of the encoder cable (with the cable connected to the PCA) while rotating the motor manually. This should produce pulses varying with the speed of motor rotation. If not, the encoder is defective. Replace the motor/encoder assembly. If pulses are present, the problem is probably in the servo IC.

NOTE

Plotter will not operate in any other mode until power has been turned OFF and ON.

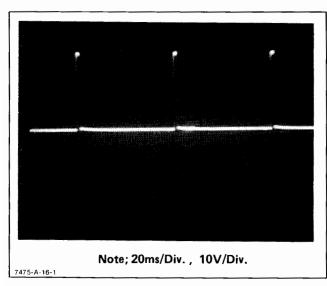


Figure 6-6. Drive Signal Pulses

6-64. PART REMOVAL AND REPLACEMENT

NOTE

All screws in the 7475A are metric sizes except the No. 3 self-tapping screws securing the pen carousel housing and the pen drop shield.

6-65. TOP CASE REMOVAL

 Set the LINE switch of OFF (O) and disconnect the power cord and interface cable. Remove the screws at the rear of the plotter. See Figure 6-7.

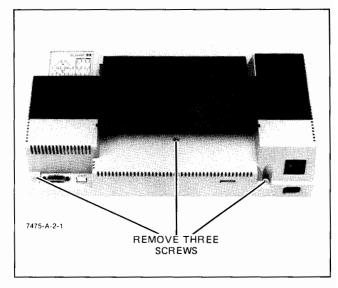


Figure 6-7. Top Case Removal

 Lift the rear of the top case, then the front will release from the base.

NOTE

When replacing the top case, make sure the PAPER LOAD/HOLD lever extends through the case and the tabs inside the front align properly above and below the base plate.

6-66. PEN CAROUSEL HOUSING REMOVAL

- Remove the top case as described in the preceeding paragraph.
- Disconnect the pen carousel cable from J8 on the main printed circuit assembly as shown in Figure 6-8.

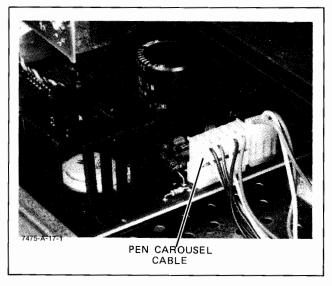


Figure 6-8. Pen Carousel Cable

 Remove the screw that secures the pen carousel housing to the chassis assembly. See Figure 6-9.

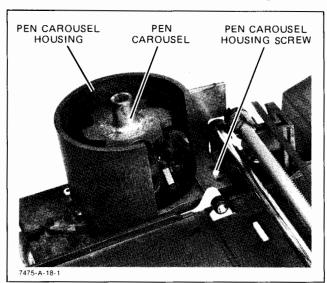


Figure 6-9. Pen Carousel Housing

- d. Tip the pen carousel housing forward and lift straight up being careful not to catch the cable connector on the chassis assembly.
- e. To reassemble, reverse steps a. through d.

6-67. PAPER DRIVE MOTOR ASSEMBLY REMOVAL

a. Remove the top case. Refer to **Top Case Removal**.

CAUTION

Do not remove the encoder printed circuit assembly or the drive coupler from the motor. The entire unit must be assembled and calibrated at the factory.

- Disconnect the paper drive motor cable (twisted pair) from J3 and the flat encoder cable from J1 on the main printed circuit assembly. See Figure 6-10.
- c. Remove the pen drop shield. See Figure 6-11.
- d. Loosen the motor clamp and remove the motor from its mounting. See Figure 6-11.
- e. When replacing the motor, make sure that the rubber O-rings on the drive shaft coupler and the motor shaft coupler fit inside the grooves of the coupler ring, and the boss (key) on the underside of the motor casting fits into the corresponding hole in the chassis. See Figure 6-12.
- f. Make sure the pen carriage slider rod is all the way to the left, then replace the motor clamp. The arm on the clamp should hold the slider rod to the left. Tighten the clamp screw securely.
- g. Loosen the clamping screw in the paper drive shaft coupler just enough to allow the coupler to

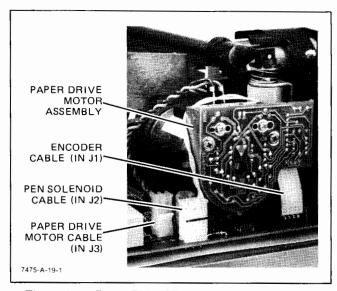


Figure 6-10. Paper Drive Motor and Solenoid Cables

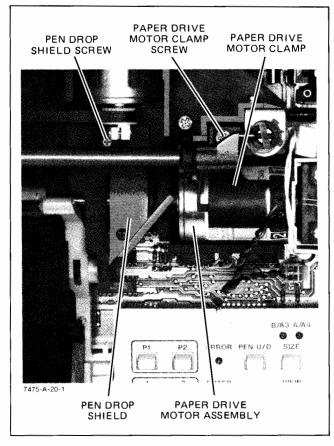


Figure 6-11. Paper Drive Motor Clamp and Pen Drop Shield

slide on the shaft. Make sure the nut remains in the coupler.

h. Hold the drive shaft to the left by pushing (with a finger) on the left gritwheel, and push the drive shaft coupler to the right (with another finger) so that the coupler parts fit together snugly. Tighten the shaft coupler clamping screw securely.

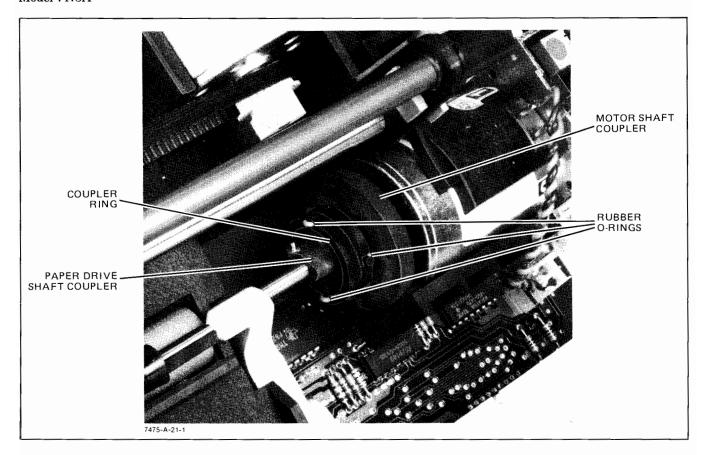


Figure 6-12. Paper Drive Coupler Parts

 Reconnect the cables to the PCA. To prevent electrical interference, ensure the motor wires are intertwined up to the connector and fitted away from the encoder assembly.

6-68. PEN SOLENOID

- Remove the top case. Refer to Top Case Removal.
- b. Loosen the paper drive motor clamp enough to slide the motor to the right about 2 cm (3/4 in.).
 See Figure 6-11. (Lift the right end of the motor slightly to release the motor from the chassis.)
- c. Disconnect the solenoid cable from J2 on the printed circuit assembly. See Figure 6-10.
- d. Loosen the solenoid mounting screw enough to allow removal of the solenoid. See Figure 6-13.
- e. When replacing the motor, make sure that the Orings on the drive shaft coupler and the motor shaft coupler fit inside the grooves of the coupler ring, and the boss (key) on the underside of the motor casting fits into the corresponding hole in the chassis. See Figure 6-12.
- f. Make sure the pen carriage slider rod is all the way to the left, then replace the motor clamp. The arm on the clamp should hold the slider rod to the left. Tighten the clamp screw securely.
- g. Loosen the clamping screw in the paper drive shaft coupler just enough to allow the coupler to

- slide on the shaft. Make sure the nut remains in the coupler.
- h. Hold the drive shaft to the left by pushing (with a finger) on the left gritwheel, and push the drive shaft coupler to the right (with another finger) so that the coupler parts fit together snugly. Tighten the shaft coupler clamping screw securely.

6-69. PEN DRIVE MOTOR AND BELT

6-70. To remove the pen drive motor and belt, proceed as follows:

Remove the top case. Refer to Top Case Removal.

CAUTION

Do not remove the encoder printed circuit assembly or drive pulley from the motor. The entire assembly must be assembled and calibrated at the factory.

- b. Disconnect the pen drive motor cable (twisted pair) from J5 and the flat encoder cable from J6 on the main printed circuit assembly. See Figure 6-13.
- c. Remove the belt tensioner by pressing downward on the tensioner and sliding the tang at the bottom out of the slot in the chassis. See Figure 6-14.

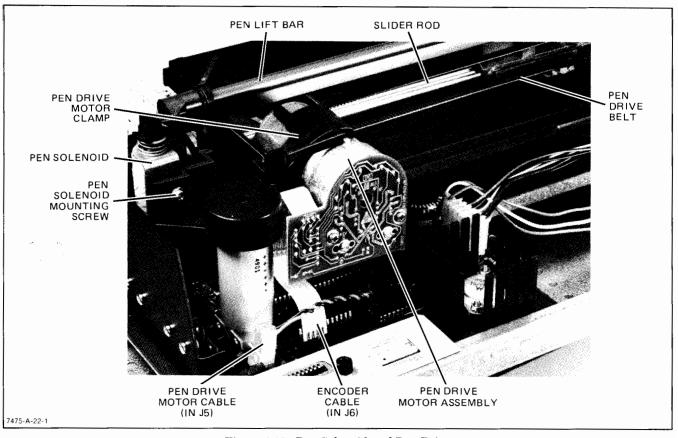


Figure 6-13. Pen Solenoid and Pen Drive

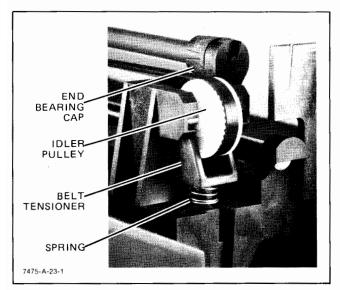


Figure 6-14. Pen Drive Belt Tensioner

- d. Loosen the pen drive motor clamp and remove the motor. See Figure 6-13.
- e. To remove the belt, slide it from the pen carriage. See Figure 6-15.
- f. Loosen the pen solenoid mounting screw shown in Figure 6-13. Slide the solenoid to the right and remove the armature and spring.
- g. Slide the pen lift bar to the right just far enough to allow removal of the belt.

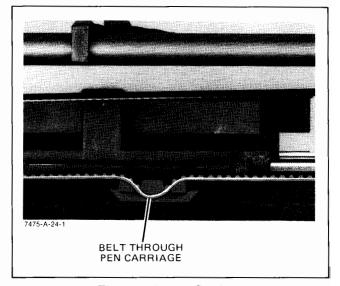


Figure 6-15. Pen Carriage

- 6-71. To replace the belt and motor, proceed as follows:
 - Replace the belt in position and replace the pen lift bar.
 - Replace the solenoid spring and armature and secure the solenoid back into place.
 - c. Slide the belt into the pen carriage. See Figure 6-15.
 - d. Place the idler pulley in position.

- e. Slide the pen drive motor into place and tighten the clamp. (A boss on the side of the motor casting must fit into a notch in the chassis.)
- f. Place the belt over the drive pulley.
- g. Replace the belt tensioner and spring. Move the pen carriage from side to side and make sure the belt and pulleys are properly aligned.
- h. Connect the motor and encoder cables to the main printed circuit assembly. To prevent electrical interference, ensure the motor wires are intertwined up to the connector and fitted away from the encoder assembly.
- Replace the top case, making sure the PAPER LOAD/HOLD lever extends through the case and the tabs inside the front of the case align properly above and below the base plate.
- 6-72. PEN CARRIAGE, PENHOLDER, AND DAMPER REMOVAL
- 6-73. To remove the pen carriage, penholder, and damper, proceed as follows:
 - a. Remove the top case. Refer to Top Case Removal.
 - Remove the paper drive motor. Refer to Paper Drive Motor Assembly Removal.
 - Remove the pen solenoid. Refer to Pen Solenoid Removal.
 - d. Remove the pen drive motor. Refer to Pen Drive Motor and Belt Removal, steps b., c., and d.
 - e. Slide the belt from the pen carriage and move the pen carriage to the left. See Figure 6-15.

CAUTION

Two springs will be released during the next two steps—the pen down spring and a preload spring on the slider rod between the carriage and penholder parts. Proceed carefully.

- f. Remove the end bearing cap while sliding the pen lift bar to the right and out of the carriage assembly. See Figure 6-14. (To replace the end cap on the lift bar, merely slide the cap onto the bar.)
- g. Move the slider rod to the right just far enough to release the left end of the rod from its mounting. See Figure 6-13. Slide the rod to the left and out of the carriage/penholder assembly.

- The plastic damper is merely pressed into the carriage and penholder parts. Remove carefully.
- 6-74. To reassemble, proceed as follows:
 - a. Carefully replace the damper.
 - b. Place the pen down and preload springs into position and hold the parts together while inserting the slider rod from the left. Make sure the preload spring is positioned over the rod properly so that it does not drag on the slider rod.
 - c. Replace the slider rod in the chassis.
 - d. Replace the pen lift bar.

- e. Replace the pen solenoid.
- f. Replace the paper drive motor, making sure that the rubber O-rings on the drive shaft coupler and the motor shaft coupler fit inside the grooves of the coupler ring, and the boss (key) on the under side of the motor casting fits into the corresponding hole in the chassis. See Figure 6-12.
- g. Make sure the pen carriage slider rod is all the way to the left, then replace the motor clamp. The arm on the clamp should hold the slider rod to the left. Tighten the clamp screw securely.
- h. Loosen the clamping screw in the paper drive shaft coupler just enough to allow the coupler to slide on the shaft. Make sure the nut remains in the coupler.
- i. Hold the drive shaft to the left by pushing (with a finger) on the left gritwheel, and push the drive shaft coupler to the right (with another finger) so that the coupler parts fit together snugly. Tighten the shaft coupler clamping screw securely.
- Reconnect the cables to the PCA.
- k. Replace the pen drive motor and belt as instructed in Pen Drive Motor and Belt.
- l. Measure the pen down force by using a gram gauge. To do this, it is necessary to apply power to the plotter, and select and lower a pen onto the platten. Place the tip of the gram gauge under the lip of the pen body and check that the pen just starts to lift with 19 ± 10 grams. See Figure 6-16. If the pen does not start to rise within 10 to 29 grams, replace the pen down spring. Refer to Table 4-3 for part number.
- m. Replace the top case, making sure the PAPER LOAD/HOLD lever extends through the case and the tabs inside the front of the case are aligned properly above and below the base plate.

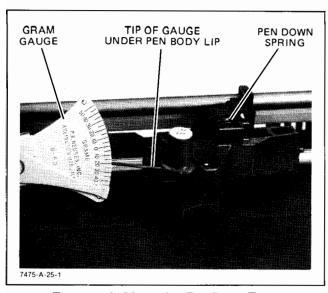


Figure 6-16. Measuring Pen Down Force

6-75. PINCH ROLLERS REMOVAL AND REPLACEMENT

- a. Remove the top case. Refer to To Case Removal.
- Remove the retaining ring that secures the pinch roller. See Figure 6-17.

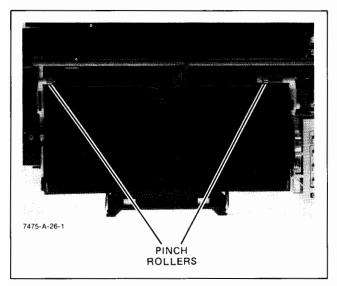


Figure 6-17. Pinch Rollers

- c. Remove the pinch roller.
- d. Replace the pinch roller. The larger diameter end of the pinch roller must be toward the outer edge of the plotting surface. This is necessary to keep the plotting media in place.
- e. Replace the retaining ring.
- f. Replace the pen carousel and top case making sure the PAPER LOAD/HOLD lever extends through the case and the tabs inside the front of the case are aligned properly above and below the base plate.

6-76. PRINTED CIRCUIT ASSEMBLY REMOVAL

- a. Remove the top case. Refer to Top Case Removal.
- Disconnect all cables from the printed circuit assembly.
- Remove the pen carousel housing. Refer to Pen Carousel Housing Removal.
- Remove the screw holding the front panel, and remove the panel. See Figure 6-18.
- e. Remove the recessed screw between the pen solenoid and the pen drive motor. See Figure 6-18.

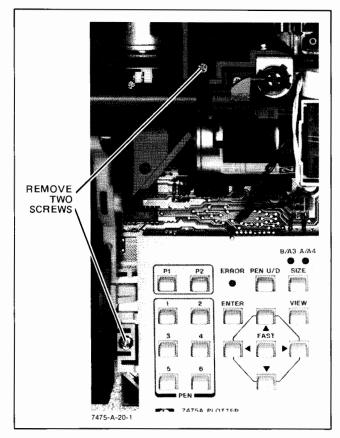


Figure 6-18. Chassis Assembly Removal

- f. Lift the right side of the chassis assembly. Tabs on the left side will release from the base plate.
- Remove the screws or stude holding the rear panel interface connector.
- Lift the front end of the printed circuit assembly and remove from the base plate.
- Reassemble in reverse order. When replacing the top case, make sure the PAPER LOAD/HOLD lever extends through the case and the tabs inside the front are aligned properly above and below the base plate.

6-77. PINCH ROLLER MECHANISM REMOVAL

6-78. To remove the pinch roller lever and bar or the right or left pinch roller arm, proceed as follows:

- a. Remove the top case. Refer to Top Case Removal.
- To remove the right pinch roller arm, the pen drop shield must be removed. See Figure 6-11.
- Remove the chassis assembly as instructed in Printed Circuit Assembly Removal, steps b. through f.
- Place the chassis assembly upside down on the work surface. See Figure 6-19.
- e. Remove the pinch roller spring.
- f. To remove the pinch roller lever and bar, move the lever in an upward position and merely slip out of the chassis.
- g. Slide the pinch roller arm from its pivot and remove from the chassis.
- h. Replace all parts in reverse order.

6-79. PAPER DRIVE SHAFT AND COUPLER REMOVAL

- Remove the chassis assembly as instructed in Printed Circuit Assembly Removal, steps a. through f.
- Remove the right and left pinch roller springs and pinch roller arms.

- Remove both bearing clamps by pressing down and inward on the clamps. See Figure 6-19.
- d. Remove paper drive shaft toward the left.

CAUTION

Do not attempt to replace grit wheels or bearings individually. The grit wheels must be press fitted at the factory to the proper position.

- e. Loosen the coupler clamping screw and remove the coupler from the shaft.
- f. When replacing the coupler and drive shaft, place the coupler on the end of the shaft, leaving the clamping screw loose enough to allow the coupler to slide.
- g. Place the drive shaft in position, making sure that the rubber O-rings on the drive shaft coupler and the motor shaft coupler fit inside the grooves of the coupler ring. Replace the bearing clamps. See Figure 6-12.
- h. Place the chassis assembly right side up.

NOTE

Step i. assumes that the paper drive motor is in position and its clamp tightened securely. If not, refer to Paper Drive Motor Assembly.

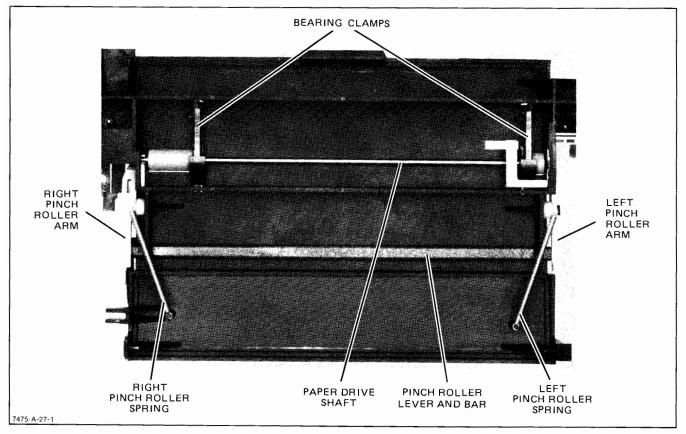


Figure 6-19. Underside of Chassis Assembly

- i. Hold the drive shaft to the left by pushing (with a finger) on the left gritwheel, and push the drive shaft coupler to the right (with another finger) so that the coupler parts fit together snugly. Tighten the shaft coupler clamping screw securely.
- j. Replace all parts in reverse order.

6-80. POWER MODULE AND TRANSFORMER

- a. Remove the top case. Refer to Top Case Removal.
- b. Remove the chassis assembly. Refer to Printed Circuit Assembly Removal, steps b. through f.

NOTE

The transformer is held in place by the power module molding.

- c. Remove the safety earth (ground) wire screw at the left end of the power module. See Figure 6-20.
- d. Disconnect the three-wire secondary power cable from the printed circuit assembly.
- e. Disconnect the primary wires from the transformer.
- f. Remove the screw in the power module. See Figure 6-20.
- g. Lift the left end of the module. The right end is held by a tab which fits into the base plate.
- h. Replace in reverse order.

CAUTION

When connecting the transformer primary wires, refer to Section I, Line Voltage and Fuse Selection, for correct wiring.

WARNING

To protect against possible electrical shock, Be sure to replace the safety earth (ground) wire and tighten the screw securely. See Figure 6-20.

6-81. POWER MODULE WIRING

6-82. The power module is available as a prewired unit including the power input connector, switch, and fuseholder (less cap and fuse). The part number for this assembly is 07470-60120. This does not include the power transformer. It is recommended that if replacement of any part of the unit is required, the entire unit be replaced. However, if this it is not possible and any part must be replaced separately, refer to Figure 6-21 for the correct wiring information.

6-83. CLEANING

WARNING

Disconnect the plotter from the power source prior to performing any maintenance. DO NOT allow water to run onto electrical components and circuits or through openings in the enclosure as this may create a shock hazard.

CAUTION

Do not attempt to clean the microgrip drive wheels. Cleaning solutions may dissolve the adhesive which secures the grit particles to the wheels.

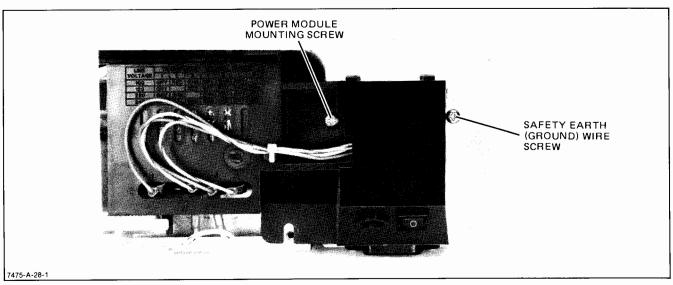


Figure 6-20. Power Module Removal

Model 7475A Section VI

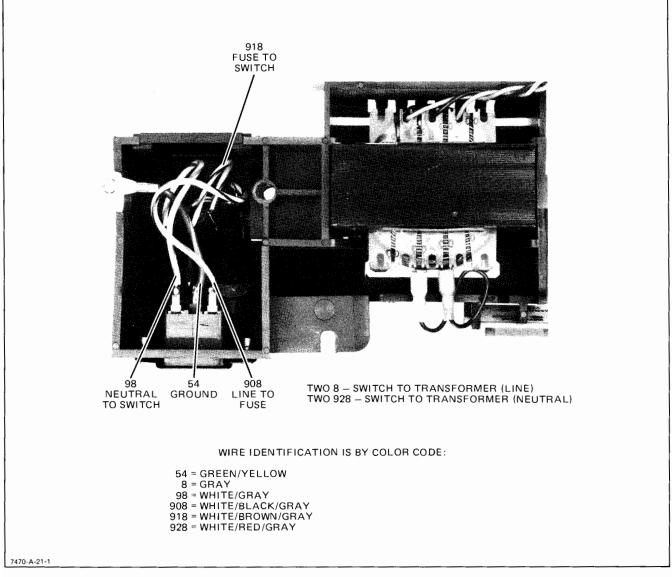


Figure 6-21. Power Module Wiring

6-84. Thorough cleaning should be performed periodically. Cleaning intervals are determined by the type of operation, local air contamination, and climatic conditions. Cleaning procedures should include the following:

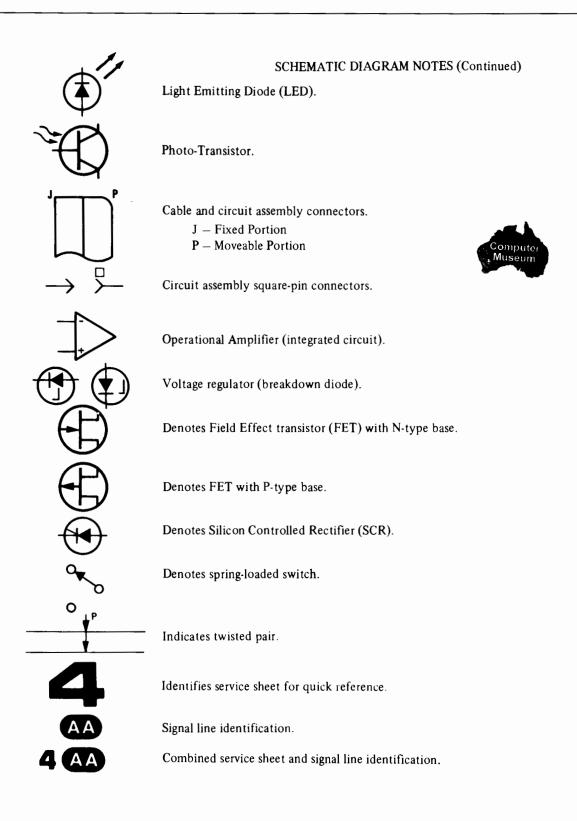
- Blow away the dust accumulation with compressed air, if available. Dust may also be removed with a lint-free cloth.
- b. Clean the outer surface of the plotter with a damp sponge or cloth. Use a mild soap and water solution if necessary. Wipe dry after cleaning.

NOTE

To prevent sratching, do not use abrasive cleaners on the plastic cover. The cover should be cleaned with a mild

solution of soap and water and wiped dry with a lint-free cloth.

6-85. PEN STALL CLEANING


6-86. Before using overhead transparency pens, remove leftover ink from the capping hole in the pen stalls of the carousel using a cotton swab. This will prevent the transfer of other inks to the plots.

6-87. DIAGRAMS

6-88. Figure 6-22 explains symbols which may appear on the schematic diagrams, and Figure 6-23 illustrates logic symbols used. Figures 6-24 through 6-26 are schematic diagrams of the 7475A circuits.

SCHEMATIC DIAGRAM NOTES Resistance in ohms, capacitance in microfarads, inductance in millihenries unless otherwise noted. Asterisk denotes a factory-selected value. Value shown is typical. Part might be omitted. Indicates a NOTE on the schematic diagram. Tool-aided adjustment. Manual control. Encloses a front-panel or circuit assembly silkscreened designator. Encloses a rear-panel silkscreened designator. Circuit assembly borderline. Other assembly borderline. Also used to indicate mechanical interconnection (ganging) and RF shielding. Heavy line with arrows indicates path and direction of main signal. Heavy dashed line with arrows indicates path and direction of main feedback. Indicates cable run with seven lines. Wiper moves toward CW with clockwise rotation of control (as viewed from shaft or knob). Lettered Test point. No measurement Numbered Test point. Measurement aid (metal post, circuit pad, etc.) aid provided. provided. Encloses wire color code. Code used is the same as the resistor color code. First number identifies the base color, second number identifies the wider stripe, third number identifies the narrower stripe (e.g., (947) denotes white base, yellow wide stripe, violet narrow stripe). A direct conducting connection to the earth, or a conducting connection to a structure that has a similar function (e.g., the frame of an air, sea, or land vehicle). A conducting connection to a chassis or frame. Common connections. All like-designated points are connected. When accompanied by a letter, indicates the type common (i.e., A = Analog, D = Digital, F = Floating). 1-A-1-2

Figure 6-22. Schematic Diagram Notes (Sheet 1 of 2)

1-A-2-1A

Figure 6-22. Schematic Diagram Notes (Sheet 2 of 2)

INDICATOR SYMBOLS ACTIVE HIGH inputs and outputs are indicated by the absence of the polarity indicator (\triangle) or negation symbol SENSITIVE **ACTIVE PERIOD** ACTIVE LOW inputs and outputs are indicated by the presence of the polarity indicator () or negation symbol (o). **SENSITIVE ACTIVE PERIOD** LOW TO HIGH **EDGE SENSITIVE ACTIVE PERIOD** EDGE SENSITIVE (Dynamic) inputs are indicated by the presence of the dynamic indicator symbol (>). HIGH TO LOW **ACTIVE PERIOD EDGE SENSITIVE OUTPUT DELAY** The output changes state only after the referenced input (m) returns to its inactive state. (m is replaced by appropriate dependency symbol.) INHIBIT INPUT An active high state input prevents the output of that element from being active. INHIBIT INPUT An active low state input prevents the output of that element from being active. OPEN COLLECTOR OR EMITTER OUTPUT This output requires some external components to achieve logic state. 1-A-3-1

Figure 6-23. ANSI Y32.14 Logic Symbols (Sheet 1 of 6)

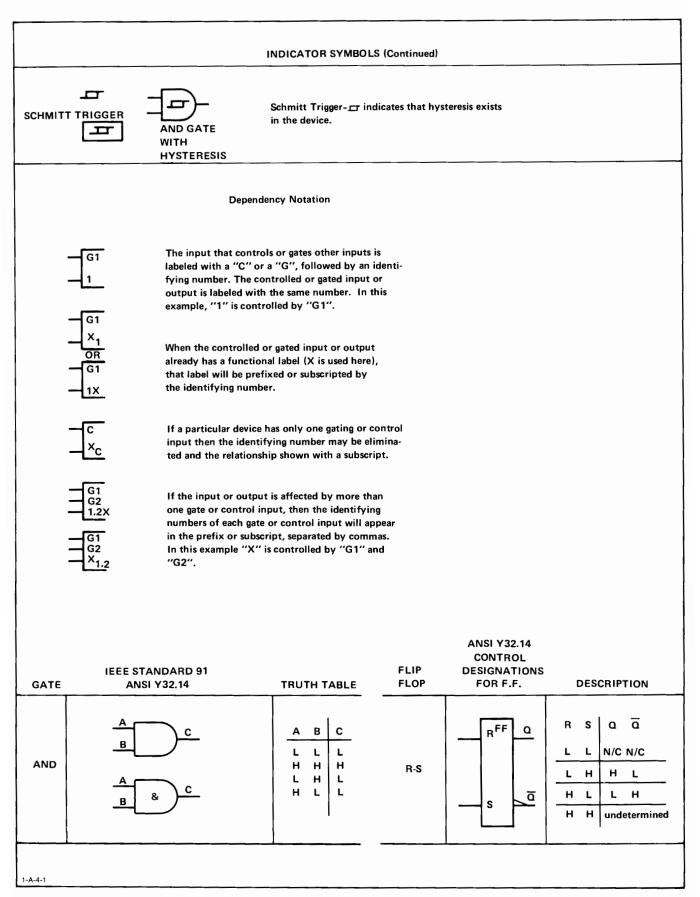
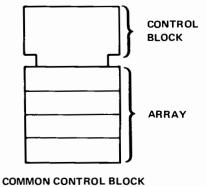



Figure 6-23. ANSI Y32.14 Logic Symbols (Sheet 2 of 6)

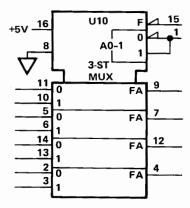

	INDICATOR SYMBOLS (Continued)				
OR	$ \begin{array}{c c} A \\ \hline B \end{array} $ $ \begin{array}{c c} C \\ \hline B \end{array} $	A B C L L L H H H L H H	Т	T T	Toggles with every clock pulse
NAND	$ \begin{array}{c c} A & C & A & C \\ \hline B & & C & B & & C \end{array} $ $ \begin{array}{c c} A & C & A & C & C \\ \hline B & & & & & & & & & & & & & & & & & & &$	A B C L L H H H L L H H H L	D	C D _C	Data output follows data input. Input is gated by C.
NOR	$ \begin{array}{c c} A & C & A \\ \hline B & \geq 1 \end{array} $ $ \begin{array}{c c} C & A \\ \hline C & A \\ \hline C & C \end{array} $ $ \begin{array}{c c} C & C \\ \hline C & C \end{array} $	A B C L L H H H L L H L H L		S FF C	
хоя	B & B & C B	A B C L L L H H L H L H	J-K	2 K H 8	L L N/C N/C L H L H H L H L H H L toggles
BUF- FER	A B	A B 1 1 0 0	LK (material)	J _G FF Q	J and K inputs
INVERT-	A B	A B 1 0 0 1	J-K (gated)	K _G R	are gated by G.
J-K (master slave) J-K (master slave) J-K (master slave) J-F Q This output is dependent upon negative going edge of the signal.				dependent upon negative going	
S Set input — when active causes the flip-flop to set (Asynchronous) R Reset input — when active causes the flip-flop to reset (Asynchronous) N/C No Change					

Figure 6-23. ANSI Y32.14 Logic Symbols (Sheet 3 of 6)

INDICATOR SYMBOLS (Continued)

The Control Block is used to show when common control signals are applied to a group of mechanically connected, but functionally separate units.

F input must be low to enable outputs. When F is high, outputs are high impedance. Address input determines whether 0 or 1 input will pass to output.

1-A-6-2

Figure 6-23. ANSI Y32.14 Logic Symbols (Sheet 4 of 6)

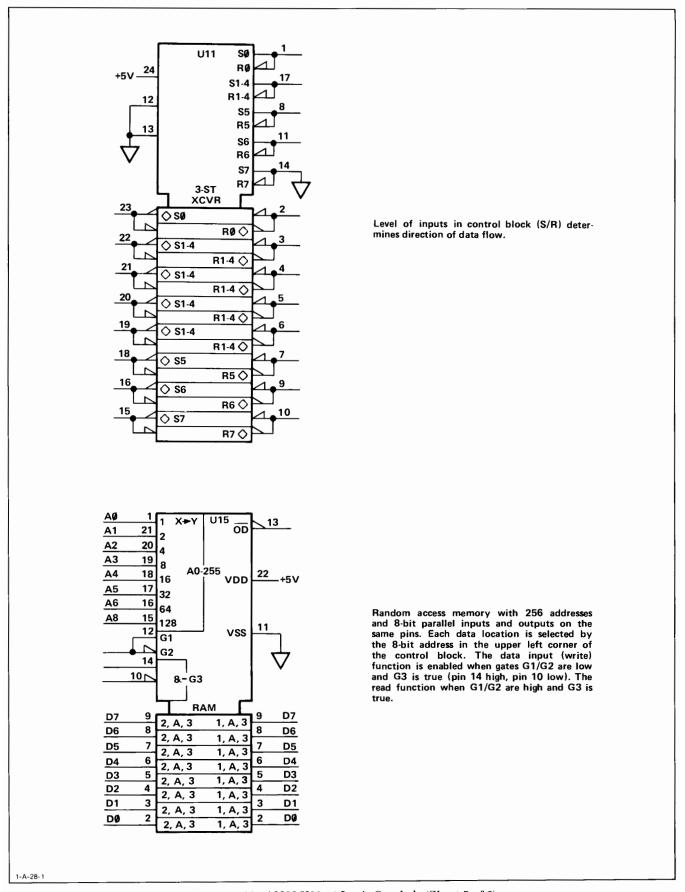
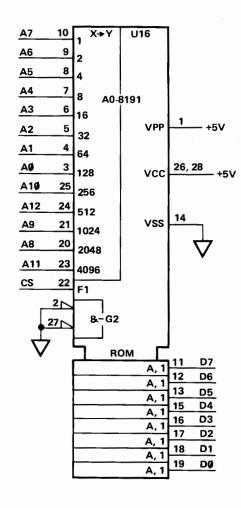



Figure 6-23. ANSI Y32.14 Logic Symbols (Sheet 5 of 6)

Read only memory with 8192 addresses and 8-bit parallel output. Each output byte is selected by the 12-bit address in the upper left corner of the control block. Output is enabled only when F1 is high and G2 is low.

1-A-27-1

Figure 6-23. ANSI Y32.14 Logic Symbols (Sheet 6 of 6)

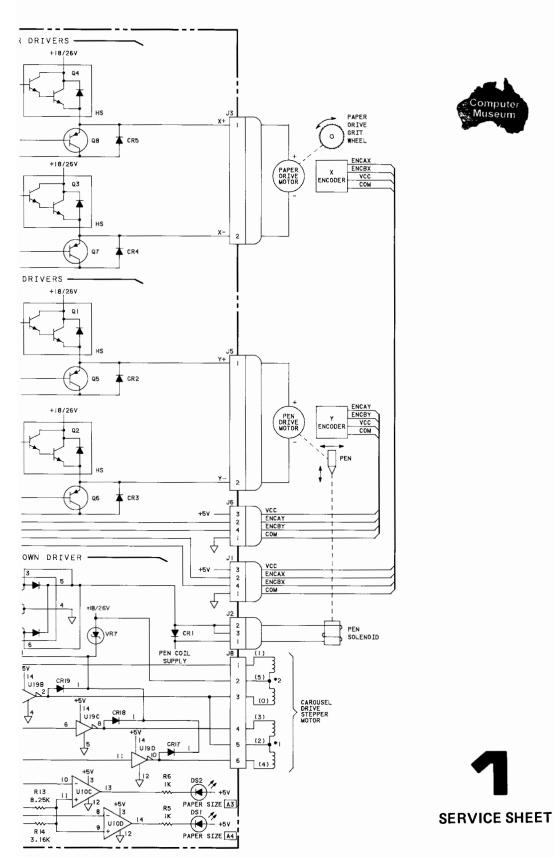
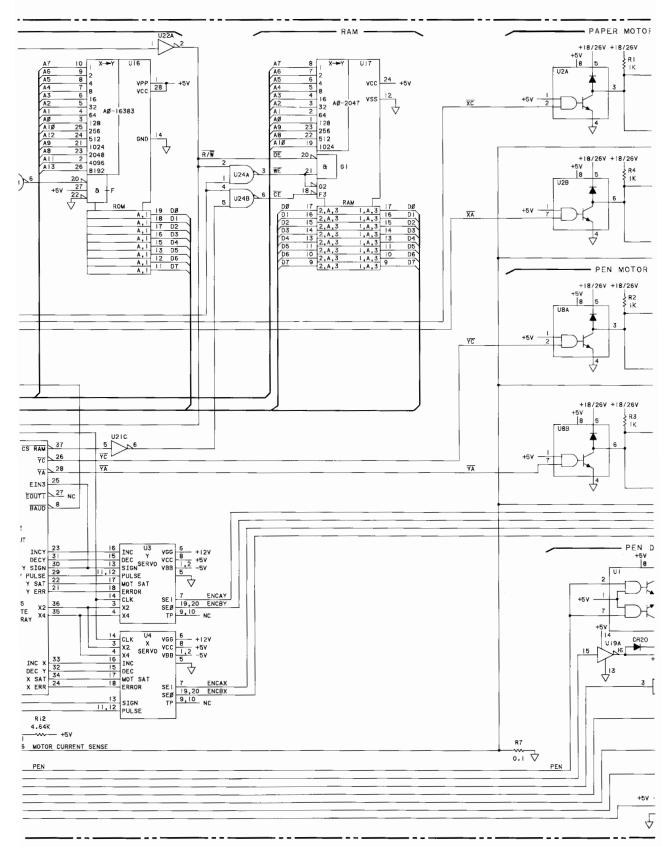
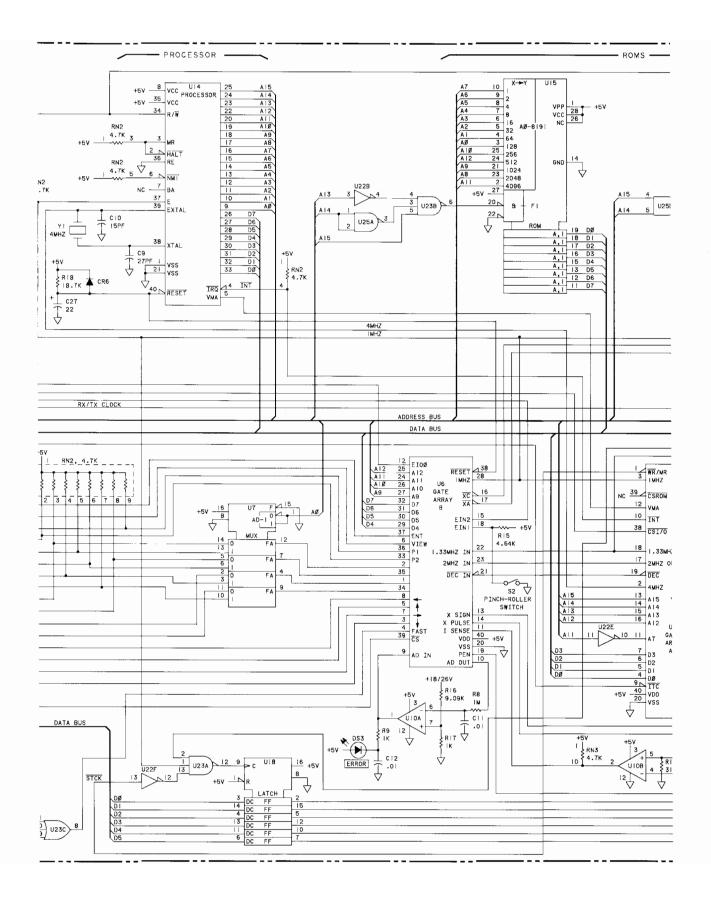
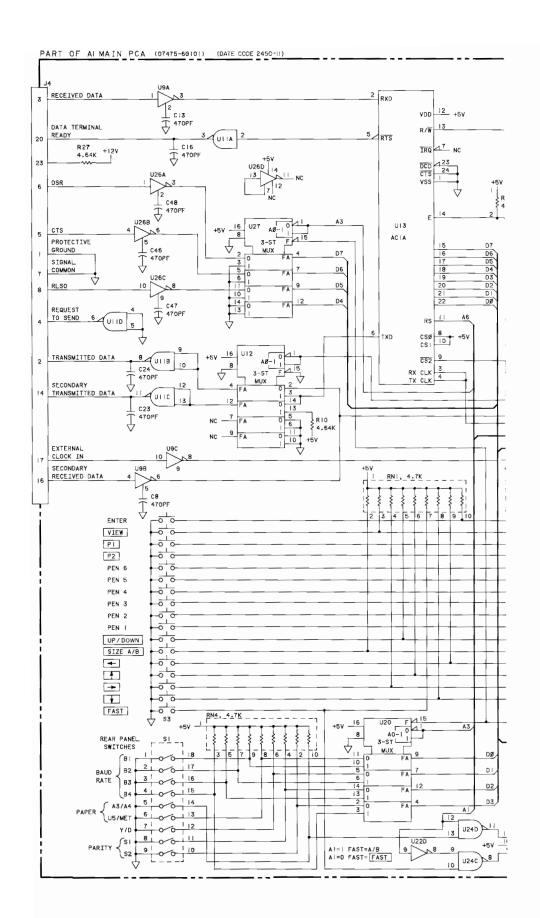
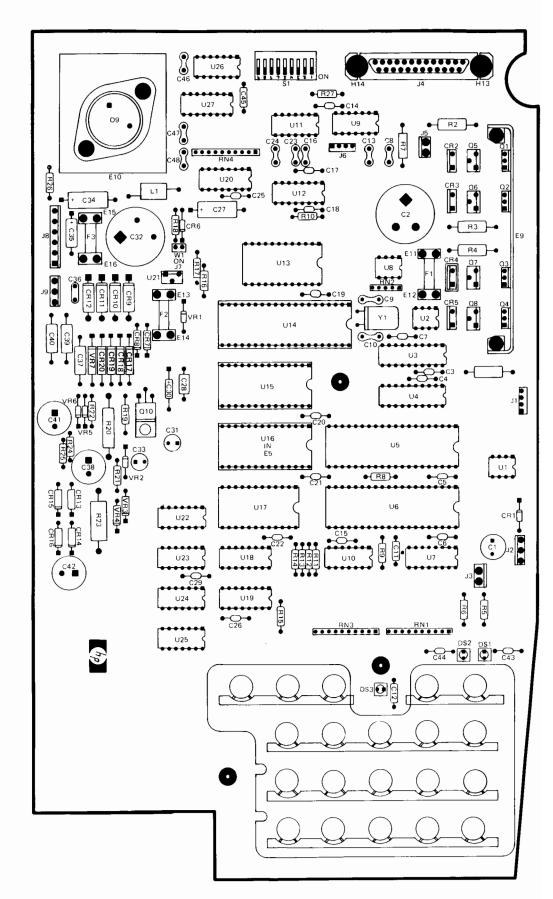
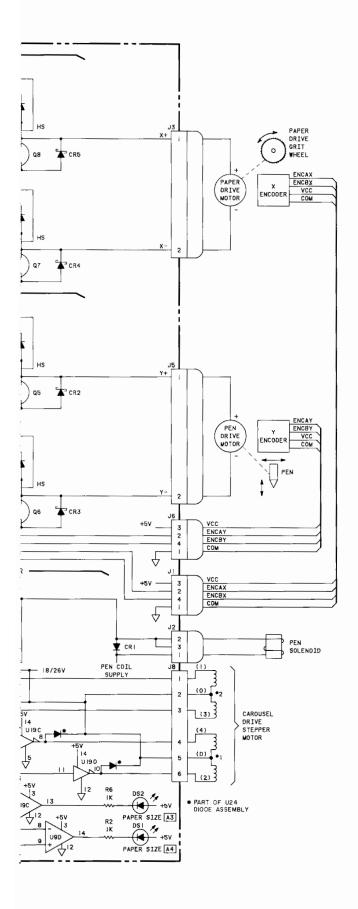
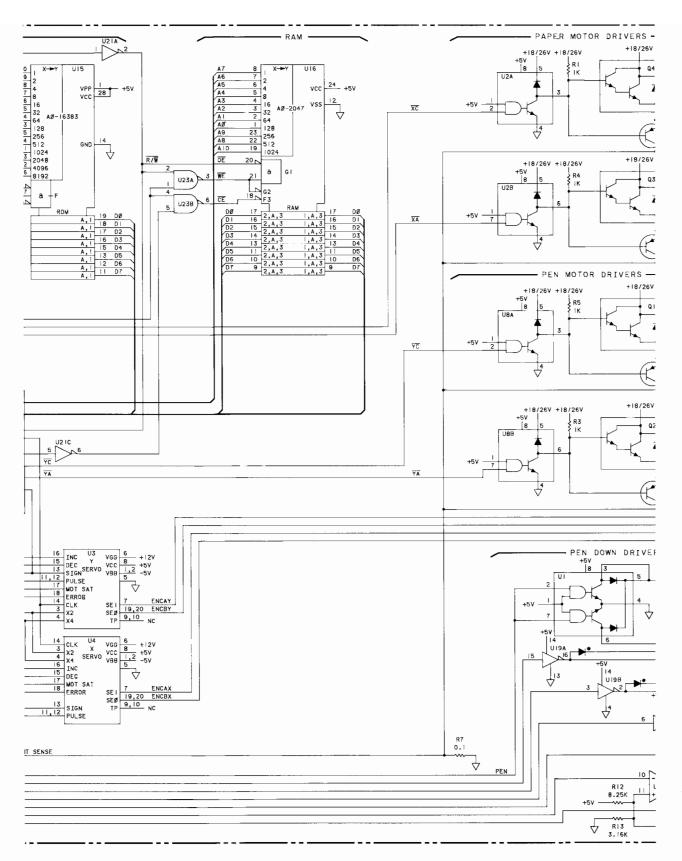
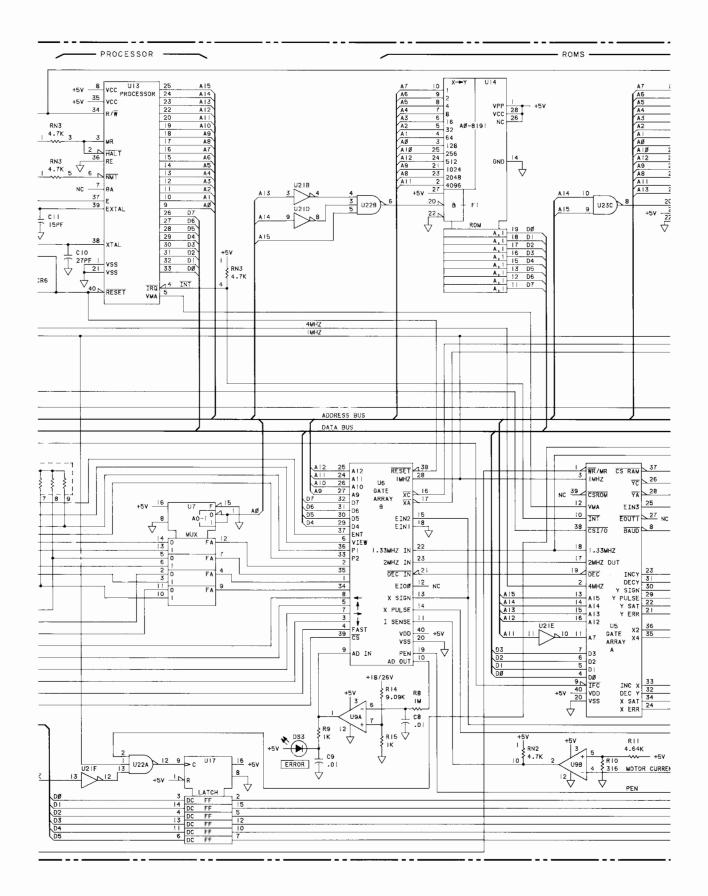
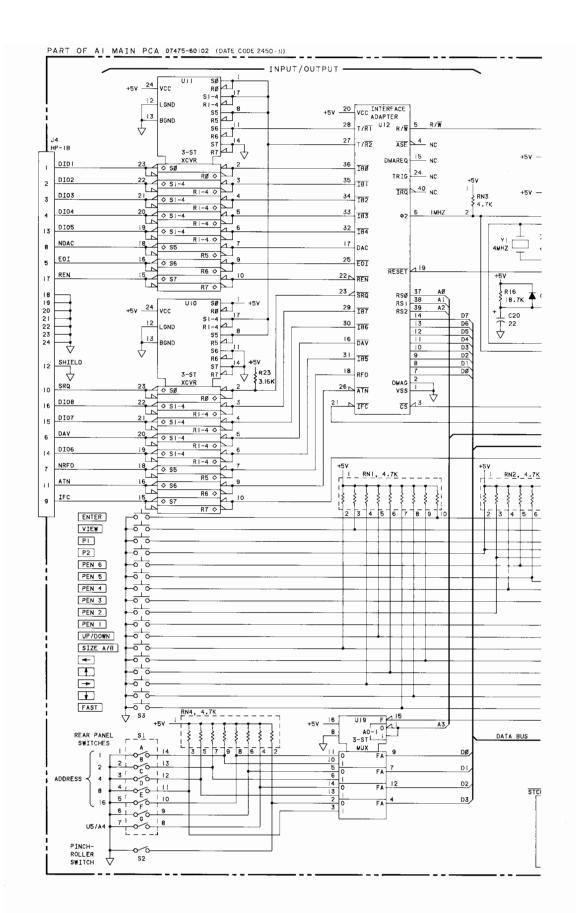
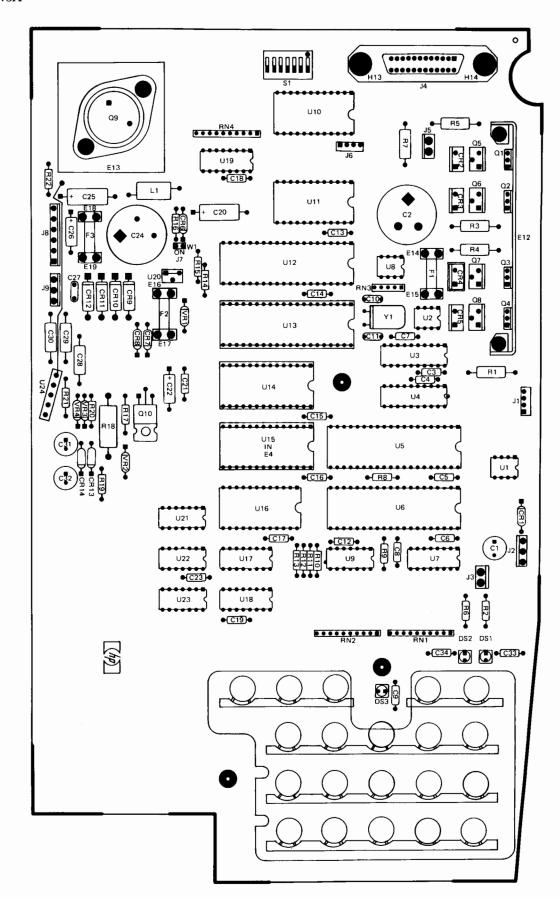
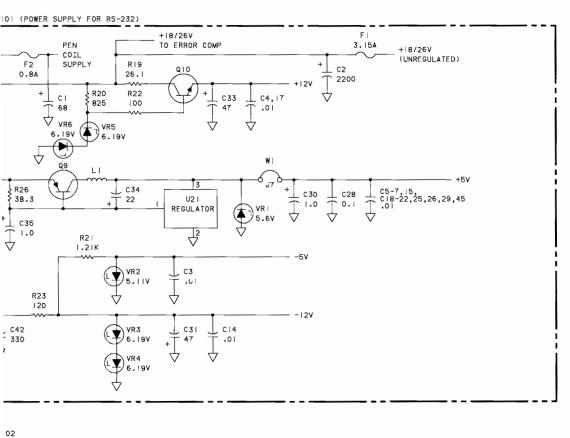






Figure 6-24. RS-232-C, Option 001 Schematic Diagram






Figure 6-25. HP-IB, Option 002 Schematic Diagram

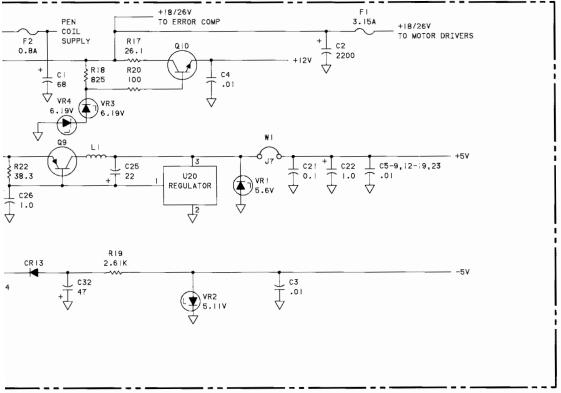
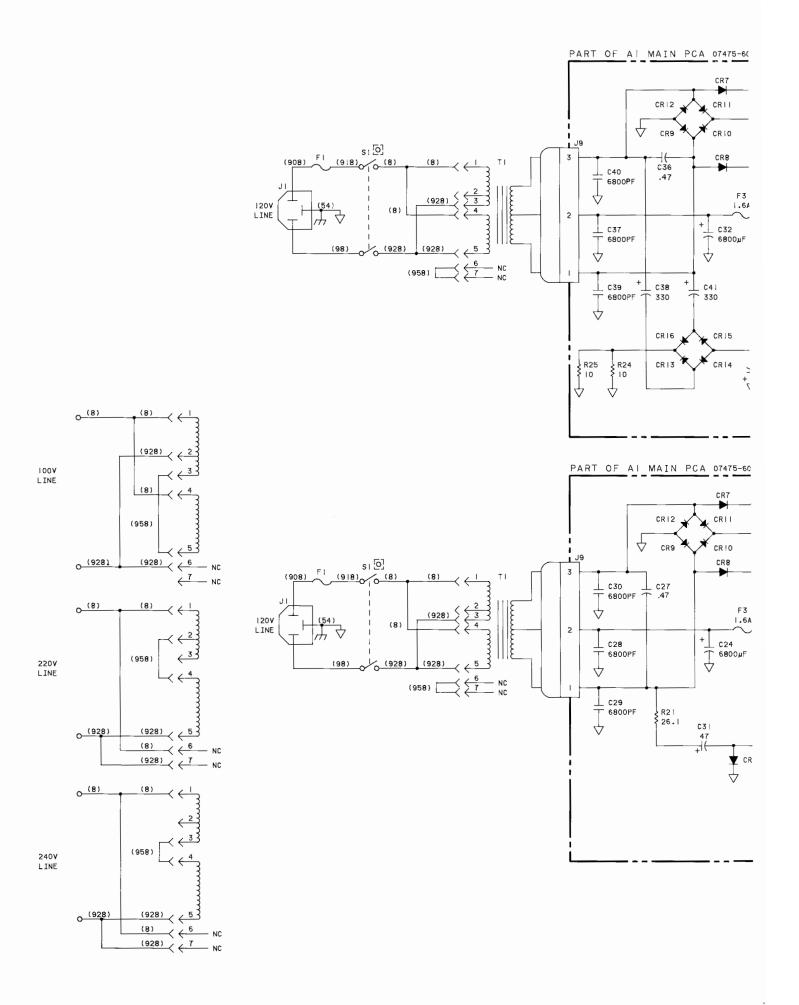



Figure 6-26. Power Supply, Schematic Diagram

