Version 1.1

Nintendo Ultra64 RSP Programmer’s Guide

Silicon Graphics Computer Systems, Inc.
2011 N. Shoreline Blvd.
Mountain View, CA 94043-1389

©1996 Silicon Graphics Computer Systems, Inc. All Rights Reserved.

Table of Contents

R 1 o T 6 Tox £ o o ISR 15
DOCUMENT DESCIIPLION ...ttt enee s 16
LAY = L L OSSR 16
WAL TE IS INOT ...ttt 16
INformation Presentation ... s 17
RSP Software Development TOOIS ... 19
(55 012 151 1 0 TSP PP PRSPPI 19

(6] 0] o PO URT ST PR PRSPPI 20
0TSOV U PSPPI 21
DUIALASK ... bbb 21
FSP2EIT . s 21
(5] 0 TR 5] o o TP RRTS 21
Gameshop Debugger (GVA)ooiiiiiiiieieee e 22

2. RSP ATCNITECTUIE ...ttt bbb 23
L@ 1= V7= OSSPSR 24
SIAVE 1O The CPU ..o bbb 24
Part OF TNE RCP ...ttt 24
RADDO COB ..ttt ettt sttt sttt e e bt e et e e b e e nb e e nbeesnbeenes 25

(O [0Tod QS 0 1=1= o OSSPSR 26
VECTOE PIrOCESSON ...ttt ittt ettt ettt e e e e bb e e s be e e s nne e 26
Major R4A000 DIffErENCESvceeieeece et 27
PIPEIINE DEPTN ... e 27
NO Interrupts, EXCEPLIONS, OF TIaPSccviiriiieieieiesie ettt 27
(070 o] o o111 0] £ T PR PR PR 27

MISSING INSTIUCTIONS ...t ae e 27

IIMEEIME L bbb bbbttt bbbttt 29
Yo [0 [=TT L o USSR 29
EXPHCITlY MaNAGEA ..o e 29

DIMEM ..ottt b e bbbt e s 30
AAAIESSING ...ttt bbbt 30
Explicitly Managed RESOUICE.........c.cccueiiiiiiieie e 30

EXternal MEemOTrY IMIBPooiiiiiiieicee e 31

Scalar UNit REGISIEIS......ccuiiiiiicce ettt re e e 32
SU REQISTEN FOIMAL ..ottt 32
R0 11 1= USSP 32
R0 51 (=] USSP 32
SU CONEIrOl REGISTEIS.....cuiiieiiiieiee et 33

VECIOr UNIt REGISIEIS.....iiiiiiii ettt st re e 34
VU REQGISTEN FOIMAT ..ot 34
AV R =To 1) =] g aNo [0 [=151 T SR 34

Computational INSIrUCLIONS...........cccvciiiiii e 34
Loads, StOres, aNd MOVESccouiieiiiiieee et 35
ACCUMUIBLOT ... bbbt 36
VU CONErol REGISIEIS.....ccuiiciiciece ettt 36
Vector Compare Code Register (VCC) ... 36
Vector Carry Out Register (VCO) ... 37
Vector Compare Extension Register (VCE)......ccccooceviveveivieieeie e, 38

SU @Nd VU INTEIACHIONcuviiiiiiieiiesi e 39
Dual 1SSue Of INSTIUCTIONScoviiiiiecie e 39

RSP INSTFUCTION SET....c..iiiiiiiiiiiieeee bbb 40
INSTUCTION FOIMALS.c.viiiitiiiiieceee e 40

SU INSTruCtion FOrMAtcooooeeeeeeeeeeeee e, 40

Revision 1.0

VU INSEruction FOrMALcccoiiiiiiiieieieee e 40
Distinguishing SU and VU INStrUCLIONS ..o 40
[Hegal INSTIUCTIONSccuviieiiice et enes 40

EXECUTION PIPEIINE ... 41
(R 2] (0T 1 BT F- Vo | = 1 o USSR 41
MaArY JO'S RUIES.......oeciiieie ettt nae e 43
REQISTEr HAZAIAS ..o e 43
SU IS BYPASSEA......ceeeeiiiiieiieeie ettt sttt te e e e nreeneanes 44

COPIOCESSON O ..ottt b e e b e re b enne s 45

Interrupts, Exceptions, and Processor Status.........c.ccccveeeieeieiienecie e 46
INTEITUPTES. ...t 46
(=7 o] 1o 1SS 46
PrOCESSON STATUS.......coiiiiiiieiie ettt r e b b e e nnis 46

3. VeCtor UNIt INSTFUCTIONSc..oiiiiiiiiiiseee et 47

AV AU 0T To K= T g (o IS (0] =T OSSR 48
INOTIMIAL ...ttt st bbbttt e e neeneas 50
[T0] 1T USRS 52
TTANSPOSE ...ttt r et 54

VU REQISTEN IMIOVEScuviivieiiicite ettt ettt sttt ste st e sbe e teeraesraeneesneenre e 56

VU Computational INStrUCTIONS..........cceiveieiieieee e 57
Using Scalar Elements of a Vector RegiSter ... 58

VU MUIIPIY INSTFUCTIONS ..ottt 61
Vector MUltiply EXAMPIESccoviieiieie e 64

VU A INSEFUCTIONS ...ttt 67

VeCtor Add EXAMPIES.......c.cciiiiiece ettt 68

VU SIECE INSTIUCTIONS .. ettt e e e e e e e e e eeeens 70

Vector Select EXaMPIES ..o s 73
VU LOGICal INSLIUCLIONSveiiicicciece ettt st 74
VU DiVide INSIFUCTIONS ...oviiiiiiiiiciieieieie et 75

Reciprocal Table LOOKUPcvoiieiiiic et 77

Higher PreciSion RESUITS ..o 78

Vector Divide EXAMPIES........ccvoiiiiiiieie e 78

4. RSP COPIOCESSON 0 ...ttt n e 81
REQIStEr DESCIIPLIONS......ciiiiiiecicie et e et e e sreeneerees 82
RSP POINT OF VIBW ...ttt nne e 82
B0 ettt sttt e b e 83

o3t SRS 83

R oy 1ol SRRSO 83

o OSSO 85

o SRS 88

o o P TRS 88

o SOOI 88

o3 SRS 88

o OSSP PRS 89

ol O SRS 89

o3t OSSPSR 90

o3t SRS 92

ol 1 OSSPSR 92

BCLA et 93

BCAD . ittt ettt r et ettt ae e 93

CPU POINT OF VIBW ...ttt 93
Other RSP AdOIESSES.......coiiiiiiiiiiiieieiee ettt 95

DIV A bR bRttt bbbttt e et 96
AlIgNMENT RESTIICLIONS ..o 96

LI 111 8T P TSSO SUT PR P TP UTUPRPRURORPRN 96

Revision 1.0

DIMA FUIL ..ottt sttt eneas 96
DIMA WaIL ..ottt e e et restestenreens 96
DMA AdAreSSiNG BitSccuoiieiiiieieee ettt 97
CPU SEMAPNOLIE ...t ettt et sreenrennes 97
DMA EXAMPIES ...ttt 97
Controlling the RDP ... re s 100
How to Control the RDP Command FIFOcccoiiviiiiienreceee e 100
EXAMPIES ..o res 101

5. RSP ASSEMDBIY LANQUAGEooviiiiiiiiiiiieiee et 105
Different From Other MIPS Assembly Languagescccccvvvveveeieieene e s 106
(AT L) 2SS 106
Major Differences from the R4000 Instruction Setcccceveveviveieiieeieiiiennnns 106
SYNEAX et 107
TOKEINIS ..ot 107
FABNTITIEIS ..ottt 107
(070] 0 15121 0 | TR UPRRUROPRRTOT 107

(O] 011 =1 (0] £ T PSPPSR UPRTOTPRTR 108
COMIMENTS ...ttt b et e st e e et e nne e s nreereas 108
Program SECHIONS..........coiiiiiiiiiee ettt 109
LADEIS .. 109
(=Y ATLY 0] o [SRS S TSSOSO 109
EXPIESSIONS ...ttt bbbt 110
EXPression OPEratorsScccuviieiiiiieiieieseese e e e sae e e ee e sae e e nas 110

e =TorcTo [T o (ot OSSP 111
EXPression RESIICTIONSccviiiiiiiiecsc e 111

R0 11 (=] £ USSR 112
Vector Register EIement SYNtaX.........cccvovciieiiiic e 112
Program STatEMENTS.ooiiiiiieie e 113
ASSEMDIY DIFECLIVES ...ttt anes 114

0]V =SSOSR 115

(6 1= - F PP UR PR UPPPRPR 115

(0 [T 0 USSR RT PPN 115

] [0 S USTRRSPSPRRR 116

2] 0L PP PR 116
NAIT .. 116
(1= 10 0 TP OPPR TP OPRPRUPIR 116
] S 117

] 0 1= (6 TP 117
SYMIDOL ..t 117
L2 PP PR PR PR PPR 117

(U] o1 T=T g 0L P PP PP 118
17170] o SRS 118
BNF Specification of the RSP Assembly Language..........ccccccovvevviieieein e, 119
6. Advanced INTOrMATIONccoiiiiiie e 125
DMEM Organization and USAQEccccuririiieieienienie s 126
JUMP TADIES ..ot e e sraenre s 126
CONSTANTS ...ttt b et e e s et e b e e s be e e b e e sneeenreenreens 126
LabelsS IN DIMEMcooiiiiicciee ettt 127
DYNAMIC DALA.......iciiiiciicie ettt ae e nneeeas 127
Diagnostic INFOrmMationccccveiiiiiie e 127
PerfOrMANCE TIPS ..o oveiieii ettt ettt e te e e sneesreennesreesreaneens 128
DUAI EXECULION ...ttt bbbt 128

AV =Tot (0] g 2= 1 (0] o PSPPSR 128
Software PIPeliNINGc.cooveiiicce e 130

[oTo] o 31 10 17=1 551 [0] o ISR 131

LOOP UNFOHING ..t 132

Program FIow of CoNtrol...........cccooeiieiiiic e 132

Profiling RSP COEocoeiieiciece et 133

Revision 1.0

MICrOCOAE OVEIIAYS.......eeivieieiie ittt reereens 135
Memory System IMPLICATIONScccoiiiiiiiirieee e 135
ENLIrelY UP 10 YOU c.ooiiiiii ittt 135
RSP ASSEMBIET THICKS.....ciiiiiiiiie et 136
A SAMPIE RSP LINKET ..o 136
OVerlay EXamMPIe........ooi et 138

Overlay MaKefile........c.ooviiiii i 138
Overlay DMEM INItialization ..o 139
Overlay Initialization COAEccoccvevieiiiie e 140
Overlay DecCiSION COUEcceiieiiieeceece e 141
OVerlay DMA COOE.........cooiiiiiiieieee e 141

Controlling the RSP from the CPU...........ccco o 142

STArtiNg RSP TASKS ..ot 142
RSP BOOt MICIOCOTEoviiiiiiiiieiieieie e 142

Hidden OS FUNCLIONSc.oiiiiiiiieese et 143
__OSSPDEVICEBUSY ..ottt 143
__OSSPRAWSTArtDMA().....cveiieeieeieseece e 143
—_OSSPRAWREAAIO() ...veeveeeieiiieiie et 143

— OSSPRAWWIITEIO() ..t 144

OSSP GELSTATUS() vvvervrerererrerieeiesiesieeeesreesee s e stee e see e eseesraesresseesneeeennes 144

e 1SN e T 5] 7 L LU 1]) ISR 144
OSSPSEEIPC() ..ttt 144
Microcode Debugging TIPS ...cvciveiiiiie e 145
(RS i A T=1 Lo [o T TS 147
Requesting @ Yield ... 148

Checking TOr Yield ..., 148

D T=1 Lo 11 o Vo USSR 148

Saving @ Yielded ProCeSScccccviieiieieeie et 149
Restarting a Yield ProCess.........ccoviiiiiiiiiiiseeeee e 149

A. RSP INStruction SEt DEtailScccoieiiiiieiiiesccee e e 151

Instruction Notation EXamPIes ..o 154

10

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 6-1

List of Figures

Block Diagram Of the RCPocuiiiiiiiiee e 25
SU ReQISIEr FOIMAL.......ciuiiiiiiecie ettt re e 32
VU REGISTEr FOIMAL ..o et 34
VU ACCUMUIAEON FOIMAL.......cviiieiieeieciesie e 36
VCC REQISIEr FOIMAL........cciiiiiiiciieeie ettt te e sreenreenee s 37
VCO REGISIEN FOIMAL ...ttt et 37
VCE REQISTEr FOIMAL.......ooiiiiiiiiiitisiesieee et 38
RSP BIOCK DIAQIAMc.vieiiiiiciiece sttt te e st e saaeeesraesneennesnaeneeas 42
PIPEIING BYPASSING ...ttt sttt sttt sttt esreesbesneesbeebesneenreas 44
VU Load and Store InStruction FOrMaL..........cccuervrieiiieienie e 48
Long, Quad, and Rest Loads and StOreSccevveeeieerieciie s 51
Packed L0ads and STOTES........cciiiiiieiieie ettt st be e e 53
Packed Load and Store AHGNMENT.........cooiiiiiiiiiiieseee e 54
Transpose L0ads and STOTES.........coiveiiiiieiieiecieere et sre e 55
VU COPrOCESSOI IMOVES ...ttt ettt ettt ettt be e b e nnn e 56
VU Computational INStruction FOrmMatccccoveriiiiiiiniieeee s 57
Scalar Half and Scalar Quarter Vector Register Elements............cccccevevveieiieieennenn, 59
VU Multiply Opcode ENCOTING ...c.veiveeiiieiiiie ettt 61
Double-precision VU MUIIPIYooveiiicciee s 64
AVAUJANe [0 @] o Todoo (=l =1 o7l [SO 67
VU Select Opcode ENCOAINGcoiieiiiiiiieie s 70
VU Logical Opcode ENCOUINGccveieiieiieieiieeie e e esie e sieesae s ste e sae e sneesreenee e 74
VU Divide Opcode ENCOUINGvoivveiiiiieiiieie st 75
DMA Transfer Length ENCOUINGcccuviieiiiiiiiiiieie et 84
DMA Read/Write EXAmMPIE.......ccviiieiice et 98
DMA Wait EXAMPIE ...ttt 99
RDP Initialization Using the XBUS ... 101
OutputOpen Function Using the XBUS.........cccccoiiiiieiiccceee e 102
OutputClose Function Using the XBUSccooiiiiiiiciccece e 103
Real-time Clock Watching on the RSP ..o 134

11

Figure 6-2

12

buildtask Operation

Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 5-1
Table 5-2
Table A-1

List of Tables

VU Load/Store INStruction SUMMAYcccoevererenenenineseseseeeeeen, 49
VU Computational Instruction Opcode Encoding..........ccccceevveieeieinennn, 57
VU Computational Instruction Element Encoding..........cccccevvvivevvennnne. 58
VU Multiply InStruction SUMMArycccoovviiinieieneiesc e, 61
VU Add Type ENCOAING......cccciieiiiieie e 67
VU Select Type ENCOAING.......ccciviiiiierieiieireie e sie e 70
VU Logical Type ENCOUINGcoiviiriiiieiiicieie e 74
VU Divide Type ENCOAING........ccceiiiiiieiiiieie et 75
VU Divide INStruction SUMMArYcccveveiieieiieese e 76
RSP Coprocessor 0 REQISLENScveiveiirieierienesesieee e 82
RSP Status REGISIENecuviceieiececece e 85
RSP Status WIItE BilScooviieieieies e 86
RDP Status REGISTENc..iiiiiiiiiieiieieiest et 90
RSP Status Write Bits (CPU VIEW) ..o 91
RSP Coprocessor 0 Registers (CPU VIEW).......ccccoccevveieiiese e 94
Other RSP Addresses (CPU VIEW) ..o, 95
EXPreSSion OPEIratOrSccoveieeiieriisiesieeie e stee e seeseeeeesreesseseessee e 110
Expression Operator PreCedenCecvovevveieriiese e seesie e svee e eee e 111
RSP Instruction Operation NOtationscccccevereneienininesiseeeeees 153

13

14

Chapter 1

Introduction

The RSP (Reality Signal Processor) is a powerful processor which is part of
the RCP (Reality Co-Processor), the heart of the Nintendo Ultra64.

The RSP operates in parallel with the host CPU (MIPS R4300i) and dedicated
graphics hardware on the RCP. Software running on the RSP (microcode)
implements the graphics geometry pipeline (transformations, clipping,
lighting, etc.) and audio processing (wavetable synthesis, sampled sound,
etc.).

The RSP acts as a slave processor to the host CPU, and as such, programming
the RSP requires a conspiracy of RSP microcode, R4300 interfaces, and
mastery of the features of the RCP. This document addresses the first two of
these necessary skills; details of the RDP (Reality Display Processor)
component of the RCP can be found elsewhere.

15

Introduction

Document Description

What It Is

The goal of this document is to enable RSP microcode software
development:

Explain architectural details of the RSP.
Explain relevant architectural details of other parts of the RCP.
Describe the RSP from a microcode programmer’s point-of-view.

Describe the RSP (and interfaces) from the host CPU’s
point-of-view.

Explain the RSP microcode assembly language.

Explain the RSP software development environment.

What It Is Not

In order to present material at a sufficient level of detail without clutter,
allowing the programmer to “see the forest and'the trees”, so to speak, we
have adopted several specific non-goals of this document:

Basic assembly language programming concepts are not discussed.
The reader is assumed to have a thorough technical background.

Basic concepts of vector processing architectures are not discussed,
however some specific issues relating to the RSP are discussed
briefly. A good reference for computer architecture which
discusses RISC processors and SIMD (vector) architectures is
“Computer Organization and Design, The Hardware/Software
Interface’™, by Patterson and Hennessy.

Details of the MIPS Microprocessor Instruction Set Architecture
(ISA) are not presented. The design of the RSP instruction set

Lpatterson, D., Hennessy, J., “Computer Organization and Design, The Hardware/Software Interface”, Morgan
Kaufmann Publishers, 1994, ISBN 1-55860-281-X.

16

Revision 1.0 Document Description

borrows much from the R4000 ISA; the reader is referred to the
“MIPS R4000 Microprocessor User’s Manual™ for more
information.

= Application-specific information is not presented. “How to Write
Graphics Microcode for the RSP” or “How to Write Audio
Microcode for the RSP” are topics worthy of a book themselves,
and are not discussed here.

< How to use the programming tools. There are detailed man pages
for each tool used during RSP software development. Although all
of these tools are mentioned in this document (and explained
briefly), the reader is referred to documentation for individual tools
for more information.

= Certain examples and advanced topics refer to higher-level Ultraé4
features or RCP operations (operating system, graphics, audio,
etc.). These things are explained in other documents; a thorough
background knowledge of the Ultra64 is assumed in this document.

Information Presentation

Mastery of the information presented in this document will occur slowly, as
the information is both voluminous and of tremendous breadth. Some
concepts, such as the hardware architecture of the RSP and the microcode
assembly language, are of course thoroughly intertwined; discussion of one
is impossible without the other.

In order to present this material clearly, we have divided it up into the
following chapters. Each chapter presents its specific topic in detail, usually
assuming information contained in other chapters as background. We have
attempted to present the information in a logical, top-down fashion, with
liberal cross-references to assist the reader.

= Chapter 1, “Introduction,” is this chapter. It describes the
document itself, and briefly illuminates the RSP development
environment.

Y Heinrich, J., “MIPS R4000 Microprocessor User’s Manual”, Prentice Hall Publishing, 1993, ISBN 0-13-1-5925-4.

17

Introduction

18

Chapter 2, “RSP Architecture,” describes the architecture of the
RSP in great detail.

Chapter 3, “Vector Unit Instructions,” explains the vector unit (VU)
instructions, building on the RSP architecture and leading into RSP
programming.

Chapter 4, “RSP Coprocessor 0,” describes the RSP’s Coprocessor 0.
The RSP Coprocessor 0 controls DMA activity, RDP
synchronization, and host CPU interaction.

Chapter 5, “RSP Assembly Language,” details the assembly
language of the RSP, including assembler directives and some
programming conventions.

Chapter 6, “Advanced Information,” builds on information in the
previous chapters in order to address sophisticated issues
including RSP performance, microcode overlays, host CPU
interactions, and additional programming conventions.

Appendix A, “RSP Instruction Set Details,” contains a concise
description of each RSP instruction, intended to be used as a
reference.

Revision 1.0 RSP Software Development Tools

RSP Software Development Tools

A brief introduction to the RSP programming environment will provide a
framework for future discussions.

The following software tools are typically used for developing RSP code.
This section only mentions the critical, RSP-specific tools; other, more
general tools (like make and other UNIX tools) are not discussed.

rspasm

The assembler used to compile RSP microcode isr spasm It is a simple,
2-pass assembler developed specifically for the RSP.

It interprets a simple assembly language, which is very R4000-like, but is not
MIPS compatible. The source language and assembler directives are unique
to the RSP.

The language, explained in more detail in Chapter 5, “RSP Assembly
Language,” has the following major features:
= Mnemonic opcode syntax for all SU and VU instructions.

= Support for labels in the text section (for branching) and the data
section (for referencing DMEM).

= Simple expression parsing.
The language also includes a rich set of assembler directives, used to instruct
the assembler during compilation:

= Data directives, used to initialize DMEM.

= Symbol naming directives, used to assign meaningful names to
registers, labels, constants, etc.

= Diagnostic directives, used to enforce memory alignment, print
diagnostic messages, etc.

r spasmdoes not build standard ELF object files, which are required by the
maker omutility in order to include RSP microcode objects into a game. ELF
file creation is decoupled from the assembler and accomplished by the
rsp2el f tool.

19

Introduction

20

The r spasmassembler outputs several special files. The root filename for
these files can be specified with the - o flag.

= <root nane>, is the binary executable code (text section). This file
can be loaded into the RSP simulator instruction memory (IMEM)
and executed.

= <root hame>. dat, is the binary data section. This is usually
loaded into RSP data memory (DMEM).

= <root nane>. | st, is a text program listing generated by the
assembler.

< <root nane>. symisa “symbol file” used by the RSP simulator to
perform source level debugging.

= <root nanme>. dbg, is a “symbol file” used by the r sp2el f utility
in order to build an ELF object that can be used with naker omand
the gvd debugger.

The RSP assembler has no provisions for linking separately-compiled
objects. Since IMEM only holds 1024 instructions and assembling is so fast,
the lack of a sophisticated linker is not a problem. Source code can be broken
up into separate files and #i ncl ude’d to enforce modularity.

Facilities to support dynamic linking, such as code overlays, are provided by
the bui | dt ask tool.

cpp

By default, r spasminvokes the C preprocessor (/ usr/ bi n/ cc -E,
actually) before assembly so that source code can use #def i ne,
#i ncl ude, #ifdef, etc.

Like other MIPS assemblers, r spasmdefines LANGUAGE _ASSEMBLY
(useful for sharing header files with C programs).

Revision 1.0 RSP Software Development Tools

m4

The md macro processor is a useful tool that can optionally be invoked by the
assembler (r spasm - m). If requested, md will process the source code after
cpp, but before assembly.

Although this is a powerful feature, it is not used to build the currently
released software.

buildtask

This tool is a simple ‘linker’ which facilitates dynamic code overlays. its use
is not required.

bui | dt ask uses a conspiracy between RSP microcode, DMEM usage, and
RSP task invocation to assist with code overlays. It concatenates code (and
data) objects (enforcing alignment) in the order provided on the command
line, and updates a table in DMEM with offsets and code sizes. This allows
the microcode to find a piece of code and overlay it into IMEM during
execution.

Additional details and examples of code overlays are described in
Chapter 6, “Advanced Information.”

rsp2elf

Since ELF files are required by maker omand gvd, this tool is necessary to
construct final microcode objects out of the r spasmoutput. It creates a
dummy ELF . o and inserts the code and data sections into the appropriate
locations. It also synthesizes some program symbols from the file name, so
that the application code can reference the RSP text and data sections. From
this . o, maker omcan link the RSP microcode object into the game.

rsp, rspg

This tool is a software simulation of the RSP with a debugger-like interface.

21

Introduction

22

Originally developed to verify hardware design and enable parallel
hardware and software development, it remains useful for developing RSP
microcode in a stand-alone fashion.

It has two interfaces, a simple text window interface (r sp) and a fancy
window interface (r spg). The window interface supports source-level
debugging, which is extremely useful.

Gameshop Debugger (gvd)

The Gameshop debugger, gvd, can be used to debug RSP microcode
running on the real hardware.

Detailed instructions are beyond the scope of this document, but if you open
the “Coprocessor View” on gvd and set the program counter appropriately
you will be looking at IMEM. From here you can trace execution and
examine memory and registers.

Chapter 2

RSP Architecture

This chapter explains the significant architectural details of the Reality
Signal Processor (RSP). It is not intended to be a comprehensive hardware
specification, but it does describe the hardware features in sufficient detail
for software development.

Standing alone, the RSP is an extremely powerful processor; a fixed-point
RISC CPU capable of over half a billion arithmetic operations per second!?
As part of the RCP, the RSP is an integral part of the graphics/audio/video
processing pipelines.

Recommended background for this chapter includes a solid foundation in
computer architecture, including RISC processors and SIMD (Single
Instruction, Multiple Data) machines.

L This is not a misprint. At 62.5Mhz with an 8-element vector pipeline, the RSP could perform 500,000,000
multiply-accumulate operations per second. Since the RSP dual-issues scalar instructions, you could also do
another 62,500,000 scalar operations during that same second. That is more than three times the performance
of the Cray supercomputers from twenty years ago.

23

RSP Architecture

Overview

24

Slave to the CPU
The RSP operates as a slave to the CPU. As such, there are limited error

recovery facilities and many features are explicitly managed at a low level
(booting, IMEM, DMEM, etc.)

Part of the RCP

Figure 2-1, reproduced from the Nintendo 64 Programming Manual,
illustrates the major functional blocks of the RCP.

The RSP, along with the RDP and the 10 subsystem, comprise the RCP chip.
The RSP and RDP operate independently and are connected with the XBUS.

The 10 block of the RCP also includes memory interfaces and separate DMA
engines for the RSP and RDP.

Revision 1.0 Overview

Figure 2-1 Block Diagram of the RCP

RSP IMEM
|

TMEM » RDRAM (Rambus Memory)

»

CPU | VI Al Pl Sl

A l I RCP

v

R4300 ¥ Audio Y Game Contollers
Video Cartridge

R4000 Core

The RSP implements an R4000 core instruction set, with additional
extensions.

The core instruction unit (without the extensions) is referred to as the Scalar
Unit (SU).

25

RSP Architecture

26

Clock Speed

The RSP clock runs at 62.5 Mhz. Normally, the CPU and the RCP clock rates
runin a 3:2 ratio.

Vector Processor

The RSP has a vector processor, implemented as MIPS Coprocessor 2. The
vector unit (VU) has 32 128-bit wide vector registers (which can also be
accessed as 8 vector slices), a vector accumulator (which also has 8 vector
slices), and several special-purpose vector control registers.

The VU instruction set includes all useful computational instructions (add,
multiply, logical, reciprocal, etc.) plus additional “multimedia instructions”
which are well suited for graphics and audio processing. These instructions
are thoroughly explained in Chapter 3, “Vector Unit Instructions”.

Revision 1.0 Major R4000 Differences

Major R4000 Differences

The MIPS R4000 series processors provide a convenient framework for
learning about the RSP.

Pipeline Depth

Pipeline depth varies among MIPS processors and their implementations.
The RSP has a pipeline depth of 5.

No Interrupts, Exceptions, or Traps

The RSP operates as a slave processor. There is no support for interrupts,
exceptions, or traps.

Coprocessors

The RSP implements the following MIPS Coprocessors:

= Coprocessor 0 (system control). The RSP coprocessor 0 is not
compatible with the R4000 coprocessor 0. The RSP coprocessor 0 is
explained in Chapter 4, “RSP Coprocessor 0”.

e Coprocessor 2 (VU) implements the vector unit.

Other MIPS coprocessors, including coprocessor 1 (floating point processor)
are notimplemented.

Missing Instructions

The following R4000 instructions are not present in the RSP instruction set:

e LDL, LDR, LWL, LWR, LWU, SWL, SDL, SDR, SWR, LL, LLD,
LDC1, LDC2, LD, SDC1, SDC2, SD, (all 64-bit loads/stores, load
locked, and load/store left/right)

e SC, SCD, (store conditionals)

27

RSP Architecture

28

BEQL, BNEL, BLEZL, BGTZL, BLTZL, BGEZL, BLTZALL,
BGTZALL, BGEZALL, (all “likely”” branches)

MFHI, MTHI, MFLO, MTLO, (all HI/LO register moves)

DADDI, DADDIU, DSLLV, DSRLV, DSRAV, DMULT, DMULTU,
DDIv, DDIVU, DADD, DADDU, DSUB, DSUBU, DSLL, DSRL,
DSRA, DSLL32, DSRL32, DSRA32, (all 64-bit instructions)

MULT, MULTU, DIV, DIVU, (all multiply/divide instructions)
SYSCALL, (RSP does not generate exceptions)

SYNC, (this instruction is intended for multiprocessor systems)
BCzF, BCzT (all branch-on-coprocessor instructions)

TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEIU, TLTI, TLTIU,
TEQI, TNEI, (all TRAP instructions)

Modified Instructions

Some RSP instructions do not behave precisely like their R4000 counterparts.
Some major differences:

ADD/ADDU, ADDI/ADDIU, SLTI/SLTIU, SUB/SUBU. Each pair of
these is synonymous with each other, since the RSP does not signal
overflow exceptions.

BREAK does not generate a trap; instead condition bits in the RSP
status register are set and an interrupt is signaled.

Detailed behavior of all instructions is presented in Appendix A , “RSP
Instruction Set Details”.

Revision 1.0 IMEM

IMEM

The RSP has 4K bytes (1K instructions) of instruction memory (IMEM).

Addressing

The RSP PC is only 12-bits; only the lowest 12-bits of any address or branch
target are used. Other address bits are ignored.

Explicitly Managed

IMEM must be explicitly managed by the RSP program. IMEM contents can

only be loaded with a DMA operation (or programmed 10 write from the
CPU).

29

RSP Architecture

DMEM

30

The RSP has 4K bytes of data memory (DMEM).

Addressing

Since DMEM is 4K bytes, only the lowest 12-bits of addresses are used to
address DMEM. Other address bits are ignored.

Explicitly Managed Resource

DMEM must be managed by the RSP program. All RSP loads/stores can
only access DMEM; data must first be transferred between DMEM and
external DRAM using a DMA operation (or programmed 10 write from the
CPU).

Revision 1.0 External Memory Map

External Memory Map

The RSP memory and control registers map into the host CPU address space
as defined in the filer cp. h.

This memory map is used by the CPU program to manage the RSP.

It is also convenient to use this address map with the RSP assembler

(r spasm and RSP simulator (r sp). Since only the lower 12-bits of addresses
and branch targets are used, the upper bits are safely ignored.

Chapter 4, “RSP Coprocessor 07, details this address space; in particular,
Table 4-6, “RSP Coprocessor 0 Registers (CPU VIEW),” on page 94 and
Table 4-7, “Other RSP Addresses (CPU VIEW),” on page 95.

General-purpose SU and VU registers cannot be addressed externally.

31

RSP Architecture

Scalar Unit Registers

The RSP Scalar Unit has 32 general-purpose registers, each 32 bits wide.

SU Register Format

The RSP has big-endian byte ordering.
Figure 2-2 SU Register Format

byte 0 byte 1 byte 2 byte 3

31 0

Register 0

Register 0 ($0) is a special register. It always contains a zero, and cannot be
modified. Attempting to modify $0 is a null operation.

Since DMEM addresses are only 12-bits, it can be convenient to use $0 as the

base register for loads/stores (the entire DMEM address will fit in the 16-bit
offset field).

Register 31

Register 31 ($31) is a special register. The j al andj al r instructions store
their return address in this register.

If these instructions are avoided, this register can be treated as any other SU
register.

32

Revision 1.0 Scalar Unit Registers

SU Control Registers

RSP control registers are part of Coprocessor 0, and are explained in
Chapter 4, “RSP Coprocessor 0,” particularly Table 4-2, “RSP Status
Register,” on page 85.

33

RSP Architecture

Vector Unit Registers

34

The RSP Vector Unit has 32 general-purpose vector registers, each 128 bits
wide.

Depending on the operation, vector registers can be accessed as a single unit,
by bytes, or by 16-bit elements corresponding to a vector slice.
VU Register Format

The RSP has big-endian byte ordering.
Figure 2-3 VU Register Format

element 0 element 1 element 2 element 3 element 4 element 5 element 6 element 7
byte O | byte 1 | byte 2 | byte 3 | byte 4 | byte 5 | byte 6 | byte 7 | byte 8 | byte 9 |byte 10|byte 11|byte 12|byte 13|byte 14|byte 15
127 0

Bits within a byte or register element are numbered similarly, little-endian.

VU Register Addressing

VU registers can be accessed in a variety of formats, depending on the
instruction being executed.

Computational Instructions

Most computational instructions operate on VU registers as vectors,
performing the same operation on 8 16-bit vector elements, on an
element-by-element basis, with the 8 elements corresponding to the vector
slices.

Revision 1.0 Vector Unit Registers

Instructions can operate on pairs of elements, adding two vectors (8 pairs of
numbers), for example.

VU registers can also be addressed as scalars, allowing you to add 1 number
(the same number) to a vector (8 numbers), for example.

Further, registers can be broken into scalar halves and scalar quarters,
allowing you to treat pieces of VU as subsets, performing the same
operations on consecutive ranges of elements. This is best understood with
an illustrated example, see Figure 3-8, “Scalar Half and Scalar Quarter
Vector Register Elements,” on page 59.

RSP assembly language syntax for vector registers is explained in the section
“Vector Register Element Syntax” in Chapter 5.

Loads, Stores, and Moves

VU loads, stores, and moves a/ways reference data within VU registers by
their bytes. So if you want to load a short (2 bytes) into element 3 of a VU
register, you must do this:

Isv $vi[6], O($1)

Element 3 corresponds to byte 6, of the VU registers.

Caution: A very common programming error is to confuse the “byte
index” of a VU load/store with the “element index” of a computational
instruction.

35

RSP Architecture

36

high

Accumulator

Each vector slice has a 48-bit accumulator associated with it. Each 16-bit
element of a vector register maps to a vector slice, and therefore to a different
48-bit accumulator.

Figure 2-4 VU Accumulator Format

middle low

byte O

byte 1

byte 2 byte 3 byte 4 byte 5

a7

The accumulator is modified by most VU computational instructions, but it
is used most heavily by the multiply-accumulate instructions. For these
instructions, 16-bits of the accumulator is written out after accumulation.
“Which” 16-bits to be written is usually an accumulator element. Consult
“VU Multiply Instructions” in Chapter 3 for more information.

One VU instruction, vsar, can directly reference the accumulator directly.

VU Control Registers

Vector Compare Code Register (VCC)

This 16-bit register contains 2 bits per 16-bit slice of the VU and is used by
the select instructions.

Revision 1.0 Vector Unit Registers

vs <= -vt (for clip compares)

The low 8 bits are used for most compares (vlt, veq, vne, vge) and
merge (vnt g), and all 16 bits are used for the clip compares (vcl, vch,
ver).

Figure 2-5 VCC Register Format

select compare is TRUE
(vs >= vt, for clip compares)

elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Vector Carry Out Register (VCO)
This 16-bit register contains 2 bits per 16-bit slice of the VU and is used by
some of the add and select instructions to perform double-precision
operations.
The low 8 bits are CARRY, and are set by vaddc or vsubc instructions that
generate a carry out (or borrow, in the case of vsubc). The upper 8 bits are
NOT EQUAL, set by vaddc or vsubc if the operands are not equal.
vadd, vsub, and select compare instructions (vl t, veq, vne, vge) use
VCO as inputs and clear VCO. Select compare instructions use VCO which
was previously set by a vsubc instruction.
Figure 2-6 VCO Register Format
NOT EQUAL is TRUE CARRY is TRUE
elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem|elem
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

37

38

RSP Architecture

Vector Compare Extension Register (VCE)

This 8-bit register contains one bit for each VU slice, set to 1 if the vch
comparison was -1, 0 otherwise. Expressed in a high-level language:

if ((vs[elem] < 0 & vt[elen] >= 0) ||
(vs[elen] >= 0 & & vt[elem < 0) {

if (vs[elen] + vt[elen] == -1)
VCE[elem = 1;
el se
VCE[el em{ = O0;
} else {

VCE[el em{ = O;
}

This is used for double-precision clip compares by vcl (in addition to VCC
and VCO); vcl clears VCE.

Figure 2-7 VCE Register Format

compare is -1

elem|elem|elem|elem|elem|elem|elem|elem
7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Revision 1.0 SU and VU Interaction

SU and VU Interaction

The RSP can execute two instructions per clock cycle, one scalar instruction
and one vector instruction. The scalar unit and vector unit operate in
parallel.

Dual Issue of Instructions
The instruction fetch cycle can fetch at mosttwo instructions, one SU and
one VU. If there are no register conflicts, both instructions can be issued in

parallel.

Instructions are paired in order, they are not re-ordered to facilitate dual
issue. They do not need to be aligned as one SU and one VU in a 64-bit word.

If the pipeline stalls due to register conflicts (see “Register Hazards” on
page 43), noinstructions are issued.

39

RSP Architecture

RSP Instruction Set

40

The details of the instruction set can be found in Appendix A, however
several important properties are worth mentioning here.
Instruction Formats

All RSP instructions are implemented within the MIPS R4000 Instruction Set
Architecture.

SU Instruction Format
The SU instructions include all three formats found in the MIPS ISA:

immediate (I-type), jump (J-type), and register (R-type). Consult the M/PS
R4000 Microprocessor User’s Manualfor more information.

VU Instruction Format

VU instructions are implemented as coprocessor instructions, as defined by
the MIPS ISA.

Detailed discussion of VU instructions can be found in Chapter 3.

Distinguishing SU and VU Instructions
If the opcode mnemonic starts with a ‘v’, it is a vector unit instruction.

It is important to re-iterate that VU loads, stores, and moves are SU
instructions; they are executed in the scalar unit (possibly in parallel with
other VU instructions).

lllegal Instructions

If an illegal instruction is issued (incorrectly aligned load, incorrect VU
element usage, etc.) execution will still occur. Something wi// happen,
possibly modifying RSP state or the instruction flow, possibly not in the
expected way.

Revision 1.0 Execution Pipeline

Execution Pipeline

RSP Block Diagram
The RSP execution pipeline is illustrated in Figure 2-8.

The scalar unit of the RSP has a five stage pipeline:

IF Instruction Fetch. During this stage, two instruction are
fetched and decoded, dual-issuing, if possible.

RD Register Access and Instruction Decode. Control is set
up for functional units based on instruction decode.

EX Execute. For computational operations, the result is
calculated; for loads/stores/branches, the address is
calculated.

DF Data Fetch. For loads, the data is fetched; store data is
stored.

WB Write Back. Results are written back to registers.

The vector unit also has a five stage pipeline:

IF Instruction Fetch. Nothing happens in the VU during
this stage.

RD Register Access and Instruction Decode. Muxing for
“scalar mode”.

MUL Multiply. During this stage, computational operations
are computed. Reciprocal operations begin
table-lookup.

ACC Accumulate. Additional computation is performed.

Reciprocal operations perform table-lookup.

WB Write Back. Minor computations and writing of data to
vector registers.

41

RSP Architecture

Figure 2-8 RSP Block Diagram

dam

910\ v/

ad

=

o

XN

[eooidioay

= AR eep peoj E
— Uisie
952Xq8zT
akadiy
WeNQ
— REEC B
[|
18YIys N
[=
dd 1 T 10)!
1 1] M| e EQm_|_
< < [< | < _MTN_
[T [T HHH ad"youel
1A Jejeos T |L_L Mo e
MZHE STs.0 MTHZ
311y Js1Ba1 49TXZE ally 1osiBal zexqge
| | L
sawin g pejeat|dal ‘ad11S Uq 9T suggg 0 e Ay
autjadid NA autjadid NS

am

1d

X4

dd

dl

42

Revision 1.0 Execution Pipeline

Mary Jo’s Rules?!

Avoiding pipeline stalls in software can be accomplished by understanding
the following rules.

1.

VU register destination writes 4 cycles later (need 3 cycles between
load and use). This applies to vector computational instructions,
vector loads, and coprocessor 2 moves (nt c2).

SU register load takes 3 cycles (need 2 cycles between load and
use). This applies to SU loads and coprocessor moves (nf cO,

cf c2, nfc2). SU computational results are available in the next
cycle (see “SU is Bypassed” on page 44).

Any load followed by any store 2 cycles later, causes a one cycle
bubble. Coprocessor moves (nt c0, nfc0O, mc2, nfc2,
ctc2, cfc2)countasboth loads and'stores.

A branch target not 64-bit aligned always single issues.
Branches:
a. Can dual issue (with preceding instruction).

b. No branch instruction permitted in a delay slot.
c. Delay slot always single issues.

d. Taken branch causes a 1 cycle bubble.

Register Hazards

The RSP hardware implements register hazard locking for SU and VU
registers. Once an instruction is fetched and decoded, its destination register
is marked as a “hazard”; if this register is used as an input to a subsequent
instruction, the pipeline will stall.

1 Named after Mary Jo Doherty, the designer of the RSP.

43

RSP Architecture

44

add $3, $4, $6‘ I ‘ RD* EX
|

add $7, $3. $8| IF

Obviously, pipeline stalls should be avoided by the programmer (when
possible) for the best performance.

Because the SU is bypassed (see below), this section only applies to SU
registers for loads (and coprocessor moves) and VU registers.

SU is Bypassed

Bypassing, or forwarding, is a technique commonly used to accelerate RISC
execution pipelines.

Instead of waiting for the result of a previous instruction to be written to its
destination register, a subsequent instruction can use the (correct) value
which is residing in a temporary register in the arithmetic and logical unit.

Figure 2-9 Pipeline Bypassing

add $4, $4, $5‘ IF l RD | EX DF |WB ‘

sw $7, 0($10) ‘ IF

For software, this means that results from SU instructions are available in the
next clock cycle, removing the concern of preventing pipeline stalls.

L An obvious question is “why isn’t the VU bypassed?” As illustrated in Figure 2-8, the final result of a vector
computation is not available until very late in the WB stage of the pipeline.

Revision 1.0 Coprocessor 0

Coprocessor 0

The RSP coprocessor 0 is thoroughly discussed in Chapter 4, but is
mentioned here for completeness.

Coprocessor 0 in the MIPS R4000 architecture is designated as the “system
control coprocessor”. Since the RSP is a slave processor, the system control
functions are greatly reduced, and therefore the usage of coprocessor 0 does
not conform to the MIPS R4000 architecture specification.

The RSP does use coprocessor 0 for “system control” functions, these
functions (and their registers) are explained in Chapter 4.

45

RSP Architecture

Interrupts, Exceptions, and Processor Status

Interrupts

The RSP does not respond to interrupts, and it can only generate a single
interrupt (M _I NTR_SP), triggered by the br eak instruction.
Exceptions

No RSP instruction can cause an exception, and there are no exception
handling facilities in the RSP.

Processor Status

The RSP has a processor status register in coprocessor 0, this register can be
used to communicate with the CPU. See page 85 for more information.

46

Chapter 3

Vector Unit Instructions

Details about each specific instruction are contained in Appendix A, but it is
useful to discuss issues common to all of the vector unit instructions, as well
as to discuss each related group of vector unit instructions in context.

There are two categories of vector unit instructions discussed in this chapter:

= Vector Loads/Stores/Moves. These are actually scalar unit
instructions (executed in the SU, possibly in parallel with VU
computational instructions) which load/store/modify vector unit
general purpose or control registers.

= Vector Computational Instructions. These instructions are executed
in the vector unit in parallel with any scalar instructions.

All of these instructions are implemented with the MIPS coprocessor
extensions to the MIPS R4000 Instruction Set Architecture, which permit
coprocessor-specific interpretation of some instruction bits. It is these
“coprocessor-specific” details which are the subject of this chapter.

47

Vector Unit Instructions

VU Loads and Stores

31 26 25

Vector loads and stores are scalar unit (SU) instructions used to move the
contents of DMEM to and from VU registers (see “VU Register Format” on
page 34). VU loads and stores can only access DMEM; they cannot access
DRAM. Data must be transferred into DMEM using a DMA operation before
use.

VU Load and Store instructions follow the general format of MIPS
Coprocessor loads and stores (LWC2, SWC2), except for a different
interpretation of the 16 offset bits. This usage of the 16 bit offset field in MIPS
coprocessor opcode space extends the number of memory operations,
without using up a lot of instruction space.

Figure 3-1 VU Load and Store Instruction Format

21 20 16 15 11 10 7 6 0

LWC2 or SWC2

base

vt opcode element offset

48

The operands are:

Baseis an SU register containing a DMEM memory address. Only the
lower 12 bits of this register are used, other bits are ignored.

VTis the VU register to or from which memory data is written.
The opcode is the memory item type and operation being performed.
Elementis the byte element of the VU register being accessed.

Offsetis a 7 bit constant shifted by the memory item size and added to
the memory address in base. This means that the offset supplied in the
assembly language must be an operand-size-aligned integral; a
multiple of 2 bytes for a short load, 4 bytes for a long, etc. Since the
offset is added to the base, the effective address can still be
byte-aligned, however.

All VU loads are delayed load instructions, with three load delay slots
(results from a VU load are available for use in the fourth instruction
following the load). If a VU instruction attempts to use the destination

Revision 1.0

VU Loads and Stores

Normal

Packed

register of a VU load, hardware interlocking will stall the processor until the

data arrives.

Note: VU stores use an identical pipeline; since accesses to memory

always occur in the same VU pipeline stage, a VU store followed by an
immediate load from the same memory location is guaranteed to fetch
the correct data.

VU stores followed by SU loads are also guaranteed to fetch the correct
data, for similar reasons.

VU loads and stores are of three types, normal, packed, and transpose.

Normal operations allow the movement of the usual integer memory data
items of powers of two numbers of bytes between memory and VU registers
with memory byte alignment, and VU element alignment to the size of the

item.

The packed operations support access to memory byte data and two and

four byte per pixel image data (such as YUV or RGBA).

Transpose accesses are discussed in a subsequent section, and include a
transposed or wrapped store, and a transposed and wrapped load.

Table 3-1 VU Load/Store Instruction Summary

Opcode Memory Item Memory VU Element Offset Shift
Alignment (legal values) Amount
| bv, sbv 8b (byte) byte 0-15 <<0
| sv, ssv 16b (short) byte 0-14 by 2 <<1
I1v, slv 32b (long) byte 0-12 by 4 << 2
| dv, sdv 64b (double) byte 0,8 <<3
I qv, sqv 128b (quad) byte (see below) | 0 <<4
lrv, srv 128b (rest) byte (see below) | 0 << 4
| pv, spv 8 8b, signed (pack) byte (bit 15) 0 <<3
| uv, suv 8 8b, unsigned (upack) byte (bit 14) 0 <<3
| hv, shv 8 8b every 2nd, quad+0,1 0 << 4

unsigned (half pack)

49

Vector Unit Instructions

50

Transpose

Opcode Memory Item Memory VU Element Offset Shift
P y Alignment (legal values) Amount
I fv, sfv 4 8b every 4th, quad+0to 3 0,8 << 4
unssigned (fourth pack)
Itv, stv, 8 16b (transpose, wrap) | quad 0-14 by 2 << 4
sw

If an illegal alignment (or element value) is attempted, something wi//be
loaded or stored, but probably not what was intended.

Normal

Normal loads and stores move a single memory item to or from an element
of a VU register. Items are byte (8 bit), short (16 bit), Jong (32 bit), double (64
bit), and guad or rest(128 bit). The memory address is byte aligned. The VU
element is aligned to the size of the item.

Quad and rest operands update the portion of the memory item or VU
register which fall within the aligned quad word.

Quad operations move a byte-aligned quad word up to the 16 byte
boundary, that is, (address) to ((address & ~15) + 15) to/from VU register
element 0 to (address & 15).

Rest is used to move a byte-aligned quad word up to the byte address, that
is, (address & ~15) to (address - 1) to/from VU register element

(16 - (address & 15)) to 15. A rest with a byte address of zero writes no
bytes.

The quad and rest pair can then move a byte-aligned quad word to/from an
entire vector register in two instructions. (This can also be performed with

two byte-aligned double instructions, although quad and rest allow the two
quad words to be disjoint.) A quad word on a quad word boundary can be
moved in one quad instruction.

Revision 1.0 VU Loads and Stores

Figure 3-2 Long, Quad, and Rest Loads and Stores

Long item: Byte Address

128b alignment ; ltem size

Memory word

VU register

Element

Quad item crossing memory word: Byte Address

128b alignment p- |tem size
A//,. Memory word

VU register

Element

Rest item crossing memory word: Byte Address

128b alignment p- |tem size
\ Memory word

Element

VU register

51

Vector Unit Instructions

52

Packed

Packed loads and stores move memory bytes to or from short elements of the
VU register, which are aligned to shorts. They are useful for accessing one,
two, or four channel byte image data for VU processing as shorts, such as for
VU multiplies.

When only some bits of a slice receive data from memory the remaining bits
in the slice get zeros.

| pv/ spv (pack) moves 8 consecutive bytes to or from a memory.

| uv/ suv (unsigned pack) is similar to | pv/ spv, except the memory byte
MSB is aligned to bit 14 of the VU short for unsigned data.

| hv/ shv (half) moves every other memory byte, and the selection of odd or
even bytes is controlled by the memory byte address.

| fv/ sfv (fourth) moves every fourth memory byte, and the selection of
which bytes is controlled by the memory byte address. Since fourth only
access four bytes within a memory word, e/ementspecifies whether the low
or high four shorts of the VU register are accessed.

Packed loads and stores are illustrated in Figure 3-3.

Revision 1.0

VU Loads and Stores

Figure 3-3 Packed Loads and Stores

Half
128b alignment
Byte Address
Y
Fourth

128b alignment
Byte Address

Pack, Unsigned Pack
128b alignment

Element

Byte Address

Memory word

VU register

Memory word

VU register

Memory word

VU register

53

Vector Unit Instructions

54

The alignment of various pack formats with VU short elements is shown in
the Figure 3-4

Figure 3-4 Packed Load and Store Alignment

Pack Upack, Half, Fourth
Memory byte item
0 VU short element
Zero Zero
15 0 15 14 7 0

Unsigned pack, half, and fourth items are intended to support unsigned
bytes for one, two, or four channel image data. Pack is a signed byte, for
example for 8 bit audio or geometric normal or difference vectors. The
alignment to the VU short MSB optimizes usage as signed or unsigned
fractions in subsequent VU multiplies.

Transpose

Transpose loads and stores can be used to transpose an 8 by 8 block of shorts
in 16 instructions.

The instructions are st v, sw, and |tv. Transpose loads and stores
move a 128 bit VU register to and from an aligned 128 bit memory word as
8 16 bit values, one from each VU slice. The VU register number of each slice
is computed as:

(VT & 0x18) | ((Slice + (Element >> 1)) & 0x7)

which is to say, vtspecifies a base register of an 8 register group. Within that
group, the register address is a function of the slice number and the element
number treated as 0 to 7. A store gathers a diagonal vector of shorts from 8
VU registers into a memory word, or a load scatters a memory word into a
diagonal vector of shorts in 8 VU registers, without writing the other shorts
in each register. Wrap loads and stores perform a circular left shift of the 8

shorts by (element >> 1), which is equivalent to:

Revision 1.0 VU Loads and Stores

dest_short[Slice] = source_short[((Slice +
(Element >> 1)) & 0x7)]

A transpose is shown in Figure 3-5, with 8x8 block of 8 shorts in 8 VU
registers numbered in row order for the 64 elements of the block. The other
14 vector loads and stores needed for the transpose are similar. For a
memory-to-memory transpose, the instructions used are | t v and sw, and
for a register-to-register transpose, st v and | t v.

Interlock is performed by enabling the source and destination register
comparisons on only the upper two register number bits, that is, making any
interlock comparison to the 8 registers within a transpose block true.

Figure 3-5 Transpose Loads and Stores

VT 40
12 49
21 58
30 3
39| |40 49 58 3 12 21 30 39 12
40 128b memory word 21
49 30
o8 VT+7 39

Store Transpose, Element 5

Load Transpose, Element 3

55

Vector Unit Instructions

VU Register Moves

56

31

VU register move instructions follow the general format of MIPS
Coprocessor moves (MTC2, MFC2, CTC2, CFC2), with additional
interpretation of the lower 11 bits.

Figure 3-6 VU Coprocessor Moves

21 20 16 15 11 10 7 6 0

COP2 move opcode

rt S element undefined

The low 16 bits of the SU register rtare moved from or to the 16 bit element
of the VU register vsspecified in e/lement. The SU register is sign extended
when moved from the VU register.

For general VU register moves, elementis a byte element, which must be one
0f [0,2,4,6,8,10,12,14].

For control register moves, the vsfield specifies the VCO, VCC, or VCE
control registers, and elementis ignored. See “VU Control Registers” on
page 36 for explanation of each control register.

Moves to VU registers have the same load delay characteristics as VU loads.
Moves to SU registers have the same load delay characteristics as SU loads.

Revision 1.0 VU Computational Instructions

VU Computational Instructions

31

26 25 24

The VU computational instructions adhere to the general format of MIPS
Coprocessor Operate instructions (COP2).

Figure 3-7 VU Computational Instruction Format

21 20 16 15 11 10 6 5 0

COP2

1| element

vt VS vd opcode

Most VU computational instructions are three operand:
VD = VS operation\'T

where each operand is one of 32 vector registers. The vtoperand can also be
ascalar operand in some instructions, that is, one 16 bit element of the vector
register, as defined in the element field. The value written to vd'is clamped
(saturated) to the minimum and maximum values of the element (-32768 and
+32767 for 16-bit signed elements), before being written.

A vector accumulator register (see “Accumulator” on page 36) is available to
accumulate results over several instructions. The accumulator is modified
by all multiply and some add instructions, but its contents are unchanged
after other VU instructions. The major types of VU computational
instructions are multiply, add, select, logical, and divide. The upper bits of
the gpcodefield select the instruction type, and are encoded as in Table 3-2.

Table 3-2 VU Computational Instruction Opcode Encoding

Opcode Instruction
00 XxXXXX Multiply
01xxxXx Add
100xxX Select
101xxx Logical
110xxx Divide

57

Vector Unit Instructions

58

Using Scalar Elements of a Vector Register

Element encodings are shown in Table 3-3, where x indicates the bit field
used to select which element. Scalar elements can be selected within

quarters, halves, or the whole vector.
Table 3-3 VU Computational Instruction Element Encoding

Type Assembly Ele_ment Usage
Syntax Example Field
Vector $vil 0000 vector operand
Scalar Quarter $v1[xql 001x 1 of 2 elements for 4 2-element quarters of vector
Scalar Half $v1[xh] 01xx 1 of 4 elements for 2 4-element halves of vector
Scalar Whole $vi[x] 1xxX 1 of 8 elements for whole vector

This is useful for operating on multiple “vectors” within one instruction

cycle, such as working on two 3D points/vectors.

Consider the following code to compute the square of the distance between

two

In this example, scalar half and scalar quarter element references are used in
the vadd instructions to collect the intermediate terms. We can also compute
the distance between two groups of point-pairs at once, by putting each

points:
#

dist"2 = (xa-xb)"2 + (ya-yb)"2 + (za-zb)"2

#

Assunes single precision, all in range, etc.

#

vsub $v3, $vi, 9$v2 # cal c (xa-xb), (ya-yb), (za-zb)

vmudh $v3, $v3, $v3 # square the differences
vadd $v3, $v3, $v3[1q]# collect the terms
vadd $v3, $v3, $v3[2h]

Revision 1.0 VU Computational Instructions

point-pair in the same half of the vector registers. The register contents and
operations are illustrated in Figure 3-8.

Figure 3-8 Scalar Half and Scalar Quarter Vector Register Elements

$vi1 xa ya za 0 xa ya za 0

$v2 xb b zb 0 xb b zb 0

vsub $v3, $vi, $v2

$v3 (xa-xb) | (va-yb)| (za-zb) 0 (xa-xb) | (va-yb)| (za-zb) 0
I I I I I I I I

$v3 (xa-xb) | (va-yb)| (za-zb) 0 (xa-xb) | (va-yb)| (za-zb) 0

vimudh $v3, $v3, $v3 % % % % ? %
X v 2 X v 2

$v3 0 0
vadd $v3, $v3, $v3[1q]

$v3 X'+y’ y+y’ Z'+0 0+0 xX'+y’ y+y’ zZ+0 0+0
vadd $v3, $v3, $v3[2h]

$v3 X+y'+z2’| yry'+z'| z2'+Z2 z’ Xty'+z'| y'+ry'+z’| z'+z’ z’

59

Vector Unit Instructions

In the above example (since add is commutative), a slightly different usage
of the vector registers could have been used to direct the final result to be in

a different element. Replacing:
vadd $v3, $v3, $v3[1q]

with
vadd $v3, $v3, $v3[0q]

would leave the final result in element [1h] instead of [Oh] . This might be
important, in order to align the results for the next computation.

60

Revision 1.0 VU Multiply Instructions

VU Multiply Instructions

Figure 3-9 VU Multiply Opcode Encoding

4 3 2 0

00 a format

VU multiply instructions perform various multiplies, specified by the
following fields:

Element: Vector or scalar element of vt

A:When a== 1, Accumulate the product, otherwise round the product
and load the accumulator. The round value is determined by the
format.

Format: Select various product and result options.

The productis the 32 bit signed result from the 16x16 signed multiply. Each
element of the accumulatoris 48 bits wide (see “Accumulator” on page 36).
The resultis the 16 bits of the accumulator written to vd. Double precision
(32 bit) operands are supported by multiplying and accumulating the low 16
bits from one vector operand and the upper 16 bits from another vector
operand in several multiply instructions. Formats for various product and
result options are shown in Table 3-4.

Table 3-4 VU Multiply Instruction Summary

Fmt S, T signed ZL?E Round Value Result Clamping Instructions
000 sign, sign <<1 +32768 b31-16 sign, b31-msb virul f, vmacf
001 sign, sign <<1 +32768 b31-16 uns, b31-msb vimul u, vmacu
010 NA, sign NA +VT if Acc b31-16 sign, b31-msb vrndp, vrndn
011 | sign, sign << 16 +31 if Prod b32-17 sign, b32-msb vmul g, vnacq
100 uns, uns >>16 0 b15-0 sign, b31-msb vudl , vnadl
101 | sign,uns 0 0 b31-16 sign, b31-msb vmudm vmadm

61

Vector Unit Instructions

62

Fmt S, T signed erﬁg Round Value Result Clamping Instructions
110 uns, sign 0 0 b15-0 sign, b31-msb vmudn, vnadn
111 sign, sign << 16 0 b31-16 sign, b31-msb vrmudh, vmadh

vul f and vimul u support operands with 15 fraction bits, and differ only in
whether the result is clamped signed or unsigned. Small integer operands
can be multiplied with vnudh (if the result is bigger than 16 bits, double
precision should be used.)

vul g is intended specifically to support 12 bit MPEG inverse
quantization®. The productis shifted left by 16 in order to clamp on the
upper accumulator. The round value (31<<16) is added to the product if the
productis negative, otherwise zero is added. The result is clamped and
shifted right by 17 before being written to vdand AND’d with OxFFFO,
producing a result from -2048 to 2047 aligned to the short MSB. In other
words,

VD = (ACC >> 17) & OXFFFO

vacq ignores the vsand vtoperands, and performs oddification® of the
accumulator by adding (32<<16) if the accumulator is negative and bit 21 is
zero, adding (-32<<16) if positive and bit 21 is zero, or adding zero if the
accumulator bits 47-21 is zero or bit 21 is one. The clamp and shift is the same
asvmnul g.

vr nd is intended to specifically support MPEG DCT rounding®. The vt
operand is conditionally added to the accumulator. For vr ndn, v¢is added
if the accumulator is negative, otherwise zero is added. For vr ndp, vtis
added if the accumulator is positive, otherwise zero is added. v¢is shifted
left by 16 if the register number vsis 1, or not shifted if vsis zero (note this
is the instruction field vs, not the contents of vs).

L MPEG1 Specification, ISO/IEC 11172-2. MPEG documentation is available from the American National
Standards Institute (ANSI), New York, N.Y.; or from the Japanese Industrial Standards Committee (JISC),
Tokyo, Japan.

Revision 1.0 VU Multiply Instructions

Rounding is performed for single precision multiplies by adding the
appropriate rounding value (as dictated by the format) to the accumulator.

Clamping (saturation) is performed by testing certain accumulator bits
above the 16 bit result field, and substituting maximum or minimum 16 bit
signed or unsigned numbers, as dictated by the format.

The operations viul * and vimac* (or vhud* and vnad*) either load the
accumulator or add the product to the accumulator. Typically a vimac* or
vmad* must immediately follow a vrrul * or virud* instruction or else the
accumulator contents are undefined.

viul f supports signed fractions. virul u supports signed fractions with
clamping to an unsigned result, such as for pixel color values. For double
precision, virudl performs the low partial product, vmudmand vnudn the
middle partial products, and virudh the high partial product.

Ignoring clamping, the multiply instructions are equivalent to:
for (i=0; i<8; i++)
VD[i] = (ACTi] = (VS[i] * VI[i] << 1) + Round) >> 16;
and the multiply accumulate instructions are equivalent to:
for (i=0; i<8; i++)
VD[i] = (ACCi] += VS[i] * VI[i] << 1) >> 16;

or in either case, possibly times vifelement].

The double precision multiply instructions are equivalent to:

for (i=0; i<8; i++)
VD[i] = ((ACCi] = (VS[i] * VI[i]) <<>> prod_shift) >>
result_shift);

and the double precision multiply accumulate instructions are equivalent to:

for (i=0; i<8; i++)
VD[i] = ((ACCi] += (VS[i] * VT[i]) <<>> prod_shift) >>
result_shift);

Lin the following examples, the notation ‘<<>>’ means “shifted up or down, whichever is appropriate”.

63

Vector Unit Instructions

Double precision operands use a register pair, one register containing the
upper signed 16 bits and another containing the low unsigned 16 bits.

Double precision multiplication is illustrated in Figure 3-10.

Figure 3-10 Double-precision VU Multiply

VS and VT operands
High 16b signed int,
Low 16b unsigned frac

vimudl SL*TL >> 16

+

vhmadmSH * TL >> 0
+

vmadn SL* TH >>0
+

vnmadh SH * TH << 16
+

Accumulator

64

VD result

H 16b int, L 16b fract

Since double precision returns at most a 32 bit result, software must keep
numbers in range.

Mixed precision, that is a 16x32 multiply, can be performed with different
combinations of multiply instructions.

In some instances, it is necessary to use an additional multiply instruction to
extract the rest of the answer from the accumulator. This is necessary
because one of the partial-product multiplies may change the sign of the
result, requiring you to retrieve a portion of the result from the accumulator
again.

Revision 1.0 VU Multiply Instructions

Vector Multiply Examples
The following code fragments illustrate various multiplies. In this section,
the following notation is used:

« | isasigned 16-bit integer.

< Fisanunsigned 16-bit fraction.

« | Fisa 32-bit number, with the signed upper 16 bits contained in
one register, and the unsigned lower 16 bits contained in a second
register.

e _int isanamed vector register holding a signed 16 bit number.

< frac isanamed vector register holding an unsigned 16 bit
fraction.

e dev_nul | isanamed vector register containing all zeros.

I FxI:
#
m xed precision nmultiply:
#1F* 1 =1F
#

vihudn res_frac, s_frac, t_int
vmadh res_int, s_int, t_int
vmadn res_frac, dev_null, dev_null[0]

I xI F:

#

m xed precision multiply:

#1 *IF=1F

#

vhmudmres_frac, s_int, t_frac

vmadh res_int, s_int, t_int

vmadn res_frac, dev_null, dev_null[0]

| FxF:

#

m xed precision nmultiply:
#I1F* F=1IF

#

vimudl res_frac, s_frac, t_frac

65

Vector Unit Instructions

66

vmadmres_int, s_int, t_frac
vmadn res_frac, dev_null, dev_null[0]

I xI:

#

single precision integer nultiply:
#1101 =1

#

vhudh res_int, s_int, t_int

I xXF:

#

single precision nultiply:
#1 * F=1F

#
vhmudmres_int, s_int, t_frac
vmadn res_frac, dev_null, dev_null[0]

Other combinations are left as an exercise to the reader.

Revision 1.0 VU Add Instructions

VU Add Instructions

Figure 3-11 VU Add Opcode Encoding

4 3 0

01 type

The VU add instructions perform various types of adds, specified by the
following fields:

Element. VVector or scalar element of v (except vsar where it selects the
accumulator portion).

Type. One of the following types of add instructions:
Table 3-5 VU Add Type Encoding

Type Instruction
0000 vadd
0001 vsub
0010 reserved
0011 vabs
0100 vaddc
0101 vsubc
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved

67

Vector Unit Instructions

68

Type Instruction
1101 vsar
1110 reserved
1111 reserved

The VU adds are short (16 bit) add operations; they clear VCOand clamp to
16 bit signed values. vadd uses VCOas carry in, vsub uses VCOas borrow in,
and vabs ignores VCO.

vadd: VD =VS + VT
vsub: VD = VS - VT.

vabs: conditional negation of vZby the sign of vs. Also performs si gn() .

if (VS <0
VD = -VT;
else if (VS == 0)
VD = VS;
el se
VD = VT;

Add operations for double precision, no clamping:

vaddc: VD =VS + VT, set VCOwith carry out and not
equal.

vsubc: VD =VS - VT, set VCOwith borrow out and not
equal.

vsar : read the accumulator and write to vd and write the accumulator with
the contents of vs. vtis ignored. The high, middle, or low 16 bits of the
accumulator are selected by the e/ement(corresponding to element values of
0, 1, and 2, respectively). No clamping is performed. vsar is useful for
diagnostics and extended precision.

Vector Add Examples

The following code fragments illustrate various adds. In this section, the
following notation is used:

Revision 1.0 VU Add Instructions

| is asigned 16-bit integer.
= Fisan unsigned 16-bit fraction.

= | Fisa 32-bit number, with the signed upper 16 bits contained in
one register, and the unsigned lower 16 bits contained in a second
register.

< _int isanamed vector register holding a signed 16 bit number.

< frac isanamed vector register holding an unsigned 16 bit
fraction.

= dev_nul | isanamed vector register containing all zeros.

This code demonstrates a double-precision add:
vaddc res frac, s frac, t_frac
vadd res_int, s_int, t_int
This code demonstrates a double-precision subtract:
vsubc res_frac, s _frac, t_frac
vsub res_int, s_int, t_int
This code demonstrates reading the accumulator using vsar , following a
multiply:

vmadh res_int, s_int, t_int
vsar res_int, s_int, t_int[0]
vsar res_frac, s _frac, t_frac[1]

Other combinations are left as an exercise to the reader.

69

Vector Unit Instructions

VU Select Instructions

The VU select operations compare pairs of vector elements and choose
which one to write, based on the outcome of the test.

Figure 3-12 VU Select Opcode Encoding

100 type

Instruction fields are:
Element. Vector or scalar element of vz

Type. One of the following operations:
Table 3-6 VU Select Type Encoding

Type Instruction
000 vt
001 veq
010 vne
011 vge
100 vcel
101 vch
110 ver
111 vnr g

Select compares perform an element by element comparison of vsand vz,
using VCOas input, clearing VCQO setting VCC with the result of comparison,
and storing the element for which the comparison is true to vd.

vit: VS <VT
veq: VS == VT

70

Revision 1.0 VU Select Instructions

vne: VSI=VT

vge: VS >=VT

vch: Clip test, single precision or high half of double
precision.

vel : Clip test, low half of double precision.

vVCr: 1’s complement clamp.

vnr g: VD = VS or VT selected by VCC, VCOis ignored.

Note: To implement comparisons which are not supplied, the * vl e’
compare can be performed by vge after swapping vsand v¢operands;
similarly, * vgt’ by vl t. If vtis scalar, the value can be decremented
and then ‘ vgt ' is performed by vge,and ‘ vl e’ by vl t.

Select merge instructions select elements of vsor vtbased on the contents of
the VCC and write the element to vad. Merge is useful for selecting several
different operands from one comparison or after loading VCCwith a bit field.

Double precision comparisons are supported in combination with the VCO
register set by vsubc.

The compare operations use the contents of VCOas input and clear VCO.
Usually VCOwas previously set by a vsubc instruction, with a negative
(carry) or not equal status bit for each element of the vector, so double
precision (32 bit) compares can be accomplished.

The compares (ignoring VCOfor the moment) are equivalent to
for (i=0; i<8; i++) {
if (VS[i] condition VT[i])
VCC | = (1<<i);
el se
VCC &= ~(1<<i),
VD[i] = (VCC & (1 << i))? VS[i]: VI[i];
}

Compares other than vch/ vcl / ver clear the upper 8 bits of VCC.
The merge is equivalent to

for (i=0; i<8; i++)
VDO[i] = (VCC & (1 << i))? VS[i]: VI[i];

71

Vector Unit Instructions

72

Note that vnT g uses the low 8 bits of VCC, the upper 8 assetby vcl / vcr are
ignored.

The results of acompare in VCCare available to a following vinr g instruction
using VCCwithout pipeline delays. VCC can also be accessed by the SU with
VU move instructions (ct c2/ cf ¢2) for other processing such as
accumulation, branching, or patterning. VCCis only modified by compare or
VU move instructions.

Thevchandvcl (Clip test) comparisons are an optimization for comparing
the elements of a vector vsto a scalar element in v, or the vector vZ such as
comparing wto xyz, or clamping a vector to a +/- range. vch performs
(-VT >= VS >= VT) generating 16 bits in VCC and updating VCOand VCE
with equal and sign values. The vch is used for singled precision (16 bit)
operands. For double precision, vch is performed first on the upper 16 bits,
followed by a vcl instruction on the lower 16 bits. vcl reads and writes
VCO, VCC, and VCE. Because only one of the two comparisons per element
canbetrue,vch/ vcl canbeexecuted in one comparison per vector element.
The XOR of the sign of vsand v¢is used to select the arithmetic operation
used for the comparison, such as

if ((VS[i]l ™ VT[i]) <0) {
VCC | = ((VT[i] >> 16) & 1) << i;
if (VS[i] <= -VT[i]) {

VCC | = 256<<i;
VO[i] = -VI[i];

} else
VD[i] = VS[il];

} else {

VCC | = ((VT[i] >> 8) & 256) << i;
if (VS[i] >= VI[i]) {

VCC | = 1<<i;

vOi] = VI[i];
} else

VO[i] = VS[i];

}

For each element of vs, one of two bits meaning <= -VT or >= VT is setin
VCC, for example, bit 8 is one if the first element of vsis <=-VT, bit 0 is one
if the first element of vsis >= VT, bit 9 is set if the second element of vsis
<=-VT, etc. If the vch/ vcl comparison is true, either -vtor vtis written to
vd based on the sign of vs, else vsis written.

Revision 1.0 VU Select Instructions

Note: For single precision vch not followed by avcl , VCOmust be set
before another compare (by a move, add, or compare whose results are
not meaningful).

The vcer instruction is similar to vcl , except that vZis a 1's complement
instead of 2’s complement number, such as for clamping to a power of 2. vcr
is only single precision and ignores the contents of VCOfor input.

Vector Select Examples
The following code fragments illustrate various vector selects.

This code demonstrates a sort of the parallel elements within three vectors
(finding the mi n, m d, and nax of 8 triples). After executing this code, nmi n
will contain the smallest elements, max will contain the largest, and mi d will
contain the intermediate elements:

vge tnpl, mn, md
vl t mn, mn, md
vge tnp2, mn, max
vit mn, mn, X
vge max, tnpl, tnp2
vl t md, tnpl, tnp2

This code demonstrates the generation of 3D clip codes for trivial rejection,
testing each x, y, z component against w. It also uses vector halves,
clip-testing two vertices at the same time (the first vertex is in elements 0-3,
the second in elements 4-7):

vch vtnp, vout_int, vout_int[3h] # conpare with w
vcl vtnp, vout_frac, vout_frac[3h]
cfc2 $1, $vcc # get clip codes

Other combinations are left as an exercise to the reader.

73

Vector Unit Instructions

VU Logical Instructions

74

The VU logical instructions perform the usual bit-wise logical operations on
vsand vt, writing the result to vd.

Figure 3-13 VU Logical Opcode Encoding

101 type

Instruction fields are:
Element. Vector or scalar element of vz

Type. One of the following operations:
Table 3-7 VU Logical Type Encoding

Type Instruction
000 vand
001 vhand
010 vor
011 vnor
100 vxor
101 vnxor

Revision 1.0 VU Divide Instructions

VU Divide Instructions

The VU divide instructions compute the reciprocal of a scalar element of a
vector register.

Figure 3-14 VU Divide Opcode Encoding

110 type

The divide instructions are two operand, vdand v¢. An element specification
must be provided for each operand, selecting the source and destination
elements, for example:

viov $vi[5], $v2[0]

Instruction fields are:
Element. Must be a single scalar element of the whole vector vz
vs. The scalar element of vd'is encoded as vs.

Type. One of the following operations:
Table 3-8 VU Divide Type Encoding

Type Instruction
000 vrcp
001 vrcpl
010 vrcph
011 vnov
100 Vrsqg
101 vrsql
110 vrsgh
111 vnop

75

Vector Unit Instructions

76

The reciprocal (r cp) or reciprocal of the square root (r sq) of the scalar
element of v¢is computed by table lookup and written to the scalar element
of vd.

The scalar element of vd'is selected by the register number vs(0-7). Not the
contents of vs, but the instruction field vsbits.

Single (16 bit) and double (32 bit) precision source values are supported,
with double precision sources supplied in two instructions.

The destination is a 32 bit value, written to two register elements in two
instructions.

For single precision sources, vr cp/ vr sq supplies the source operand in
vf element] and the low 16 bits of the result is written to va[vs]. The upper
16 bits of the result is written by a subsequent vr cph/ vr sgh.

For double precision sources, vr cph/ vr sgh supplies the upper 16 bits of
the source (and writes the upper 16 bits of a previous vr cp/ vr sq or
vrcpl /vrsql). Asubsequentvr cpl / vrsql suppliesthe low 16 bits of the
source and writes the low 16 bits of the result.

The vimov type simply copies vq{elemend to va[vs], and is useful for
reordering scalar data.

vnop ignores vd, and no register is written.

The following table shows the source and destination operand bits from
each the vtand vdelements.

Table 3-9 VU Divide Instruction Summary

Type vtlelement] vd[vs]
vnop NA no operation
vnov write source to result
vrcp, vrsq low lookup source and write result
vrcph, high set source, write previous result
vrsgh

Revision 1.0 VU Divide Instructions
Type vt[element] vd[vs]
vrcpl, low low lookup source and previous, write result
vrsql

Reciprocal Table Lookup

The results are computed by a table lookup using 10 bits of precision. The
input is shifted up to remove leading 0’s (or 1’s) (actually, the first
non-leading digit is also removed, since we know what it is) and the next 10
bits are used to index into the reciprocal table. The 16 bits in the table at this
index are used to construct the result, which is obtained by shifting down an
appropriate number of bits and possibly complementing (for negative
input).

Forr cp, the radix point of the output is shifted right compared to the input.
For example, for double precision r cp, with input format S15. 16, the
output result will be S16. 15, requiring the result to be multiplied by 2 in
order to maintain the same format.

For r sq, the radix point moves to the left by one-half the number of integer
bits. Think of it this way:

and:

input = ax 2k

table =

k
ax?2

1

Vector Unit Instructions

78

so we need to also take the sqr t of the exponent:

result =

K
Jax2?
so the result does not have the same radix point as the input.

Higher Precision Results

Algorithms which require higher precision can perform Newton-Raphson
iteration on the result, such as:

=

R*(2-R*X); /* for VRCP */

or

=

R(3-R*X)/2; /* for VRSQ */

Several divide results can be assembled into two vector registers, the high
and low double precision reciprocal, for parallel Newton’s iteration. Square
root can be performed by multiplying the result of vr sq by the source
operand:

sqrt(X) = X * 1/sqrt(X);

Vector Divide Examples
The following code illustrates several vector divide operations. In this
section, the following notation is used:

= | isasigned 16-bit integer.

= Fisan unsigned 16-bit fraction.

= | Fisa 32-bit number, with the signed upper 16 bits contained in
one register, and the unsigned lower 16 bits contained in a second
register.

= _int isanamed vector register holding a signed 16 bit number.

Revision 1.0 VU Divide Instructions

< frac isanamed vector register holding an unsigned 16 bit
fraction.

= dev_nul | isanamed vector register containing all zeros.

A single precision reciprocal:
vrcp sres_frac[0], s_int[O0]
vrcph sres_int[0], dev_null[0]
A double precision reciprocal:
vrcph sres_int[0], s_int[0]
vrcpl sres_frac[0], s_frac[O]
vrcph sres_int[0], dev_null[O0]
Multiple calculations can be chained together:

vrcph sres_int[0], s_int[O0]

vrcpl sres_frac[0], s_frac[O]
vrcph sres_int[0], t_int[OQ]
vrcpl tres_frac[0], t_frac[O]

vrcph tres_int[0], dev_null[O0]

In the above cases, the input format was S15.16, so after the reciprocal the
radix point moves to the right, so we must shift by 1 (multiply by 2.0) in
order to correct the result:

vinudn sres_frac, sres_frac, vconst[2] # constant of 2
vmadm sres_int, sres_int, vconst[2]
vnadn sres_frac, dev_null, dev_null[0]

Square root reciprocals are similar. Note the adjustment of the radix point
after the reciprocal calculation:

doubl e precision:

vrsgh dres_int[0], t_int[O]
vrsql dres_frac[0], t_frac[O]
vrsgh dres_int[0], vconst[O]

generate constant to shift radi x point:
addi $1, $0, 0x200
ntc2 $1, vconst][6]

shift right by 8 bits.
vmudl dres_frac, dres_frac, vconst[3]

79

Vector Unit Instructions

vhmadm dres_int, dres_int, vconst[3]
vmadn dres_frac, vconst, vconst[O0]

80

Chapter 4

RSP Coprocessor 0

This chapter describes the RSP Coprocessor 0, or system control coprocessor.

The RSP Coprocessor 0 does not perform the same functions or have the
same registers as the R4000-series Coprocessor 0. In the RSP, Coprocessor 0
is used to control the DMA (Direct Memory Access) engine, RSP status, RDP
status, and RDP 1/0.

81

RSP Coprocessor 0

Register Descriptions

RSP Point of View

RSP Coprocessor 0 registers are programmed using thent cOand mt f 0
instructions which move data between the SU general purpose registers and
the coprocessor 0 registers.

Table 4-1 RSP Coprocessor 0 Registers

Register Name Defined in Access Description
Number rsp. h Mode
$c0 DVA_CACHE RW I/DMEM address for DMA.
$cl DVA_DRAM RW DRAM address for DMA.
$c2 DVA_READ LENGTH RwW DMA READ length (DRAM — I/DMEM).
$c3 DVA WRI TE_LENGTH RW DMA WRITE length (DRAM <« I/DMEM).
$c4 SP_STATUS RW RSP Status.
$c5 DVA_FULL R DMA full.
$c6 DVA BUSY R DMA busy.
$c7 SP_RESERVED RwW CPU-RSP Semaphore.
$c8 CVD_START RwW RDP command buffer START.
$c9 CVD_END RW RDP command buffer END.
$c10 CVD_CURRENT R RDP command buffer CURRENT.
$c11 CMD_STATUS RW RDP Status.
$c12 CVD_CLOCK RW RDP clock counter.
$c13 CMVD_BUSY R RDP command buffer BUSY.
$cl4 CMVD_PI PE_BUSY R RDP pipe BUSY.
$c15 CVD_TMEM _BUSY R RDP TMEM BUSY.

82

Revision 1.0 Register Descriptions

$co

This register holds the RSP IMEM or DMEM address for a DMA transfer.

12 11 0

: IMEM a| IMEM or DMEM address

1 12

On power-up, this register is 0x0.

$c1

This register holds the DRAM address for a DMA transfer. This is a physical
memory address.

23 0

DRAM address

24

On power-up, this register is 0x0.

$c2, $c3

These registers hold the DMA transfer length; $c2 is used for a READ, $c3
is used for a WRITE.

31 2019 1211 0

skip count length

12 8 12

83

RSP Coprocessor 0

84

count

skip

The three fields of this register are used to encode arbitrary transfers of
rectangular areas of DRAM to/from contiguous I/DMEM. /ength is the
number of bytes per line to transfer, countis the number of lines, and skipis
the line stride, or skip value between lines. This is illustrated in Figure 4-1:

Figure 4-1 DMA Transfer Length Encoding

length

DMEM

length =7
skip =8
count =10

DRAM

Note: DMA /engthand line countare encoded as (value - 1), that is a line
countof 0 means 1 line, a byte /ength of 7 means 8 bytes, etc.

A straightforward linear transfer will have a count of 0 and skip of 0,
transferring (length+1) bytes.

The amount of data transferred must be a multiple of 8 bytes (64 bits), hence
the lower three bits of /ength are ignored and assumed to be all 1’s.

DMA transfer begins when the length register is written.
For more information about DMA transfers, see section “DMA” on page 96.

On power-up, these registers are 0x0.

Revision 1.0

Register Descriptions

$c4

This register holds the RSP status.

14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

s7

s6

s5

s4|s3|s2|sl1|s0]| ib

SS

df

db

1111111111111 11

Table 4-2 RSP Status Register

Access

bit field Mode Description
0 h RW RSP is halted.

1 b R RSP has encountered a br eak instruction.
2 db R DMA is busy.

3 df R DMA is full.

4 if R 10 is full.

5 Ss RW RSP is in single-step mode.
6 ib RW Interrupt on break.

7 sO RW signal O is set.

8 sl RW signal 1 is set.

9 s2 RW signal 2 is set.

10 s3 RW signal 3 is set.

11 s4 RW signal 4 is set.

12 s5 RW signal 5 is set.

13 s6 RW signal 6 is set.

14 s7 RW signal 7 is set.

85

RSP Coprocessor 0

The ‘broke’, ‘single-step’, and ‘interrupt on break’ bits are used by the
debugger.

The signal bits can be used for user-defined synchronization between the
CPU and the RSP.

On power-up, this register contains 0x0001.

When writing the RSP status register, the following bits are used.

Table 4-3 RSP Status Write Bits

bit Description

0 clear HALT.
(0x00000001)

1 set HALT.
(0x00000002)

2 clear BROKE.
(0x00000004)

3 clear RSP interrupt.
(0x00000008)

4 set RSP interrupt.
(0x00000010)

5 clear SINGLE STEP.
(0x00000020)

6 set SINGLE STEP.
(0x00000040)

7 clear INTERRUPT ON BREAK.
(0x00000080)

8 set INTERRUPT ON BREAK.
(0x00000100)

9 clear SIGNAL 0
(0x00000200)

86

Revision 1.0

Register Descriptions

bit Description

10 set SIGNAL 0.
(0x00000400)

11 clear SIGNAL 1.
(0x00000800)

12 set SIGNAL 1.
(0x00001000)

13 clear SIGNAL 2.
(0x00002000)

14 set SIGNAL 2.
(0x00004000)

15 clear SIGNAL 3.
(0x00008000)

16 set SIGNAL 3.
(0x00010000)

17 clear SIGNAL 4.
(0x00020000)

18 set SIGNAL 4.
(0x00040000)

19 clear SIGNAL 5.
(0x00080000)

20 set SIGNAL 5.
(0x00100000)

21 clear SIGNAL 6.
(0x00200000)

22 set SIGNAL 6.
(0x00400000)

23 clear SIGNAL 7.
(0x00800000)

24 set SIGNAL 7.
(0x01000000)

87

RSP Coprocessor 0

88

$c5

This register maps to bit 3 of the RSP status register, DMA_FULL. It is read
only.

On power-up, this register is 0x0.

$c6

This register maps to bit 2 of the RSP status register, DMA_BUSY. It is read
only.

On power-up, this register is 0x0.

$c7

This register is a hardware semaphore for synchronization with the CPU,
typically used to share the DMA activity. If this register is 0, the semaphore
may be acquired. This register is set on read, so the test and set is atomic.
Writing 0 to this register releases the semaphore.

Cet Senma:
nfcO $1, $c7
bne $1, $0, GetSemm
nop
do critical work

Rel easeSena:
ntcO $0, $7

On power-up, this register is 0x0.

$c8

This register holds the RDP command buffer START address. Depending on
the state of the RDP STATUS register, this address is interpreted by the RDP

Revision 1.0 Register Descriptions

as either a 24 bit physical DRAM address, or a 12 bit DMEM address
(see $c11).

23 0

RDP Command Start

24

On power-up, this register is undefined.

$c9

This register holds the RDP command buffer END address. Depending on
the state of the RDP STATUS register, this address is interpreted by the RDP
as either a 24 bit physical DRAM address, or a 12 bit DMEM address

(see $c11).

23 0

RDP Command End

24

On power-up, this register is undefined.

$c10

This register holds the RDP command buffer CURRENT address. This
register is READ ONLY. Depending on the state of the RDP STATUS

89

RSP Coprocessor 0

register, this address is interpreted by the RDP as either a 24 bit physical
DRAM address, or a 12 bit DMEM address (see $c11).

23 0

RDP Command Current

24

On power-up, this register is 0x0.

$c11

This register holds the RDP status.

10 9 8 7 6 5 4 3 2 1 O

svijev|db|cr|cb|pbjtb|g | fl| f]|x

1111111 1 1 11

Table 4-4 RDP Status Register

bit field AJEZZS Description

0 X RW Use XBUS DMEM DMA or DRAM DMA.
1 f RW RDP is frozen.

2 fl RW RDP is flushed.

3 g RW GCLK is alive.

4 tb R TMEM is busy.

5 pb R RDP PIPELINE is busy.

6 cb R RDP COMMAND unit is busy.

90

Revision 1.0

Register Descriptions

.) Access -
bit field Mode Description
7 cr R RDP COMMAND buffer is ready.
8 db R RDP DMA is busy.
9 ev R RDP COMMAND END register is valid.
10 sv R RDP COMMAND START register is
valid.
When bit 0 (XBUS_DMEM_DMA) is set, the RDP command buffer will
receive data from DMEM (see $¢8, $c9, $c10).
On power-up, the GCLK, PIPE_BUSY, and CMD_BUF_READY bits are set,
the DMA_BUSY bit is undefined, and all other bits are 0.
When writing the RDP status register, the following bits are used.
Table 4-5 RSP Status Write Bits (CPU VIEW)
bit Description
0 clear XBUS DMEM DMA.
(0x0001)
1 set XBUS DMEM DMA.
(0x0002)
2 clear FREEZE.
(0x0004)
3 set FREEZE.
(0x0008)
4 clear FLUSH.
(0x0010)
5 set FLUSH.
(0x0020)
6 clear TMEM COUNTER.
(0x0040)

91

RSP Coprocessor 0

bit

Description

-
(0x0080)

clear PIPE COUNTER.

8
(0x0100)

clear COMMAND COUNTER.

9
(0x0200)

clear CLOCK COUNTER

$c12

This register holds a clock counter, incremented on each cycle of the RDP

clock. This register is READ ONLY.

23

RDP Clock Counter

24

On power-up, this register is undefined.

$c13

This register holds a RDP command buffer busy counter, incremented on
each cycle of the RDP clock while the RDP command buffer is busy. This

register is READ ONLY.

23

RDP Command Busy Counter

24

On power-up, this register is undefined.

92

Revision 1.0 Register Descriptions

$cl14

This register holds a RDP pipe busy counter, incremented on each cycle of
the RDP clock that the RDP pipeline is busy. This register is READ ONLY.

23 0

RDP Pipe Busy Counter

24

On power-up, this register is undefined.

$c15

This register holds a RDP TMEM load counter, incremented on each cycle of
the RDP clock while the TMEM is loading. This register is READ ONLY.

23 0

RDP TMEM Load Counter

24

On power-up, this register is undefined.

CPU Point of View

The RSP Coprocessor 0 registers (and certain other RSP registers) are
memory-mapped into the host CPU address space.

93

RSP Coprocessor 0

Bit patterns for READ and WRITE access are the same as described in the
previous section.

Table 4-6 RSP Coprocessor 0 Registers (CPU VIEW)

Ei%st;[grr Address A'\c/:lgzses Description
$co 0x04040000 RW I/DMEM address for DMA.
$cl 0x04040004 RW DRAM address for DMA.
$c2 0x04040008 RW DMA READ length (DRAM — I/DMEM).
$c3 0x0404000c RW DMA WRITE length (DRAM <« I/DMEM).
$c4 0x04040010 RW RSP Status.
$c5 0x04040014 R DMA full.
$c6 0x04040018 R DMA busy.
$c7 0x0404001c RW CPU-RSP Semaphore.
$c8 0x04100000 RW RDP command buffer START.
$c9 0x04100004 RW RDP command buffer END.
$c10 0x04100008 R RDP command buffer CURRENT.
$c11 0x0410000c RW RDP Status.
$c12 0x04100010 R RDP clock counter.
$c13 0x04100014 R RDP command buffer BUSY.
$cl4 0x04100018 R RDP pipe BUSY.
$c15 0x0410001c R RDP TMEM BUSY.

94

Revision 1.0

Register Descriptions

Other RSP Addresses

These are also memory-mapped for the CPU.
Table 4-7 Other RSP Addresses (CPU VIEW)

Address Ah;g?jzs Description
0x04000000 RW RSP DMEM (4096 bytes).
0x04001000 RW RSP IMEM (4096 bytes).
0x04080000 RW RSP Program Counter (PC), 12 bits.

95

RSP Coprocessor 0

DMA

96

All data operated on by the RSP must first be DMA’d into DMEM. RSP
programs can also use DMA to load microcode into IMEM.

Note: loading microcode on top of the currently executing code at the PC
will result in undefined behavior.
Alignment Restrictions

All data sources and destinations for DMA transfers must be aligned to
8 bytes (64 bits), in both DRAM and I/DMEM.

Transfer lengths must be multiples of 8 bytes (64 bits).

Timing

Peak transfer rate is 8 bytes (64 bits) per cycle. There is a DMA setup
overhead of 6-12 clocks, so longer transfers are more efficient.

IMEM and DMEM are single-ported memories, so accesses during DMA
transfers will impact performance.

DMA Full

The DMA registers are double-buffered, having one pending request and
one current active request. The DMA FULL condition means that there is an
active request and a pending request, so no more requests can be serviced.

DMA Wait

Waiting for DMA completion is under complete programmer control. When
DMA_BUSY is cleared, the transaction is complete.

If there is a pending DMA transaction, this transaction will be serviced
before DMA_BUSY is cleared.

Revision 1.0 DMA

DMA Addressing Bits

Since all DMA accesses must be 64-bit aligned, the lower three bits of source
and destination addresses are ignored and assumed to be all 0’s.

Transfer lengths are encoded as (length - 1), so the lower three bits of the
length are ignored and assumed to be all 1's.

The DMA LENGTH registers can be programmed with a line count and line
stride, to transfer arbitrary rectangular pieces of memory (such as a portion
of an image). See Figure 4-1, “DMA Transfer Length Encoding,” on page 84,
for more information.

CPU Semaphore

The CPU-RSP semaphore should be used to share DMA resources. Since the
CPU could possibly DMA data to/from the RSP while the RSP is running,
this semaphore is necessary to share the DMA engine.

Note: The current graphics and audio microcode assume the CPU wiill
not be DMA’ing data to/from the RSP while the RSP is running. This
eliminates the need to check the semaphore (on the RSP side), saving a
few instructions.

DMA Examples

The following examples illustrate programming RSP DMA transactions:

97

RSP Coprocessor 0

Figure 4-2 DMA Read/Write Example

HHH B R AR B HHH R
Procedure to do DVA reads/wites.

Regi sters:

$20 mem addr

$19 dr am addr

$18 drma_l en

$17 iswite?

$11 used as tnp
.name nmem addr, $20
. nane dram addr, $19
. nane dnma_| en, $18
. nane iswrite, $17
. hame tnp, $11

DMAproc: # request DMA access: (get semaphore)
nf cO tnp, SP_RESERVED
bne tnp, zero, DMAproc

note del ay slot

DMAFul | : # wait for not FULL
nfcO tnp, DMA _FULL
bne tnp, zero, DMAFull
nop

set DMA registers:
mcO mem addr, DVA CACHE

handle wites:

bgt z iswite, DMAW ite

nt cO dram addr, DVA_DRAM

j DMADone

mcO dnma_| en, DVA READ LENGTH
DVAW i t e:

nt cO dma_l en, DVA WRI TE_LENGTH
DVADone:

jr return

cl ear semaphore, delay sl ot
ntcO zero, SP_RESERVED

.unnane mem addr

.unname dram addr

.unname dma_| en

.unnanme iswite

.unnane tnp

#

HHH R T R R R R

98

Revision 1.0 DMA

Figure 4-3 DMA Wait Example

HERHHHHH PR R
Procedure to do DVA waits.
#
Regi sters:
#
$11 used as tnp
#
.hane tnp, $11

DMVAwai t :
request DMA access: (get semaphore)
nfcO tmp, SP_RESERVED

bne tnp, zero, DMAwait
note del ay slot

Wi t Spi n:
nfcO t np, DMA_BUSY
bne tnp, zero, WAitSpin
nop
jr return

cl ear semaphore, del ay sl ot
ntcO zero, SP_RESERVED
.unnare tnp
#
#
HEHHHHHH P H

99

RSP Coprocessor 0

Controlling the RDP

100

The RDP has an independent DMA engine which reads commands from
DMEM or DRAM into the command buffer. The RDP command buffer
registers are programmed to direct the RDP from where to read the
command data.

How to Control the RDP Command FIFO

RDP commands are transferred from memory to the command buffer by the
RDP’s DMA engine.

The RDP command buffer logic examines the CMD_CURRENT and
CMD_END registers and will transfer data, 8 bytes (64 bits) at a time,
advancing CMD_CURRENT, until CMD_CURRENT = CMD_END.

CMD_START and CMD_END registers are double buffered, so they can be
updated asynchronously by the RSP or CPU while the RDP is transferring
data. Writing to these registers will set the START_VALID and/or
END_VALID bits in the RDP status register, signaling the RDP to use the new
pointers once the current transfer is complete.

When a new CMD_START pointer is used, CMD_CURRENT is reset to
CMD_START.

Algorithm to program the RDP Command FIFO:

e start with CMD_START and CMD_END set to the same initial
value.

= write RDP commands to memory, beginning at CMD_START.

= when an integral number of RDP commands have been stored to
memory, advance CMD_END (CMD_END should point to the next
byte after the RDP command).

= keep advancing CMD_END as subsequent RDP commands are
stored to memory.

Revision 1.0 Controlling the RDP

Examples

The XBUS is a direct memory path between the RSP (and DMEM) and the
RDP. This example uses a portion of DMEM as a circular FIFO to send data
to the RDP.

This example uses an “open” and “close” interface; the “open” reserves
space in the circular buffer, then the data is written, the “close” advances the
RDP command buffer registers.

The first code fragment illustrates the initial conditions for the RDP
command buffer registers.

Figure 4-4 RDP Initialization Using the XBUS

XBUS initialization
addi $4, zero, DPC_SET_XBUS DMEM DNVA
addi outp, zero, 0x1000 # DP init conditions
nt cO $4, CMD_STATUS
nt cO out p, CMVMD_START
nt cO out p, CMVMD_END

The Qut put Open function contains the most complicated part of the
algorithm, handling the “wrapping” condition of the circular FIFO. The
wrapping condition waits for CMD_CURRENT to advance before
re-programming new CMD_START and CMD_END registers.

101

RSP Coprocessor 0

102

Figure 4-5 OutputOpen Function Using the XBUS

.hame dnenp, $20
.nane dranp, $19

. hame out sz, $18 # caller sets to max size of wite
open(si ze) - wait for size avail in
ring buffer.
- possibly handl e wap
- wait for ‘current’ to get
out of the way

. ent Qut put Open
Cut put Open: # check if the packet will fit in the buffer

addi dr amp,

zero, (RSP_OUTPUT OFFSET

+ RSP_OUTPUT_SI ZES)

add drmenp,
sub dr anp,
bgez dr anp,
nop

W apBuffer: # packet won't fit,
nf cO dr amp,
andi dr anp,
bne dr anp,

outp, outsz
dranp, drmenp
Current Fit

wait for current to wap
CVD_STATUS

dranp, 0x0400

zero, WapBuffer

AdvanceCurrent: # wait for current to advance

nfcO dranp, CMD_CURRENT

addi outp, zero, RSP_OUTPUT_CFFSET
beq dranmp, outp, AdvanceCurrent
nop

nt cO outp, CMD _START # reset START

CurrentFit: # done if current_

nf cO dr anp,
sub drenp,
bgez drenp,

loop if current_address

add drenp,
sub dr anp,
bgez dr amp,
nop

OpenDone:
jr return
nop

address <= outp
CVD_CURRENT
outp, dranp
OpenDone

<= (outp + outsz)
outp, outsz
dmenp, dranp
CurrentFit

.end Qut put Open

Revision 1.0 Controlling the RDP

After calling Qut put Open, the program writes the RDP commands to
DMEM, advancing out p. Once the complete RDP command is written to
DMEM, Qut put Cl ose is called.

Figure 4-6 OutputClose Function Using the XBUS

HHHHHHH BB R AR AR AR R
Qut put d ose
HRHHHHHH AR HH AR T H R H A A A R R R R R R

.ent Cut put Cl ose
Cut put Cl ose:
#
XBUS RDP out put
#
jr return

nt cO out p, CVD_END
.end Cut put Cl ose
.unnanme out sz
.unname dranp
.unname dnenp

103

RSP Coprocessor 0

104

Chapter 5

RSP Assembly Language

This chapter describes the RSP Assembly Language, as accepted by the
rspasm assembler.

Although different in many fundamental ways, there are some similarities
with the MIPS assembly language, described in the document “M/PSPro
Assembly Language Programmer’s Guide” (Order number 007-2418-001).
The reader is encouraged to be familiar with this document, as we will
occasionally use it as a frame of reference to describe the RSP assembly
language.

The machine language format of the RSP instructions is based on the R4000
instruction set; the reader is referred to the “M/PS R4000 Microprocessor
User’s Manual’* for additional information.

In the following chapter, “the assembler” refers to the rspasm assembler.

Y Heinrich, J., “MIPS R4000 Microprocessor User’s Manual”, Prentice Hall Publishing, 1993, ISBN 0-13-1-5925-4.

105

RSP Assembly Language

Different From Other MIPS Assembly Languages

106

Why?

Although the RSP uses the R4000 architecture, it is a specialized processor
designed for a special purpose. The assembly language is similarly
restricted, and does not require the full richness of the MIPS Assembly
Language.

In particular, MIPS Assembly Language is designed to be generated by C,
Fortran, and Pascal compilers; it therefore lacks many functions of an
assembly language designed for human programmers, as well as having
extra constructs in order to support these compilers.

The RSP also has limited resources, most notably only 1K instructions of
IMEM. RSP programs by definition must be small and highly optimized, so
a simpler assembly language is well-suited.

The RSP is also a proprietary processor, its implementation and
programming interface is not publicly available. The RSP programming
interface is designed to be incompatible with other MIPS products.

Major Differences from the R4000 Instruction Set

The scalar unit (SU) instruction set uses only a subset of the R4000
instruction set. See “Missing Instructions” on page 27.

The “pseudo-opcodes” or assembly directives are different from the MIPS
Assembly Language. Many of the MIPS directives that are designed for
high-level program flow, compilers, or large objects are not necessary.
Likewise, we have added many new directives to make the language more
human-friendly (register naming, compile-time diagnostics, etc.).

The machine instructions for the RSP vector unit (VU) instructions use the
MIPS coprocessor extensions. For ease of programming, we have adopted
friendlier mnemonics and a less “coprocessor-like” syntax for their use.

Revision 1.0 Syntax

Syntax

Tokens

The assembler has these tokens:

= identifiers

- constants

= operators
The assembler lets you put whitespace (blank characters, tabs, or newlines)
anywhere between tokens. Whitespace must separate adjacent identifiers or

constants that are not otherwise separated (by an expression operator, for
instance).

Multiple statements per line are permitted, as are single statements which
span multiple lines.
Identifiers

An identifier consists of a case-sensitive sequence of alphanumeric
characters, plus the underscore (_) character.

Identifiers can be up to 31 characters long, and the first character must be
alphabetic.

The value of an identifier can be set explicitly with the . synbol directive.

Constants

The assembler supports the following types of constants. All numeric
constants are interpreted as two’s complement numbers.

= Decimal constants, which consist of a sequence of decimal digits
[0123456789] * without a leading 0.

107

RSP Assembly Language

Hexadecimal constants, which consist of the characters Ox (or 0X)
followed by a sequence of hexadecimal digits
[0123456789abcdef ABCDEF] *.

Octal constants, which consist of a leading zero followed by a
sequence of octal digits [01234567] *.

String constants, which consist of any sequence of alphanumeric
characters (except double quotes) enclosed in double quotes. String
constants are only used for the . print directive.

Operators

The following tokens comprise the list of operators:

Instruction mnemonics, a sequence of Jowercase alphanumeric
characters that correspond to the opcodes listed in Appendix A,
“RSP Instruction Set Details.”

Directive mnemonics, a sequence of Jowercase alphabetic
characters that correspond to the list in“Assembly Directives” on
page 114.

Expression operators: +, -, *, [, % ~ ", & |, <<, >>

Other character sequences that make up the instruction syntax,
such as square brackets ‘[]’, parentheses (), the colon *:’, the comma
‘,’, and the period *.".

Comments

The assembler accepts three forms of comments:

108

C-like comments, / *. . . */ . Anything between the beginning and
ending C comment sequence is ignored. (Note: if copis used before
assembly, cpop will remove these comments before the assembler
can parse them)

comments. Anything from the ‘#’ to the end of the line is ignored.
(Note: comments with the ‘#’ in column one will confuse the C
pre-processor, cpp, if it is invoked on the source code before
assembly)

Revision 1.0 Syntax

< ; comments. Anything from the *; ’ to the end of the line is ignored.

Program Sections

An RSP program has only two sections, a text section (. t ext) and a data
section (. dat a).

The text section is assembled in sequence, with only one base address for
assembly (see . t ext directive).

The data section is built up in sequence, however multiple data section base
addresses are permitted (see . dat a directive).

A program may switch between text and data segments many times, using
.t ext or. dat a directives without base addresses.

Labels

A label is an identifier with a colon (:) appended. There can be no
whitespace between the identifier and the colon. Labels can be used as
program labels (targets of branching instructions) or in the data segment to

define DMEM addresses (and later used as constants or in expressions).

Multiple consecutive labels in the data section are permitted, they evaluate
to the same value.

Multiple consecutive labels in the text section are not permitted.

Labels in the text section can also be followed by directives. In this case, the
value of the label is the address of the next executable instruction.
Keywords

Reserved keywords include all operators listed in the section “Operators”
on page 108.

Reserved keywords cannot be used as identifiers.

109

RSP Assembly Language

110

If the assembly source code is passed through another program (such as a
macro pre-processor like /m4), additional reserved keywords may be
implied, if they are reserved by that program.

Expressions

An expression is a sequence of symbols that represent a value. All assembler
expressions evaluate to an integer data type. The assembler does arithmetic
with two’s complement integers using 32 bits of precision. Expressions
follow precedence rules and consist of:

= Expression Operators
< |dentifiers

e Constants

Expression Operators
The list of expression operators include:

Table 5-1 Expression Operators

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder (or Modulo)
<< Shift Left
>> Shift Right (NOT sign extended)
n Bitwise EXCLUSIVE OR
& Bitwise AND
| Bitwise OR
~ Bitwise COMPLEMENT

Revision 1.0 Syntax

Table 5-1 Expression Operators

Operator Meaning

- Minus (unary)

+ Plus (unary)

Precedence

Expressions can be grouped with parentheses (recommended) or you can
rely on the following precedence rules:

Table 5-2 Expression Operator Precedence

least binding, lowest precedence: binary +, -

binary *,/, % <<, >>, 7, &, |

most binding, highest precedence unary +, -, ~

Note: The expression operator precedence differs from that of the C
programming language.

Expression Restrictions
The simplified assembly language of the RSP imposes certain restrictions

upon the use of expressions:

= Any identifier used in an expression must be defined before use.
The expression is evaluated at parsing time, it cannot be delayed
until the value of a forward-referencing symbol is determined.

= Identifiers cannot be used in expressions used as a branch target or
as a vector register element.

= Identifiers cannot be used in expressions used in conjunction with
the data initialization directives (. word, .half, . byte).

Note: ldentifiers by themselves can be used as values for the
.word and. hal f directives, including forward-referencing
identifiers (this is a special case). Note that you can assign an

111

RSP Assembly Language

112

expression to a temporary identifier using the . synbol directive,
then use this temporary identifier by itselfto initialize a data
directive.

Throughout this document, expressions that cannot contain identifiers are
referred to as jexpressions (integer expressions).

Registers

The syntax for referring to the scalar unit (SU) registers is a dollar sign ($),
followed by an integer in the range of 0. . . 31. No whitespace between the
dollar sign and the integer is permitted.

The syntax for referring to the vector unit (VU) registers is a dollar sign ($),
followed by a ‘v’, followed by an integer in the range of 0. . . 31. No
whitespace between the dollar sign, the ‘v’, and the integer is permitted.

The syntax for referring to the coprocessor 0 control registers is a dollar sign
(%), followed by a ‘c’, followed by an integer in the range of 0. . . 31. No
whitespace between the dollar sign, the ‘c’, and the integer is permitted.

Registers can be named using the . nane directive, associating an identifier
with a scalar register, vector register, or control register.
The following special built-in register names are also available:

= $sp isscalar register $29

e $at isscalar register $1

e $ra isscalarregister $31

« $s8 isscalar register $30

= $vco isthe vector control register VCO

= $vcc isthe vector control register VCC

= $vce isthe vector control register VCE

Revision 1.0 Syntax

Vector Register Element Syntax

In some circumstances, a scalar element of a vector register may be specified.
These circumstances include the target register of most vector
computational instructions and the source/destination register of all vector
loads, stores, and moves.

For vector computational instructions, a vector register element syntax is
one of:

= aninteger (or integer expression) in the range 0. .. 7, enclosed by
square brackets ([]), representing the ordinal index of one of the 8
16-bit vector elements of the register.

= aninteger (or integer expression) in the range 0. . . 3, followed by
the letter ‘h’, enclosed by square brackets ([]), representing the
ordinal index of one of the 4 16-bit vector elements of the register
halves.

= aninteger (or integer expression) in the range 0. . . 1, followed by
the letter ‘q’, enclosed by square brackets ([]), representing the
ordinal index of one of the 2 16-bit vector elements of the register
quarters.

For vector loads, stores, and moves, the vector register element syntax is as
follows:

= aninteger (or integer expression) in the range 0. .. 15, enclosed
by square brackets ([]), representing which of the 16 bytes of the
register to use as a source or destination.

In any case where a vector element may optionally be specified, but is not, a
0 is assumed.

Additional usage of vector register element syntax is explained along with
the instructions that use them in a later chapter.

Program Statements

A program statement consists of an optional label, an operator keyword, and

the operand(s). The operator may be a scalar instruction or a vector
instruction.

113

RSP Assembly Language

Assembly Directives

114

Directives, or ‘pseudo-opcodes’ are instructions to the assembler that are
interpreted at compile time. They do not generate executable machine
instructions.

They exist to initialize data, direct the compilation, provide error checking,
etc.

A directive is a period (.) followed by a sequence of /owercase alphabetic
characters.

For this section, the following notation is used: An expression s a legal
assembler expression, which may include identifiers (which have been
defined before use). An jexpressionis an integer expression, an expression
composed solely of integers and no identifiers. Optional parameters are
enclosed in square brackets []. Conditional parameters are denoted with a
vertical bar |.

.align
.align iexpression
The current location within the text or data section is aligned to the next

multiple byte boundary corresponding to the evaluated /expression,
possibly adding padding.

For the text section, the only legal evaluations are multiples of 4 bytes.

.bound

.bound iexpression

This directive performs a check, printing out an error message and aborting
the program assembly if the current location within the text or data section
is notaligned to the next multiple byte boundary corresponding to the
evaluated /expression.

Revision 1.0 Assembly Directives

.byte

.byte iexpression

One byte of the data section is allocated and initialized to the value of the
fexpression.

Since one byte is not sufficient to hold the address of any symbol in DMEM
or IMEM, an identifieris not permitted.

This directive is only permitted in the data section.

.data
.data [expression]

Switch to the data section. All data initialization directives must be
contained in the data section.

If the optional expressionis present, it is evaluated and used as the base
address to continue packing the data section. Only the least significant 12
bits of the base address is used, since DMEM is only 4K bytes.

Multiple base addresses are permitted, any “holes” between initialized data
will remain un-initialized (all 0’s). The assembler keeps track of the
maximum address initialized, and all data up to that point (including any
holes) will be output.

.dmax

.dmax iexpression
This directive performs a check, printing out an error message and aborting
the program assembly if the current location within the text or data section
exceeds the value corresponding to the evaluated jexpression.

This is useful during compilation to ensure that you do not exceed IMEM or
DMEM limits.

115

RSP Assembly Language

116

.end

.end identifier [, expression]

End a procedure. The assembler outputs debugging information for the gvd
debugger, including the beginning and ending locations of procedures.

.ent

.ent identifier [, expression]

Begin a procedure. The assembler outputs debugging information for the
gvddebugger, including the beginning and ending locations of procedures.

.half

.half identifier | iexpression

Two bytes (one half word) of the data section are allocated and initialized to
the value of the /dentifier or the iexpression.

The identifier may be a forward-referencing symbol which is not defined
yet. This is useful for building program jump tables which must be filled in
during the second pass of the assembler. In order to accommodate this
useful feature, we accept the restriction that any expression used to initialize
this data be an jexpression, not an expression.

Since there are only 4K bytes of IMEM and DMEM, 16-bits is sufficient to
hold the address of any symbol.

This directive is only permitted in the data section.

.name

.hame identifier, register
The identifieris associated with the register.

The register may be a scalar, vector, or control register, and must be specified
using proper register syntax.

Revision 1.0 Assembly Directives

.print

.print string-constant [, expression] [, expression]...
The quoted string constant is printed to st der r during assembly.

The string constant may contain C-like numeric printf conversions (%a, %x,
etc.) and the expressions will be evaluated and printed to st derr.

A maximum of four expressions are permitted per . pri nt directive.

If this directive has a label associated with it, the label cannot be contained
in an expression being printed.

. Space

.space expression

If we are in the data section, expression number of bytes are allocated and
filled with zeros. The new current location in the data section will be equal
to the previous location plus expression bytes.

If we are in the text section, (expression >> 2) number of instructions are
padded and filled with nop’s, and the new program counter for assembly
will be equal to the old program counter plus expression bytes.

If we are in the text section, the expression should also account for any
assembly base, if used.

.symbol

.synbol identifier, expression

The identifieris entered into the symbol table with the value of expression.

.text

. text [expression]

117

RSP Assembly Language

118

Switch to the text section. All program instructions must be contained in the
text section.

If the optional expressionis present, it is evaluated and used as the base
address for assembling the program. Only the least significant 12 bits of the
base address is used, since IMEM is only 4K bytes.

Note: If the base address for assembly is changed during the course of
compilation, unpredictable results will occur. There should be only one
. text directive with a base address.

.unname

.unnane identifier
The identifieris removed from the symbol table.

Usually this is used to free up a named register when you are finished using
it, but it could be used to free up another program identifier.

.word

.word identifier | iexpression

Four bytes (one word) of the data section are allocated and initialized to the
value of the identifier or the iexpression.

The identifier may be a forward-referencing symbol which is not defined
yet. This is useful for building program jump tables which must be filled in
during the second pass of the assembler. In order to accommodate this
useful feature, we accept the restriction that any expression used to initialize
this data be an jexpression, not an expression.

This directive is only permitted in the data section.

Revision 1.0 BNF Specification of the RSP Assembly Language

BNF Specification of the RSP Assembly Language

This section presents a formal specification of the RSP assembly language
using a Backus-Naur Form (BNF). Comments are not shown because they
are removed by the parser during token scanning.

<program> < <instruction> [<program> <instruction>

<instruction> <« <directive> [
<label> <directive> [
<label> <label> <dlirective> [
<scalarinstruction> [
<label> <scalarinstruction> [
<vectorinstruction> [
<label> <vectorinstruction>

<directive><« .align </expression> [
.bound <iexpression> [
.byte <iexpression> [
.data [
.data </expression>
.dmax <jexpression>
.end [
.end </dentifier> [
.ent <identifier> [
.ent <identifier>, <integer> [
.half <identifier> [
.half <jexpression> [
.name </dentifier> , <scalarRegister> [
.name </dentifier> , <vectorRegister> [
.name </dentifier> , <controlRegister> [
.print <gstring> [
.print <gstring> , <expression> [

119

RSP Assembly Language

.print <gstring> , <expression> , <expression> [

.print <gstring> , <expression> , <expression> ,
<expression> [

.print <gstring> , <expression> , <expression> ,
<expression> , <expresion> [

. space <expression> [

.symbol </dentifier> , <expression> [
.text [

. text <expression> [

.unname </dentifier> [

.word <identifier> [

.word </expression>

<scalarinstruction> <« <regOp> <scalarRegister> [
<regRegOp> <scalarRegister> [
<regRegOp> <scalarRegister> , <scalarRegister> [
<regRegOp> <scalarRegister> , <controlRegister> [

<regRegRegOp> <scalarRegister> , <scalarRegister> ,
<scalarRegister> [

<regImmOp> <scalarRegister> , <expression> [
<regRegImmQOp> <scalarRegister> , <expression> [

<regReglmmOp=> <scalarRegister> , <scalarRegister> ,
<expression> [

<regOffsetOp> <scalarRegister> , <expression> [
<regOffsetOp> <expression> [

<regRegOffsetOp> <scalarRegister> , <scalarRegister> ,
<expression> [

<regOffsetBaseOp> <scalarRegister> , <expression> (
<scalarRegister>) [

<regRegShiftOp> <scalarRegister> , <scalarRegister> ,
<expression> [

<sRegRegRegOp> <scalarRegister> , <scalarRegister> ,
<scalarRegister> [

<targetOp> <expression> [

120

Revision 1.0 BNF Specification of the RSP Assembly Language

<VRegsRegOp> <vectorRegister> [<element>1 ,
<expression> (<scalarRegister>) [

<sRegvRegOp> <scalarRegister> , <vectorRegister> [

<sRegVvRegOp> <scalarRegister> , <vectorRegister> [
<element>1 [

<noOperandOp>

<vectorinstruction> < <veRegvReqvRegOp> <vectorRegister> ,
<vectorRegister> , <vectorRegister> [

<veRegvRegvRegOp> <vectorRegister> , <vectorRegister> ,
<vectorRegister> [<element>1 [

<vdRegvRegOp> <vectorRegister> [<element> 1 ,
<vectorRegister> [<element>]

<regOp>« Jr

<regRegRegOp>« add [addu fand [nor [or [slt [sltu [sub
[subu [xor

<regimmOp> < 1lui

<regRegImmOp> <« addi [addiu [fandi [ori [slti [sltiu /[
xori

<regOffsetOp><«+ bgez [bgezal [bgtz [blez [bltz [bltzal

<regRegOffsetOp> <+ beq [bne

<regOffsetBaseOp>« 1b [1bu f1lw [1h [1lhu [sb [sh [sw

<regRegShiftOp> <« sl1l [sra [srl

<sregRegRegOp> < sllv [srav [srlv

121

RSP Assembly Language

122

<targetOp><« 3 [jal

<VRegsRegOp><« 1bv [1sv [11lv [1dv [1qv [1lrv [1pv [1luv [
lhv f1fv f1tv [sbv [ssv [slv [sdv [sqv
[srv [spv [suv [shv [sfv [swv [stv

<SRegvRegOp> < mfc2 f[cfc2 [mtc2 fctc2

<noOperandOp> < nop [vnop [break

<veRegvRegvRegOp><+ vmulf [vmacf [vmulu [vmacu [vrndp /
vrndn [vmulqg f/vmacq f/ vmudh [vmadh [
vmudm [vmadm / vmudn [vmadn fvmudl [
vmadl fvadd [vsub f[vabs [vaddc [vsubc
[/ vsar [vand [vnand [vor [vnor [vxor [
vnxor [vlt [veq [vne [vge [vcl [vch [
ver [vmrg

<vdRegvRegOp> <« vmov [vrecp [vrsq [vreph [vrsgh [vrepl [
vrsql

<expression><«— (<expression>) [
<integer> [
<identifier> [
~ <expression> [
<expression> & <expression> [
<expression> | <expression> [
<expression>" <expression> [
<expression> << <expression> [
<expression> >> <expression> [
<expression>* <expression> [
<expression> [/ <expression> [
<expression>% <expression> [
<expression> + <expression> [
<expression> - <expression> [

Revision 1.0 BNF Specification of the RSP Assembly Language

- <expression> [
+ <expression>

<ilexpression><« (<iexpression>) [
<integer> [
~ <lexpression> [
<lexpression> & <fexpression> [
<iexpression> | <iexpression> [
<lexpression>" <iexpression> [
<lexpression> << <iexpression> [
<fexpression>>> <iexpression> [
<lexpression>* <fjexpression> [
<fexpression>/ <fexpression> [
<lexpression>% <iexpression> [
<lexpression> + <fexpression> [
<lexpression> - <fjexpression> [
- <iexpression> [
+ <lexpression>

<scalarRegister> <« <identifier> [$<integer> [$sp [$s8 [$at [$ra

<vectorRegister> « <identifier> [$v<integer> [$vco [$vcec [$vce

<controlRegister> <« <identifier> [$c <integer>

<element>« <iexpression> [<iexpression>h [<iexpression>q

<identifier> <« <alpha> <alphanumeric>*

<alphanumeric> « {<alpha> [<digit> [}*

<gstring> <« ™ {<ASCII text> | <whitespace> [<C print specifier>}*»

123

RSP Assembly Language

124

<alpha> <a [b[c[dfe[f[/g[/n[i[i[/k [1[/m[n[o/
plx/s/tfufv[w][x[y[]z[a[B]cC
/ID/E[F[c[u[1 /I [R]L[M[N]O[P
[IR[s[T[U]Vw/[Xx[Y][Z

<integer> <« <digit>* [0x<hexdigit>* [0X <hexdigit>* | 0 <octdigit>*

<digit><0 J1[]2)3]4f5] 6] T]8]9

<hexdigit><« <digit> [a [b [c [d [e [£ /A [B[JCc[D[JE[JF

<octdigit><—0 [1]2]3[4 [5]6[7

Chapter 6

Advanced Information

This chapter expands on some advanced topics, such as DMEM usage, RSP
performance, code overlays, and the CPU-RSP relationship.

Examples and information presented in this chapter are often one of many

possible approaches, the reader is encouraged to treat this chapter as
inspiration, not rigorous instruction.

125

Advanced Information

DMEM Organization and Usage

126

Planning the layout of DMEM is an essential step of writing an RSP
program. A convenient DMEM layout can save precious instructions and
lead to a more optimized and bug-free program.

There are typically parts of DMEM which can be or need to be allocated and
initialized at compile-time; the assembler’s data directives can accomplish
this. Although the data section is built up sequentially regardless of source
code files, it helps to keep all DMEM allocations centralized in one file,
rather than spreading it out over several source code files.

During compilation, the assembler will produce a . dat file which
represents the data section of the microcode object. This section should be
loaded into DMEM as part of the task loading effort. If you make this data
section as small as it can be, and keep it near the top of DMEM (0x04000000)
this task loading can be as fast as possible.

Be sure to compare the size of the data that must be initialized with the size
of the data loaded into DMEM via the task structure. Most programs use the
value SP_UCODE_DATA_SI ZE, which is defined inucode. h with a value of
2048 (bytes). This value might not be appropriate for every RSP program.

Jump Tables

Program “jump tables” can be constructed by initializing DMEM with
program labels. During the second pass of the assembler, these labels will be
resolved and the contents of DMEM wiill be initialized correctly.

Since IMEM is only 4K bytes, a half word is sufficient to hold any IMEM
address.

Constants

Program constants can be generated at compile-time and initialized in
DMEM. When needed, they can be loaded directly and used.

Revision 1.0 DMEM Organization and Usage

It can be convenient to reserve a VU register to hold an entire vector of
constants, available for use in vector computational instructions.

Labels in DMEM

Labels can be used in the data section to later reference offsets for the
purposes of loading or storing things.

Since DMEM is only 4K bytes, any DMEM address can be expressed with the
16 bit offset of a load/store instruction (and using the base register of $0).

Dynamic Data

Data which will be loaded or generated by the program does not need to be
initialized, however it may be useful to allocate space in your global DMEM
map at compile time.

Truncating the . dat file before building the ELF object to a size that
includes the static data, but not the dynamic data (which does not need to be
initialized) will result in a smaller ELF object and therefore less ROM and
DRAM usage.

Diagnostic Information
The assembler provides several useful directives for computing and/or
printing diagnostic information. These are most useful while laying out the

DMEM.

These directives include . bound, .align, .synbol, and .print.
All of these directives are explained in “Assembly Directives” on page 114.

Using temporary assembler symbols to compute sizes, alignment, and hold
diagnostic information is another useful tip.

127

Advanced Information

Performance Tips

128

Assembly language optimizations or vector processing tricks are beyond the
scope of this document, however it is worthwhile to mention a few issues
specifically relating to the RSP architecture.

Dual Execution

The RSP executes up to one Scalar Unit (SU) instruction and one Vector Unit
(VU) instruction per clock cycle; the most efficient RSP code exploits this.
Spreading loads, loop counting, and other SU “bookkeeping” code among
VU computations can greatly accelerate sections of code.

Of course this is not always possible, there is not always useful work that can
be done in both units.

Interleaving SU and VU code inhibits code readability somewhat; a
consistent coding style helps improve the chance of finding a bug that would
otherwise be hidden in an unreadable section of code.

This optimization technique is best left for last. As code is reorganized
during development and testing the dual-issue pattern will change.

Hint: “Keeping the both halves of the RSP busy”is going to be one
of your keys to maximum performance.

Vectorization

The computational power of the RSP lies in the Vector Unit (VU). Choice of
algorithm and data organization are the fundamental design decisions for
optimal RSP programs.

A vector architecture like the VU of the RSP, is a SIMD (Single-Instruction,
Multiple-Data) machine, meaning that one instruction may operate on
several pieces of data.

Reviewing the literature in computer architecture or compiler design, it is
apparent that certain kinds of programming constructs are especially good
(or bad) on a vector architecture:

Revision 1.0 Performance Tips

for loops Programming constructs like:
for (i=0; i<n; i++) {}
perform the same thing on a bunch of data. This is
exactly a “vector” operation.

conversely,

switch Programming constructs which separate data
(switch(), if()), performing different tasks in
different data situations do not vectorize well.

scalar arithmetic General “bookkeeping” code, which increments a
counter, manipulates a pointer, etc. This kind of code is
usually bad because they are unique operations. (there
is a formal description of this: essentially there is a
“number of items”, below which it does not pay to use
vector operations. This has to do with vectorization
setup and pipeline priming.)

pointer de-reference For most vectorizing Ccompilers, accessing data
through pointer de-references is hard for vector
processors. Constructs like “a[b. x] . val ue” are
preferred to pointer usage like “b- >x- >val ue”. Thisis
because computing structure offsets is a simple
addition, rather than another memory access. (This is
not a not a major point for the RSP, as we lack a
vectorizing Ccompiler)

There is another important lesson worth mentioning from the body of
previous vectorization work. Most of the recent efforts in compiler design
and high-level software engineering for SIMD systems are designed to be
scalable, as more vector units are added, performance improves. Lots of
recent work has been applied to developing good vectorizing compilers?. In
those efforts, the focus has been to automatically distribute the data across
the vector units and minimize vectorization start-up costs, letting the
programmer not really worry about the number of vector elements. This is
an important difference from our situation for two reasons: (1) we are
programming at a much lower level. We know how many vector elements

lFora good introduction and references to further reading, consult Hennessy, J., Patterson, D., “Computer
Architecture, A Quantitative Approach”, Morgan Kauffmann Publishers, 1990, ISBN 1-55880-069-8.

129

Advanced Information

130

there are, and this number is not variable. (2) we have severe code space
constraints. Abstracting the vector unit size has severe implications on the
vector code start-up.

The point of this discussion is to observe that the hardware architecture is
clearly visible in the microcode. We program for a specific vector size, and
we waste no code generalizing data parallelism.

The good news is that this limitation also has a major benefit: We are
exposed to the hardware at a low enough level that we can, by inspection,
determine if the vector unit is fully utilized. This is rarely possible, if at all,
on a machine with an architecture or compiler designed for configurable
vector elements (like a Cray).

Hint: “Keeping the vector elements full”’is going to be one of your
keys to maximum performance.

Software Pipelining

SIMD processing achieves maximum performance when there is a high
degree of data parallelism. This simply means that their are lots of
independent data items that can all be operated on at once.

An important idea in vector processing is that data recurrenceis not
allowed. Consider this code fragment:
for (i=0; i<n; i++) {
al[i] = a[i-1] * 2.0;
}

In this example, we could not vectorize this loop because element a[i]
depends on element a[i - 1] . The elements are not independent. This
provides a restriction on the kind of loops we can vectorize and the
organization of our data (which “axis” we choose to vectorize). It also
suggests games we might want to play with our loops (See “Loop Inversion”
on page 131.).

A similar problem, another kind of pipelining problem, is data dependency.
Because the vector unit has a non-zero pipeline delay, we cannot attempt to
use the results of an instruction until several clock cycles after that
instruction is “executed”:

Revision 1.0 Performance Tips

vadd $vi, $v2, $v3
vadd $v4, $v4, $vi

In this example, the second vadd instruction could not execute until the first
vadd has completed and written back its result. There is a data dependency
on register $v 1. The result will be a pipeline stall that will effectively
serialize the vector code, seriously dampening its performance.

Note: Fortunately, the hardware does do register usage locking in this
case; the above code may be slow, but at least it is guaranteed to generate
the correct results.

If a data dependency cannot be avoided, try rearranging code so that at least
some useful work is done during the delay.

Hint: “Keeping the pipeline full”is going to be one of your keys to
maximum performance.

Loop Inversion

A common trick used in vector programming is /oop inversion. This means
swapping inner and outer loops, in order to create the simplest loop with the
largest number of iterations so we can maximize vectorization.

Consider the following code fragment which could be used for vertex
translation:

for (i =0; i < numpts; i++) {/* for each point */
for (j=0; j<4; j++) {/* for each dinmension */
point[i][j] += offset[j];

}

Since we can only vectorize the inner-most operation (the addition), we
would only be using 50% of our vector unit.

Now suppose we have an infinite number of vector elements. If we did, we
could swap the loops and do the outer loop four times, vectorizing the inner
loop across num pt s elements:

for (i =0; i < 4; i++) {/* for each dinmension */
for (j=0; j<numpts; j++) {/* for each point */
point[j][i] += offset[i];
}

131

Advanced Information

132

}

In this fictitious example, we have theoretically improved our program’s
speed by (num pts - 4)*(tinme to do the translation).Abig
improvement! This technique is common to help vectorizing compilers
“recognize” loops that can be vectorized. The compiler will actually break
up the loop into multiple vector operations the size of the number of vector
elements.

Loop inversion is not free. By changing which loop is vectorized, we change
the start-up costs associated with the loop. In terms of microcode, this means
the organization of the data, the use of registers, and the “overhead”
associated with this code fragment will be different.

An additional consideration for our implementation is that we know the
vector unit size and characteristics. While the above code fragment might be
better code for a Cray machine with a vectorizing compiler and unknown
CPU resources, on the RSP we must vectorize the loop by hand, breaking up
the iterations into 8 elements at a time (the size of our vector unit).

Careful evaluation of each loop should include trying to maximize the
vector elements (keeping them filled) as well as avoiding unnecessary loop
start-up and loop overhead.

Loop Unrolling

Unrolling a loop or section of code, while consuming precious IMEM space
and registers, can potentially double the speed of a section of code that has
lots of data dependencies. Unrolling a loop is the simplest way to perform
useful work during pipeline delays.

Program Flow of Control

Since program flow constructs like conditional branches interfere with
vectorization, it is often more efficient to do some “extra” work (which
vectorizes) and decide later which result to use, rather than having a more
complex program using conditional execution to minimize computation.

For example, in the triangle rasterization setup code, the vertex attributes (r,
g, b a s, t w, 2)fit nicely in vector registers. Rather than having complicated

Revision 1.0 Performance Tips

code which decides which attributes are necessary, we always compute
them all and only output the ones we are interested in.

This approach also saves precious IMEM space.

Profiling RSP Code

The RSP simulator can help profile your code, it can show pipeline stalls,
load delays, and DMA wait states. The RSP clock (CLK) of the simulator is
always available as a register.

Note: Although it is accurate within a few percent, the RSP simulator is
not cycle accurate with the actual hardware. The differences are mainly
in VU loads and moves.

It is also useful to use the RDP Command Counter to profile code on the
actual hardware. This value can be sampled, saved to DMEM or DMA’d to
DRAM for later analysis. A sample code fragment to read and store the RDP
Command Counter is shown in Figure 6-1, “Real-time Clock Watching on
the RSP,” on page 134.

133

Advanced Information

134

Figure 6-1 Real-time Clock Watching on the RSP

In the RSP microcode:

Checkpoint the clock before the critical section:
nfcO $1, $cl2
sw $1, 0($0)

(Perform the critical section)

Checkpoint the clock after the critical section:
nfcO $1, $cl2

I w $2, 0(%0)

sub $1, $1, $2

sw $1, 0($0)

After the task has completed, this value can be retrieved by the application code on the CPU:

whil e (__osSpRawReadl o((u32) (SP_DMEM START + 0x0),
(u32 *) &(scratch_int)))

1

Depending on what you are timing, take care to consider that the RDP Counter is only 24 bits (be careful of wrap
conditions).

A more complex example might DMA data to DRAM for later analysis instead.

Since IMEM is relatively small, critical sections of code can also be profiled
by inspection, examining the code and following the pipelining rules, “Mary

Jo’s Rules” on page 43

Dividing the number of instructions a section of code uses by the number of

clocks it takes to execute the section gives you a ratio that expresses
dual-execution efficiency and VU pipeline usage. A perfect ratio of 2.0

means you are executing two instructions per clock (one SU, one VU) with

no pipeline delays. A ratio less than 1.0 means you are experiencing
execution stalls due to data dependencies and/or not keeping both
execution units busy.

Inserting dummy display list instructions (temporarily customizing the

microcode) to mark coarse timing boundaries is another useful trick.

Revision 1.0 Microcode Overlays

Microcode Overlays

One of the challenges of RSP programming is working within the limited
instruction memory. IMEM is an explicitly managed resource; you are free
to load new code as you see fit.

RSP microcode loading can be divided into two situations: a swap, initiated
by the host CPU, which loads the entire IMEM while the RSP is halted, and
an overlay, which loads part of IMEM and is triggered by the currently
executing RSP program. The latter case is the most interesting and is the
subject of this section, covering related architectural issues and explaining
one scheme for microcode overlays in detail.

Memory System Implications

The Rambus memory system is most efficient at large block transfers, so
microcode loading can approach peak memory transfer speeds.

Like all DMA transfers, the source and destination must be 64-bit aligned,;
some care must be taken planning microcode overlays to meet this
restriction. The assembler provides several directives to guarantee code
alignment.

Since IMEM is single-ported memory, only one control unit can access it at
atime; if microcode is loaded while a program is currently executing, IMEM
accesses are shared between the DMA engine and the RSP control unit
(which is fetching instructions). This means that dynamic microcode
overlays can only approach 50% of peak DMA transfer rate.

Entirely Up to You

The decision to overlay microcode and the labor to perform the overlay must
be embedded in the RSP program. Overlay techniques involve the RSP
development tools, the RSP software, and possibly even the display list or

other data that the RSP program is designed to interpret.

Choosing when to overlay microcode should be done carefully; although
such DMA transfers are relatively efficient, they are not free.

135

Advanced Information

136

RSP Assembler Tricks

The RSP assembler r spasmhas several features designed to assist
developing microcode overlays.

IMEM Alignment Alignment directives like . bound and . al i gn can be
used in the text section to ensure that overlay destinations
are 64-bit aligned, as required by the DMA engine.

DMEM Initialization Initialization directives like. wor d and. hal f canbe
used to create a table of information necessary to perform
overlays.

DMEM Labels Labels can be used in the . dat a section so that overlay
information can be easily accessed from the program.

DMEM Symbols Program symbols (labels) can be used to initialize DMEM
data, generating code overlay destinations (IMEM
addresses) automatically in the second pass of the
assembler.

External Symbol Tables The - S option to the assembler allows you to
specify another microcode object to use as an external
symbol table. This allows you to branch to locations outside
the current microcode object.

A Sample RSP Linker

While not a true “linker”, the program bui | dt ask can be used to combine
multiple RSP objects (both text and data sections) into a larger object.

The bui | dt ask algorithm is quite simple, it concatenates the text and data
sections, in the order supplied on the command line. It enforces 64-bit
alignment and computes the sizes and offsets from the beginning for each
different overlay object. This information is stored back in the data section
(beginning at 0x0, or the value supplied by the - d flag), completing a table
of information necessary to perform overlays.

The behavior of buildtask output is illustrated in Figure 6-2, “buildtask
Operation,” on page 137.

Revision 1.0 Microcode Overlays

Figure 6-2 bui | dt ask Operation

Output Object Text Section Output Object Data Section

ucode data
offset 0 A - d offset object 0

offset 0
size0 | destO
offset 1
sizel | destl

ucode offset 2
object 0 size 0 size2 | dest2
offset 3
size3 | dest3

offset ucode ucode data
object 1 size 1 object 1
alignment padding
offset 2 A ucode data
ucode object 2
object 2 size 2
offset 3 A
ucode data
ucode ;
object 3 size 3 object 3

The offsetfield is 32 bits, the size and destination are both 16 bits.

The destination field is not generated by bui | dt ask, it is generated by the assembler (usually as an IMEM
label).

At run time, the DRAM address of the microcode object (part of the OSTask structure) must be added to the
offsetfield to generate the correct DRAM address for each overlay.

Data objects for subsequent overlays may be redundant and need not be used. The - f argument can be used to
ignore these data sections.

137

Advanced Information

With this information, a DMA transaction can be programmed to load an
overlay into IMEM.

Overlay Example

To see exactly how this works, let’s examine the source code and Makefile
for a simple example.

Overlay Makefile
HHHBHBHHHHBHBHH R BB R BB R AR A AR

use the RSP linker ‘buildtask’ to construct the tasks
fromthe objects.

use the rsp2elf programto construct the debug
executabl es and library objects

HoHH R H R

gspLi ne3D: gspLi ne3D. u newt.u
${BUI LDTASK} -f 1 -0 $@gspLi ne3D.u newt.u

gspLi ne3D. o: gspLi ne3D
${RSP2ELF} -p -r $?

HHHBHBH BRI RH B R R R R R R R A R AR R R
#

build the individual objects.

#

newt . u: gspLi ne3D.u ../ newt.s ${COMMON_GFX_CODE}
${ RSPASM ${LClI NCS} ${LCDEFS} - DNEWI_ALONE \
-S gspLine3D.u -0 $@../newt.s

gspLi ne3D. u: ${ COMMON_GFX_CODE} ${ LI NE_CCDE}
${ RSPASM ${LCI NCS} ${LCDEFS} -0 $@../gnain.s

In this example, there are two microcode objects; the main program,
gspLi ne3D. u, and one overlay, newt . u. Each is compiled separately;

138

Revision 1.0 Microcode Overlays

notice the usage of the - S flag used when compiling newt . u in order to

access

The - f
newt .
newt .

the external symbols of gspLi ne3D. u.

argument passed to bui | dt ask prevents concatenation of the
dat section; this data section is redundant (any static data needed for
u is planned for and included in gspLi ne3D. u).

The r sp2el f program is used to build an ELF object using bui | dt ask’s
output, this ELF object is what will be linked into the game application by

maker

om

Overlay DMEM Initialization

This code fragment shows the initialization of DMEM for this example.

B R R T T T R R R
#H###HA#HHE OVERLAY TABLE #####HHRHHHARHHHHHHHBHIRHH
BHURBHHRHHABHHHBH R HH R H A B H AR H R H AR AR

HoH HHH R HHHHH R

Program nodul e overlay table. Ofsets and sizes are
filled in by the ‘buildtask’ utility, destinations are
the responsibility of the ucode.

OVERLAY_CFFSET: offset from beginning of mcrocode in
RDRAM and in .o file (filled in by
bui | dt ask) .

OVERLAY_SI ZE: | ength of overlay in bytes (filled in
by bui |l dt ask).

OVERLAY_DEST: where in IMEMto put the overlay
(filled in by assenbler).

The overlay table nust be the first thing in DVEM
The 1st overlay nust be the initial code.

. bound 0x80000000

OVERLAY_TAB_OFFSET:

#d
#d
#d

efine OVERLAY_OFFSET 0
efi ne OVERLAY_SI ZE 4
efi ne OVERLAY_DEST 6

139

Advanced Information

140

OVERLAY_0_OFFSET:
mai n nodul e.

.word 0x0 # offset fromstart of code
. hal f 0x0 # size in bytes (-1)
. hal f 0x1080 # destination

OVERLAY_ 1 OFFSET:
OVERLAY_NEWON:
Newton’s nodul e laid over boot code.

.word 0x0 # offset fromstart of code
. hal f 0x0 # size in bytes (-1)
. hal f 0x1000 # destination

The size and offset of the microcode objects will be filled in by bui | dt ask,
see Figure 6-2, “buildtask Operation,” on page 137.

Overlay Initialization Code

Before we load the overlay we must update the overlay table with the correct
DRAM address for the start of the code. This is usually done immediately at
the beginning of the program, since we require the OSTask structure which
has been copied into DMEM (and may need to be overwritten by the
program).

T
#
code overl ays:
#
update table to be real DRAM address:
lw $5, OS_TASK OFF_UCODE($1) # ucode base pointer

PATCH NEWION ONLY
lw $2, (OVERLAY_1 OFFSET + OVERLAY_OFFSET) (zero)
add $2, $2, $5
sw $2, (OVERLAY_1_OFFSET + OVERLAY_OFFSET) (zer0)

Revision 1.0

Microcode Overlays

Overlay Decision Code

Deciding when to perform an overlay is specific to each program and
overlay function and therefore an example is not necessary. In this case, we
always perform the overlay, since we are loading it over the RSP boot
microcode (reclaiming precious IMEM space!)

Overlay DMA Code

Actually overlaying the new microcode is the same as any other DMA
transfer (See “DMA” on page 96); we use the information from the overlay
table to set the source, destination, and length of the transfer.

overp points to the proper entry in the
overlay table.

| oadOver| ay:
I w
I'h
I'h
j al
addi
jal
nop
ir
nop

dram addr, OVERLAY_COFFSET(over p)
drme_| en, OVERLAY_SI ZE(over p)

i mem addr, OVERLAY_DEST(overp)

DIVApr oc

iswite, zero, O # del ay sl ot
DMAwai t

overeturn

Remember to encode the length as (length-1), or else you might over-write
some important instructions.

141

Advanced Information

Controlling the RSP from the CPU

142

The operating system running on the CPU includes facilities to control the
RSP. The major function calls and some RSP details are explained in this
section.

Starting RSP Tasks

The man page for osSpTaskSt art () explains the CPU-side details of
managing the RSP. The include file spt ask. h contains additional
information in the comments.
The algorithm to start a task is as follows:

= Halt the RSP (if it is not halted already).

< DMA the OSTask structure into the low part of DMEM
(0x1000 - sizeof (OSTask)).

e DMA the RSP boot microcode into IMEM at 0x0.
e Set the RSP PC to 0x0.
e Clear the HALT bit of the RSP status register.

Once the HALT bit is cleared, the RSP begins execution using the current PC
and contents of IMEM.

RSP Boot Microcode

The boot microcode copies the task microcode into IMEM (at 0x80) and the
task data into DMEM (at 0x0). Since the task data might overwrite the
OSTask structure, it is the task’s responsibility to either not need the
OSTask or guarantee that it is not overwritten (by initializing less than 4K
bytes of DMEM).

Each microcode task typically has “initialization” work of its own; usually
this is performed immediately, possibly loading in additional microcode.

Revision 1.0 Controlling the RSP from the CPU

Hidden OS Functions

There are undocumented OS functions to access the RSP from the CPU.
These functions should rot be used in the regular course of game
programming; their use may interfere with other core OS functionality. They
can be useful for RSP program development, particularly post-mortem
analysis of RSP state.

These functions are internal OS calls and are not guaranteed to be supported
in the future; use at your own risk.

__o0sSpDeviceBusy
i nt
__0sSpDevi ceBusy(voi d)
This function returns 1 if the RSP is busy performing IO operations.

__osSpRawsStartDmay()

s32
__osSpRawsSt art Dnma(s32 direction, u32 devAddr,
voi d *dramAddr, u32 size)

Based on the input direction (OS_READ or OS_WRI TE), set up a DMA
transfer between RDRAM and RSP memory address space.

devAddr and dr amAddr specifies the DMA buffer address of RSP
memory and RDRAM, respectively. si ze contains the number of bytes
to transfer. Note that these addresses must be 64-bit aligned and size
must be a multiple of 8 bytes. Maximum transfer size is 4K bytes.

If the interface is busy, return a - 1 and abort the operation.

__osSpRawReadlo()
s32
__osSpRawReadl o(u32 devAddr, u32 *data)

Perform a 32-bit programmed 10 read from RSP memory address
space. Note that devAddr must be 32-bit aligned.

If the interface is busy, return a - 1 and abort the operation.

143

Advanced Information

144

__osSpRawWritelo()

s32
__0osSpRawwitel o(u32 devAddr, u32 data)

Perform a 32-bit programmed 10 write to RSP memory address space.
Note that devAddr must be 32-bit aligned.

If the interface is busy, return a - 1 and abort the operation.

__0sSpGetStatus()

u32
__0SSpCet St at us(voi d)

Return the RSP status register.

__0sSpSetStatus()

voi d
__0sSpSet Stat us(u32 dat a)

Update the RSP status register.

__0sSpSetPc()

s32
__0sSSpSet Pc(u32 dat a)

Set the RSP program counter (PC).
If the RSP is not halted, return a - 1 and abort the operation.

Address spaces used as parameters to these functions are defined in the file
rcp. h.

Revision 1.0 Microcode Debugging Tips

Microcode Debugging Tips

There are two different environments for debugging microcode: (1) the RSP
simulator (r sp or r spg) and (2) the coprocessor view of Gameshop (gvd).

Each tool has its advantages; Gameshop is discussed in separate
documentation. This section explains the first technique and provides some
other tips.

The first tip is to develop as much of the RSP microcode as possible using the
RSP simulator. The tools are more friendly, more powerful, and the
turn-around time is much shorter. In order to facilitate this, you may wish to
also develop driver or stub tools that can create the data necessary to debug
the program.

Once everything is mostly working, and you progress to integrating the new
microcode with an application running on the CPU, using the RSP simulator
becomes a little trickier. In order to use the RSP simulator you must create a
DRAM image containing all the necessary pieces for the RSP task, and an
OSTask structure. Briefly, the technique is:

= Run the RSP simulator.
e Copy the DRAM image into memory at 0xO0.

= Copy the OSTask structure into the bottom of DMEM at
(0x04001000 - si zeof (OSTask)).

e Copy the r spboot microcode into IMEM at 0x04001000. Note
that this is not the ELF image of r spboot , but the RSP executable.

e Setthe PC to 0x04001000.
< Run (or step) the RSP program.

At this point, everything is in place to execute a task on the RSP simulator.
The hardest step is creating the DRAM image that contains all the necessary

elements in their proper places. Fortunately, there are some tools to help
here:

145

Advanced Information

guDunpGbi DL() This library function can be called directly from the

gbi 2mem

game to dump the necessary pieces back out to the Indy. It
uses ther nonPri nt f () and creates a (potentially very
large) ASCII file that can be read by gbi 2nem

guDunpGbi DL() works by saving the OSTask structure,
the microcode, the display list, and traversing the display
list following any data (textures, matrices, vertices, etc.)
pointers to save that data also. This results in the minimum
amount of data to transfer back to the Indy in order to
simulate the RSP task.

This tool takes the file dumped by guDunpGbi DL() and
creates the . nemand . t sk files, containing the DRAM
image and OSTask structure, respectively.

gbi 2memworks by reading the ASCII file and creating a
binary DRAM image, with all objects located at the proper
address.

Sincer monPr i nt f () writesto the terminal, the proper invocation is to pipe
the output of gl oad to gbi 2nem

% gl oad |

gbi 2mem - o <fil enane>

This method of dumping data from the hardware back to the Indy is not
terribly efficient; it works best if the display list is as minimal as possible’.

146

1 One obvious improvement would be to use the binary host 170 interface, rather than the ASCII

rmonPrintf().

Revision 1.0 RSP Yielding

RSP Yielding

One of the more complex issues of synchronization between the CPU and
the RSP is the concept of yielding. The motivation for yielding is discussed
at length in higher-level documentation; some of the implementation details
are discussed here.

For typical applications with graphics and audio processing that must share
the resources of the RSP, there must be a higher-level synchronization to
assure that neither task is starved.

It is the nature of graphics processing that the amount of RSP processing
required on a frame-to-frame basis may be difficult to predict. The amount
of graphics computations can depend on the data in the scene, the location
of the camera, and other parameters of visual complexity. A varying amount
of graphics processing determines the “frame rate” of an application. If a
new graphics frame is not computed, the video circuitry will just re-display
the old frame.

Audio processing, on the other hand, is usually a function of sample rate,
number of voices, or other data which is more constant and easier to predict.
Audio processing is more susceptible to discontinuities caused by processor
starvation, however. If the next frame of audio is not computed, the audio
circuitry will not have any data to play, and the sound will stop (or click or

pop).

The solution implemented is to allow graphics tasks to y7e/d, meaning that
at quiescent times, the graphics task politely inquires to see if the CPU is
requesting that it stop computation. If the answer is yes, the graphics task
saves its state to DMEM sufficiently so that it can be restarted, and the task
will exit.

The operating system discriminates a yield condition from a normal task
completion using the status register of the RSP. It then saves the contents of
DMEM and returns to the application so that the audio task may be
scheduled. When the graphics task is to be resumed, flags in the OSTask
structure tell the rspboot microcode to behave slightly differently and
restore the previously-yielded task.

147

Advanced Information

148

Requesting a Yield
An application requests an RSP task to yield by calling osSpTaskYi el d() .

This function sets the Coprocessor 0 Status Register bit SP_SET_YI ELD,
which is#define’dasSI Qinrcp. h.

Checking for Yield

The microcode checks periodically for a yield request. It would be inefficient
to check too often, but it would also be dangerous to not check often enough,
possibly detecting the yield too late.

For the released graphics microcode, we check for the yield after processing
every display list command. The test is relatively cheap, only a few cycles,
and this guarantees that we will test every several hundred clock cycles at
the most.

we’'re done with this command, do the next one (if
avail able). ..
#

G xDone:
stick our head up, see if we need to yield the SP.
|If so,checkpoint everything then exit.

#
nfcO vyield, SP_STATUS # need to yield?
andi yield, yield, SP_STATUS YIELD
bne yield, zero, RSPYield
I h overeturn, TASKYI ELD(zer0) # return where?
Yielding

The microcode’s responsibility during yield is, by design, minimal.

The microcode saves a handful of important registers to DMEM, then
DMA'’s the necessary portion of DMEM to the yield buffer (originally
supplied to the task as part of the task header).

The microcode also sets the SP_YI ELDED bit in the Coprocessor 0 Status
Register, this bit is#define’das SI Gl inr cp. h.

Revision 1.0 RSP Yielding

Saving a Yielded Process

After requesting a yield, the host CPU must wait for the RSP task to finish
and verify that it actually yielded.

It might also modify internal state, so that the yielded task can be restarted.

Restarting a Yield Process

Restarting a previously yielded task is conceptually simple; the
previously-saved DMEM data (from the yield buffer) is used as the
ucode_dat a field in the task header, and the OS_TASK_YI ELDEDbit in the
task header is set.

The microcode will detect the OS_TASK_YI ELDED bit in the task header
flags and perform the proper initialization, before resuming execution.

This initialization should include restoring registers (from the saved
DMEM) and possibly overlaying code segments.

149

Advanced Information

150

Appendix A

RSP Instruction Set Details

This appendix describes the machine-language format of the RSP
instructions and formally describes the behavior of each instruction.

Since the RSP instruction set conforms to the MIPS ISA, the format and
notation of this appendix is the same as Appendix A in the book “M/PS
R4000 Microprocessor User’s Manual™.

Vector Unit instructions are also discussed in Chapter 3, “Vector Unit
Instructions.”

In this appendix, all variable subfields in an instruction format (such as rs,
rt, immediate, etc.) are shown in lowercase hames.

For the sake of clarity, we sometimes use an alias for a variable subfield in
the formats of specific instructions. For example, we use rs = basein the
format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

In the instruction descriptions that follow, the Operation section describes
the operation performed by each instruction using a high-level language
notation.

Special symbols used in the notation are described in Table A-1, “RSP
Instruction Operation Notations,” on page 152.

Y Heinrich, J., “MIPS R4000 Microprocessor User’s Manual”, Prentice Hall Publishing, 1993, ISBN 0-13-1-5925-4.

151

152

Table A-1RSP Instruction Operation Notations

Symbol Meaning
<« Assignment.
I Bit string concatenation.
xY Replication of bit value xinto a y~bit string. Note: x
is always a single-bit value.

Xy..z Selection of bits y'through zof bit string x.
Little-endian bit notation is always used. If yis less
than z, this expression is an empty (zero length) bit
string.

+ 2’s complement or floating-point addition.
- 2’s complement or floating-point subtraction.
* 2’s complement or floating-point multiplication.
div 2’s complement integer division.
mod 2’s complement modulo.
/ Floating-point division.
< 2’s complement less than comparison.
and Bit-wise logical AND.
or Bit-wise logical OR.
xor Bit-wise logical XOR.
nor Bit-wise logical NOR.

GPR[X] General-Register x. The content of GPR[0] is
always zero. Attempts to alter the content of GPR[0]
have no effect.

CPRJ[z,X] Coprocessor unit z, general register x.
CCR[z,X] Coprocessor unit z, control register Xx.
VR[Xx][e] Vector Unit register x, byte e. (a VU register is 16

bytes wide)

Revision 1.0

Table A-1RSP Instruction Operation Notations

Symbol Meaning
ACCle] Vector Unit Accumulator, element e. The ACC has
8 elements each 48 bits wide.
dmem|x] DMEM contents beginning at byte address x.
T+i: Indicates the time steps between operations. Each

of the statements within a time step are defined to
be executed in sequential order (as modified by
conditional and loop constructs). Operations which
are marked T+i: are executed at instruction cycle i
relative to the start of execution of the instruction.
Thus, an instruction which starts at time j executes
operations marked T+i: at time i + . The
interpretation of the order of execution between two
instructions or two operations which execute at the
same time should be pessimistic; the order is not
defined.

Clamp_Signed(x)

x is clamped to prevent overflow (signed clamp).

Instruction Notation Examples

The following examples illustrate the application of some of the instruction
notation conventions:

153

154

Example #1:

GPR[rf] <« immediate || 0°

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General-Purpose Register rt.

Example #2:

(immediate;5)*® || immediate;s

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through O of the immediate value to form a 32-bit sign
extended value.

Example #3:
VRIVl[els. o < (dmem[Addr]; o [| 0%)

Eight zero bits are concatenated with the byte of DMEM at
Addr, and assigned to the 16 bit element at byte e of VU register vt.

Example #4:

VR[Vd][2]15_ o < (VR[VS][2]15._o and VR[Vi][2]15 o)

The 16 bit element at byte 2 of VU register vs is AND'd
with the 16 bit element at byte 2 of VU register vt,

the result is assigned to the 16 bit element at byte 2 of VU
register vd.

Revision 1.0

155

ADD Add ADD

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s t d 0 ADD
000000 00000 100000

6 5 5 5 5 6
Format:

add rd, rs, rt

Description:

The contents of general register rsand the contents of general register rtare added to form the
result. The result is placed into general register rd.

Since the RSP does not signal an overflow exception for ADD, this command behaves identically to
ADDU.

Operation:

T: GPRIrd] « GPRJrs] + GPR[r]

Exceptions:

None

156

Revision 1.0

ADDI

Add Immediate

ADDI

31 26 25 21 20 16 15 0
ADDI s It immediate
001000
6 5 5 16
Format:
addi rt, rs, inmmediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rsto form the
result. The result is placed into general register rz.

Since the RSP does not signal an overflow exception for ADDI, this command behaves identically

to ADDIU.

Operation:

T: GPR|[rt] < GPR[rs] + ((immediate;5)® || immediate;5 o)

Exceptions:

None

157

ADDIU Add Immediate Unsigned ~ ADDI|U

31 26 25 21 20 16 15 0
ADDIU rs rt immediate
001001
6 5 5 16
Format:

addiu rt, rs, immedi ate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rsto form the
result. The result is placed into general register rz.

Since the RSP does not signal an overflow exception for ADDI, this command behaves identically
to ADDI.

Operation:

T: GPR|[rt] «- GPR[rs] + ((immediate;5)® || immediate;5 o)

Exceptions:

None

158

Revision 1.0

ADDU Add Unsigned ADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 ADDU
000000 00000 100001
6 5 5 5 5 6
Format:

addu rd, rs, rt

Description:

The contents of general register rsand the contents of general register rtare added to form the
result. The result is placed into general register rd.

Since the RSP does not signal an overflow exception for ADD, this command behaves identically to
ADD.

Operation:

T. GPRJ[rd] «GPR[rs] + GPR]rt]

Exceptions:

None

159

AND And AND

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 AND
000000O0 0000O0 100100
6 5 5 5 5 6
Format:

and rd, rs, rt

Description:

The contents of general register rsare combined with the contents of general register rtin a bit-wise
logical AND operation. The result is placed into general register rd.

Operation:

T: GPR[rd] « GPR][rs] and GPR]rt]

Exceptions:

None

160

Revision 1.0

ANDI

And Immediate

ANDI

31 26 25 21 20 16 15 0
ANDI rs rt immediate
001100
6 5 5 16
Format:

andi rt, rs, imediate

Description:

The 16-bit /mmediateis zero-extended and combined with the contents of general register rsin a
bit-wise logical AND operation. The result is placed into general register rt.

Operation:

T: GPRrt] « 0% || (immediate and GPR]rs];5._ o)

Exceptions:

None

161

B EQ Branch On Equal B EQ

31 26 25 21 20 16 15 0
BEQ rs rt offset
000100
6 5 5 16
Format:

beq rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rsand
the contents of general register rtare compared. If the two registers are equal, then the program
branches to the target address, with a delay of one instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.
Operation:

T: target « (offset;s)** || offset || 02
condition < (GPR[rs] = GPR]rt])
T+1: if condition then

PCy1.0¢ PCyy o ttarget;; o
endif

Exceptions:

None

162

Revis

ion 1.0

BGEZ

Branch On Greater Than
Or Equal To Zero

BGEZ

31 26 25 21 20 16 15 0
REGIMM rs BGEZ offset
000001 00001
6 5 5 16
Format:

bgez rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. If the contents of general register rs
have the sign bit cleared, then the program branches to the target address, with a delay of one

instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

T: target « (offset;s) || offset || 02
condition < (GPR[rs]z; = 0)

T+1: if condition then
PCy1..0¢ PCyy. o +targetyy o

endif

Exceptions:

None

163

Branch On Greater Than
B G EZAI— Or Equal To Zero And Link B G EZAI—

31 26 25 21 20 16 15 0
REGIMM rs BGEZAL offset
000001 10001
6 5 5 16
Format:

bgezal rs, offset
Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the
instruction after the delay slot is placed in the link register, r31. If the contents of general register

rs have the sign bit cleared, then the program branches to the target address, with a delay of one
instruction.

General register rsmay not be general register 37, because such an instruction is not restartable.
Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

T: target « (offset;s)'* || offset || 02
condition < (GPR[rs]3; = 0)
GPR[31] « PC + 8

T+1: if condition then

. PCy1. 0« PCyqy o ttarget;; o
endif

Exceptions:

None

164

Revision 1.0

BGTZ Branch On Greater Than Zero BGTZ

31 26 25 21 20 16 15 0
BGTZ rs 0 offset
000111 00000
6 5 5 16
Format:

bgtz rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rsare
compared to zero. If the contents of general register rshave the sign bit cleared and are not equal
to zero, then the program branches to the target address, with a delay of one instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:
T: target « (offset;s)' || offset || 02
condition «— (GPR[rs]3; = 0) and (GPR[rs] # 0%?)
T+1: if condition then
PCll...O < Pcllmo + targetllmo
endif
Exceptions:
None

165

Branch on Less Than
B L EZ Or Equal To Zero B I— EZ

31 26 25 21 20 16 15 0
BLEZ rs 0 offset
000110 00000O0
6 5 5 16
Format:

blez rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rsare
compared to zero. If the contents of general register rshave the sign bit set, or are equal to zero,
then the program branches to the target address, with a delay of one instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:
T: target « (offset15)14 || offset || 02
condition < (GPR[rs]3; = 1) or (GPR]rs] = 0%?)
T+1: if condition then
PC11..0< PCyy o ttargety; o
endif
Exceptions:
None

166

Revis

ion 1.0

BLTZ

Branch On Less Than Zero

BLTZ

31 26 25 21 20 16 15 0
REGIMM rs BLTZ offset
000001 00000
6 5 5 16
Format:

bltz rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. If the contents of general register rs
have the sign bit set, then the program branches to the target address, with a delay of one

instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

T: target « (offset;s) || offset || 02
condition < (GPR[rs]z; = 1)

T+1: if condition then

PCy1..0¢ PCy1 o +targetyy o

endif

Exceptions:

None

167

168

BLTZAL "Gomaime " BLTZAL

31 26 25 21 20 16 15 0
REGIMM rs BGEZAL offset
000001 10001
6 5 5 16
Format:

bltzal rs, offset
Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the
instruction after the delay slot is placed in the link register, r31. If the contents of general register

rs have the sign bit set, then the program branches to the target address, with a delay of one
instruction.

General register rsmay not be general register 37, because such an instruction is not restartable.
Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

T: target « (offset;s)'* || offset || 02
condition < (GPR[rs]31 < 0)
GPR[31] «- PC + 8
T+1: if condition then
. PC11.0¢ PCyy o ttargety; o
endif

Exceptions:

None

Revision 1.0

BNE

Branch On Not Equal

BNE

31 26 25 21 20 16 15 0
BNE rs rt offset
000101
6 5 5 16
Format:

bne rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rsand
the contents of general register rtare compared. If the two registers are not equal, then the program
branches to the target address, with a delay of one instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

T: target« (offset;s)'* || offset || 02
condition « (GPR][rs] # GPR][rt])

T+1: if condition then
PC11..0 ¢ PCyy o ttarget;y o

endif

Exceptions:

None

169

BREAK Breakpoint BREAK

31 26 25 65 0

000000 001101
6 20 6

SPECIAL code BREAK

Format:

br eak

Description:

A breakpoint occurs, halting the RSP and setting the SP_STATUS BROKE bit in the RSP status
register.

When the SP_STATUS | NTR_BREAK is set in the RSP status register, the RSP interrupt is signaled
(M _I NTR_SP).
Operation:

T: break

Exceptions:

None

170

Revision 1.0

CFC2

Move Control From
Coprocessor 2 (VU)

CFC2

31 26 25 21 20 16 15 11 10 0
COP2 CF rt rd 0
010010 00010 000000000O0O
6 5 5 5 11
Format:
cfc2 rt, rd
Description:

The contents of coprocessor 2 (VU) control register rd are loaded into general register rt.

Operation:

T: data <~ CCR[rd]
T+1: GPR[rt] « data

Exceptions:

None

171

CTC2 Move Control to CTC2

Coprocessor 2 (VU)

31 26 25 21 20 16 15 11 10 0
COP2 CT rt rd 0
010010 00110 00000000000
6 5 5 5 11
Format:
ctc2 rt, rd
Description:

The contents of general register rtare loaded into control register rd of the VU (coprocessor unit 2).

Operation:

T: data < GPR]rt]
T+ 1: CCR[rd] « data

Exceptions:

None

172

Revision 1.0

J Jump
31 26 25
J target
000010
6 26
Format:
j target
Description:

The 26-bit target address is shifted left two bits and combined with the high-order bits of the

address of the delay slot. The program unconditionally jumps to this calculated address with a

delay of one instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

T: temp « target

T+1: PCyy o<« tempy; || 02

Exceptions:

None

173

174

JAL Jump And Link JAL

31 26 25 0
JAL target
000011
6 26
Format:
jal target
Description:

The 26-bit target address is shifted left two bits and combined with the high-order bits of the
address of the delay slot. The program unconditionally jumps to this calculated address with a
delay of one instruction. The address of the instruction after the delay slot is placed in the link
register, r31.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.
Operation:

T: temp « target
GPR[31] « PC +8
T+1: PCyy o< tempyy 5 || 02

Exceptions:

None

Revision 1.0

JALR Jump And Link Register JALR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs 0 rd 0 JALR
000000 00000 00000 001001
6 5 5 5 5 6
Format:
jalr rs

jalr rd, rs

Description:

The program unconditionally jumps to the address contained in general register s, with a delay of
one instruction. The address of the instruction after the delay slot is placed in general register rd.
The default value of rd, if omitted in the assembly language instruction, is 31.

Register specifiers rsand rd may not be equal, because such an instruction does not have the same
effect when re-executed. However, an attempt to execute this instruction is nottrapped, and the
result of executing such an instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register instruction must specify a
target register (rs) whose two low-order bits are zero.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:
T: temp < GPR [rs]
GPR[rd] « PC + 8
T+1: PCi1. 0« tempyy o
Exceptions:
None

175

JR Jump Register JR

31 26 25 21 20 65 0
SPECIAL rs 0 JR
000000 00000000O0O0OOOOOO 001000
6 5 15 6
Format:
jr rs
Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of
one instruction.

Since instructions must be word-aligned, a Jump Register instruction must specify a target register
(rs) whose two low-order bits are zero.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:
T: temp < GPR]rs]
T+1: PCy1. 0« tempyy o
Exceptions:
None

176

Revision 1.0

B Load Byte LB
31 26 25 21 20 16 15 0
LB base rt offset
100000
6 5 5 16
Format:

Ib rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register baseto form a
DMEM address. The contents of the byte at the DMEM location specified by the effective address

are sign-extended and loaded into general register rt.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:
T:

Addr « ((offset;5)*® || offset;s o) + GPR[base]

GPRIrt]3;._o < (dmem[Addr];?* || dmem[Addry; 7. o)

Exceptions:
None

177

_BU Load Byte Unsigned I_BU
31 26 25 21 20 16 15 0
LBU base rt offset
100100
6 5 5 16
Format:

I bu rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register baseto form a
DMEM address. The contents of the byte at the DMEM location specified by the effective address
are zero-extended and loaded into general register rt.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:
T:
Addr « ((offset;5)'® || offset;s o) + GPR[base]
GPR[ra;..0 < (0** || dmem[Addry; _ol7. o)
Exceptions:
None

178

Revision 1.0

Load Byte
L BV into Vector Register L BV

31 26 25 21 20 16 15 11 10 7 6 0
LWC2 base vt LBV element offset
110010 00000
6 5 5 5 4 7
Format:

I bv vt[elenent], offset(base)

Description:

This instruction loads a byte (8 bits) from the effective address of DMEM into byte e of vector
register vt

The effective address is computed by adding the offsetto the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vzin a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.
Operation:
T:

Addr « ((offset;5) || offset;5_o) + GPR[base]
VR[vt][element]; o < dmem[Addri; gl7 o

Exceptions:

None

179

Load Double
L DV into Vector Register L DV

31 26 25 21 20 16 15 11 10 7 6 0
LWC2 base vt LDV element offset
110010 00011
6 5 5 5 4 7
Format:

ldv vt[elenent], offset(base)

Description:

This instruction loads a double (64 bits) from the effective address of DMEM into vector register vt
starting at byte e

The effective address is computed by shifting the offset up by 3 bits and adding it to the contents
of the baseregister (a SU GPR).

The offset field of the instruction is encoded by shifting the offset used in the source code down 3
bit, so the offset used in the source code must be a multiple of 8 bytes.

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register v¢in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

T:
Addr « ((offset;5)'2 || offset;s g || 0%) + GPR[base]
VR[Vt][E|ement]63m0 < dmem[Addrllmo]63_“0

Exceptions:

None

180

Revision 1.0

L FV Load Packed Fourth L FV
into Vector Register
31 26 25 21 20 16 15 11 10 7 6 0
LWC2 base vt LFV element offset
110010 01001
6 5 5 5 4 7
Format:
I fv vt[elenent], offset(base)
Description:

This instruction loads every fourth byte of a 128-bit word into a VU register element. Since |l f v only
moves four bytes, the elerment field selects the upper or lower group of four destination register
elements. The bytes are loaded with their MSB positioned at bit 14 in the register element. See
Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register v¢in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

181

Operation:

T:
Addr « ((offset;5)'8 || offset;s o) + GPR[base]
foriin0...3
Addr=Addr +i* 4
VR[vi][element + *2];5._o « (0 || dmem[Addr1; 7. o Il O7)
endfor
Exceptions:
None

182

Revision 1.0

L H Load Halfword |_ H
31 26 25 21 20 16 15 0
LH base rt offset
100001
6 5 5 16
Format:

Ih rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register baseto form a
DMEM address. The contents of the halfword at the DMEM location specified by the effective
address are sign-extended and loaded into general register r¢

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:
T:

Addr « ((offset;5)'8 || offset;s o) + GPR[base]

GPRIrtl31. o < (dmem[Addr];® || dmem[Addri;_ls_ o)

Exceptions:

None

183

184

HU Load Halfword Unsigned L HU
31 26 25 21 20 16 15 0
LHU base rt offset
100101
6 5 5 16
Format:

I hu rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register baseto form a
DMEM address. The contents of the halfword at the DMEM location specified by the effective
address are zero-extended and loaded into general register rt.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:

T:
Addr « ((offset;5)'8 || offset;s o) + GPR[base]
GPRIrtla;. o < (0° || dmem[Addry;_glis.0)

Exceptions:

None

Revision 1.0

LHV

Load Packed Half
into Vector Register

LHV

31 26 25 21 20 16 15 11 10 7
LWC2 base vt LHV element offset
110010 01000
6 5 5 5 4 7
Format:

I hv vt[0], offset(base)

Description:

This instruction loads every second byte of a 128-bit word into a VU register element. The bytes are
loaded with their MSB positioned at bit 14 in the register element. See Figure 3-3, “Packed Loads

and Stores,” on page 53.

The effective address is computed by adding the offsetto the contents of the base register (a SU

GPR).

This instruction has three load delay slots (results are available in the fourth instruction following

this load). If an attempt is made to use the target register vzin a delay slot, hardware register

interlocking will stall the processor until the load is completed.

Note: The element specifier elerment should be 0.

This instruction could be used for unpacking pixel chroma (UV) values, as required by MPEG

video compression.

185

Operation:

T:
Addr « ((offset;5)'8 || offset;s o) + GPR[base]
foriin0...7
Addr = Addr +i*2
VRV[*2]35_o « (0" || dmem[Addry;_gl7. o [l 0°)
endfor

Exceptions:

None

186

Revision 1.0

Load Long
L LV into Vector Register L LV

31 26 25 21 20 16 15 11 10 7 6 0
LWC2 base vt LLV element offset
110010 00010
6 5 5 5 4 7
Format:

I1v vt[elenent], offset(base)

Description:

This instruction loads a long (32 bits) from the effective address of DMEM into vector register vt
starting at byte e

The effective address is computed by shifting the offset up by 2 bits and adding it to the contents
of the baseregister (a SU GPR).

The offset field of the instruction is encoded by shifting the offset used in the source code down 2
bit, so the offset used in the source code must be a multiple of 4 bytes.

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register v¢in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

T:
Addr « ((offset;5)'* || offset;s g || 0%) + GPR[base]
VR[Vt][E|ement]31m0 < dmem[Addrllmo]?,lmO

Exceptions:

None

187

188

Load Packed Bytes
L PV into Vector Register L PV

31 26 25 21 20 16 15 11 10 7 6 0
LWC2 base vt LPV element offset
110010 00110
6 5 5 5 4 7
Format:

I pv vt[0], offset(base)

Description:

This instruction loads eight consecutive bytes into the upper bytes of eight VU register elements.
See Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offsetto the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vzin a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier elementshould be 0.
Operation:

T:
Addr « ((offset;5) || offset;5_o) + GPR[base]
foriin0...7
Addr = Addr + i
VRV[*2]15. o < (dmem[Addry;_ol7. o | 0°)
endfor

Exceptions:
None

Revision 1.0

Load Quad
LQV into Vector Register I—QV

31 26 25 21 20 16 15 11 10 7 6 0
LWC2 base vt LQV 0 offset
110010 00100
6 5 5 5 4 7
Format:

lgqv vt[0], offset(base)

Description:

This instruction loads a byte-aligned quad word (128 bits) from the effective address of DMEM up
to the 128 bit boundary, that is (address) to ((address & ~15) + 15), into vector register vistarting
at byte element O up to (address & 15). The remaining portion of the quad word can be loaded with
the appropriate LRV instruction. See Figure 3-2, “Long, Quad, and Rest Loads and Stores,” on
page 51.

The effective address is computed by adding the offsetto the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vz¢in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

TOperation:

T:
Addr « ((offset15)16 || offset;s) + GPR[base]
VR[Vt][0]127. o < dmem[Addri; ol127..0

Exceptions:

None

189

190

LRV

Load Quad (Rest)
into Vector Register

LRV

31 26 25 21 20 16 15 11 10 7
LWC2 base vt LRV offset
110010 00101
6 5 5 5 7
Format:

lrv vi[0], offset(base)

Description:

This instruction loads a byte-aligned quad word from the 128 bit aligned boundary up to the byte
address, that is (address & ~15) to (address - 1), into vector register byte element
(16 - (address & 15)) to 15. See Figure 3-2, “Long, Quad, and Rest Loads and Stores,” on page 51.

A LRV with a byte address of zero reads no bytes.

The effective address is computed by adding the offsetto the contents of the base register (a SU

GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register v¢in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Operation:

T:

Addr « ((offset;5)'8 || offset;s o) + GPR[base]
VR[Vt][0]127..0 - dmem[Addry; oli27..0

Exceptions:

None

Revision 1.0

Load Short
L SV into Vector Register L SV

31 26 25 21 20 16 15 11 10 7 6 0
LWC2 base vt LSV element offset
110010 00001
6 5 5 5 4 7
Format:

I sv vt[elenent], offset(base)

Description:

This instruction loads a short (16 bits) from the effective address of DMEM into vector register v¢
starting at byte e

The effective address is computed by shifting the offsetup by 1 bit and adding it to the contents of
the baseregister (a SU GPR).

The offset field of the instruction is encoded by shifting the offset used in the source code down 1
bit, so the offset used in the source code must be a multiple of 2 bytes.

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register v¢in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

T:
Addr « ((offset;s)*° || offset;s o || 01) + GPR[base]
VR[Vt][E|ement]15m0 < dmem[Addrllmo]15_“0

Exceptions:

None

191

Load Transpose
LTV into Vector Register LTV

31 26 25 21 20 16 15 11 10 7 6 0
LWC2 base vt LTV element offset
110010 01011
6 5 5 5 4 7
Format:

Itv vt[elenent], offset(base)

Description:

This instruction loads an aligned 128 bit memory word into a group of 8 vector registers, scattering
this memory word into a diagonal vector of shorts in 8 VU registers. The VU register number of
each slice is computed as (VT & 0x18) | ((Slice + (Element >> 1)) & 0x7) , which is to say that v¢
specifies the beginning of an 8 register group.

The effective address is computed by adding the offsetto the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register v¢in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

See “Transpose” on page 54.

Exceptions:

None

192

Revision 1.0

Ul Load Upper Immediate LU
31 26 25 21 20 16 15 0
LUI 0 rt immediate
001111 00000
6 5 5 16
Format:
lui rt, imrediate
Description:

The 16-bit /mmediateis shifted left 16 bits and concatenated to 16 bits of zeros. The result is placed
into general register 7.

Operation:

Exceptions:

None

T:

GPR][rt] « immediate;5 g || 0%®

193

194

LUV

Load Unsigned Packed

into Vector Register

LUV

31 26 25 21 20 16 15 11 10 7 0
LWC2 base vt LUV element offset
110010 00111
6 5 5 5 4 7
Format:

luv vt[0], offset(base)

Description:

This instruction loads eight consecutive bytes into the upper bytes of eight VU register elements.
The bytes are loaded with their MSB positioned at bit 14 in the register element. See Figure 3-3,
“Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offsetto the contents of the base register (a SU

GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vzin a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier elerment should be 0.

This instruction could be used to unpack 8-bit pixel data such as RGBA or luma (Y) values.

Revision 1.0

Operation:

T:
Addr « ((offset;5)'8 || offset;s o) + GPR[base]
foriin0...7
Addr = Addr + i
VRVH[*2]15_o < (0" || dmem[Addry;_ol7. o [l 07)
endfor

Exceptions:

None

195

LW Load Word LW

31 26 25 21 20 16 15 0
LW base rt offset
100011
6 5 5 16
Format:

lwrt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register baseto form a
DMEM address. The contents of the word at the DMEM location specified by the effective address
are loaded into general register rt.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.
Operation:

T:
Addr « ((offset;5)'® || offset;s o) + GPR[base]
GPRIrt]3;. o <- dmem[Addry; ol31.0

Exceptions:

None

196

Revision 1.0

Move From
M FCO System Control Coprocessor M FCO
31 26 25 21 20 16 15 11 10 0
COPO MF rt rd 0
010000 | 00000 00000000000
6 5 5 5 11
Format:
nfcO rt, rd
Description:

The contents of coprocessor register rd of the CPO0 are loaded into general register r%.

Operation:

T. data < CPR|[O,rd]
T+1: GPRJrt] « data

Exceptions:

None

197

MFC2 Move From MFC2

Coprocessor 2 (VU)

31 26 25 21 20 16 15 11 10 7 6 0
COP2 MF rt rd e 0
010010 00000O 000 0000
6 5 5 5 4 7
Format:

nfc2 rt, vd[e]

Description:

The 16-bit contents at byte element e of VU register vd are sign-extended and loaded into general
register rt.

Operation:

T: datajs_g < VR[vd][e];5. o
T+1: GPR[rt]31___0 < data1516 ” datal5___0

Exceptions:

None

198

R

evision 1.0

Move To
MTCO System Control Coprocessor MTCO
31 26 25 21 20 16 15 1110 0
COPO MT rt rd 0
010000 | 00100 000 0000 0000
6 5 5 5 11
Format:
nmcO rt, rd
Description:

The contents of general register rtare loaded into coprocessor register rd of CPO.

Operation:
T:
T+1:

Exceptions:
None

data <~ GPRJrt]
CPRJ[O,rd] « data

199

MTC2 Move To MIC2

Coprocessor 2 (VU)

31 26 25 21 20 16 15 11 10 7 6 0
CcoP2 MT rt rd e 0
010010 00100 000 00O0O
6 5 5 5 4 7
Format:
nc2 rt, vd[e]
Description:

The least significant 16 bits of general register rtare loaded at byte element e of VU register vd.
Operation:
T: data15m0 < GPR[rt]lS_“O

T+1: VR[vd][e];5 o < datass g
Exceptions:

None

200

Revision 1.0

Null Operation

NOP

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 NOP
000000 00000 000000
6 5 5 5 5 6
Format:
nop
Description:

This instruction does nothing; it modifies no registers and changes no internal RSP state.

It is useful for program instruction padding or insertion into branch delay slots (when no useful

work can be done).

Operation:

T: nothing happens

Exceptions:

None

201

NOR Nor NOR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 NOR
0000O0O0 00000 100111
6 5 5 5 5 6
Format:

nor rd, rs, rt

Description:

The contents of general register rsare combined with the contents of general register rzin a bit-wise
logical NOR operation. The result is placed into general register rd.

Operation:

T: GPRJrd] < GPR]rs] nor GPR]rt]

Exceptions:

None

202

Revision 1.0

OR Or OR
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 OR
000000 00000 100101
6 5 5 5 5 6
Format:
or rd, rs, rt
Description:

The contents of general register rsare combined with the contents of general register rzin a bit-wise
logical OR operation. The result is placed into general register rd.

Operation:

T:

Exceptions:

None

GPR][rd] « GPRJrs] or GPR]rt]

203

OR| Or Immediate OR|

31 26 25 21 20 16 15 0
ORI rs rt immediate
001101
6 5 5 16
Format:

ori rt, rs, imediate

Description:

The 16-bit /mmediateis zero-extended and combined with the contents of general register rsin a
bit-wise logical OR operation. The result is placed into general register rt.

Operation:
T: GPRIrt] < GPR[rs]3; 16 |l (immediate or GPR[rs];5._o)

Exceptions:

None

204

Revision 1.0

SB Store Byte SB
31 26 25 21 20 16 15 0
SB base rt offset
101000
6 5 5 16
Format:

sb rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register baseto form a
DMEM address. The least-significant byte of register rtis stored at the DMEM address.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:
T:

Addr « ((offset;5)'® || offset;s o) + GPR[base]

data < GPR;
StoreDMEM (BYTE, data, Addrq1 o)

Exceptions:
None

205

Store Byte
SBV from Vector Register SBV

31 26 25 21 20 16 15 11 10 7 6 0
SWC2 base vt SBV element offset
111010 00000
6 5 5 5 4 7
Format:

sbv vt[el enent], offset(base)
Description:
This instruction stores a byte from a vector register viinto DMEM.
The effective address is computed by adding the offsetto the contents of the baseregister (a SU

GPR).

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

T:
Addr « ((offset;5)'8 || offset;s o) + GPR[base]
data < VR[vt][element]; g
StoreDMEM (BYTE, data, Addrq;_g)

Exceptions:

None

206

Revision 1.0

SDV Pacior g SDV
from Vector Register
31 26 25 21 20 16 15 11 10 7
SWC2 base vt SDV element offset
111010 00011
6 5 5 5 4 7
Format:

sdv vt[elenent], offset(base)

Description:

This instruction stores a double word (64 bits) from a vector register v¢into DMEM.

The effective address is computed by adding the offsetto the contents of the baseregister (a SU

GPR).

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

T:

Addr « ((offset;5)'8 || offset;s o) + GPR[base]

data < VR[vt][element]g3 g

StoreDMEM (DOUBLEWORD, data, Addry; o)

Exceptions:

None

207

Store Packed Fourth
SFV from Vector Register SFV

31 26 25 21 20 16 15 11 10 7 6 0
SWC2 base vt SFV element offset
111010 01001
6 5 5 5 4 7
Format:

sfv vt[element], offset(base)

Description:

This instruction stores a byte from each of four VU regsiter elements, to every fourth byte of a
128-bit word in DMEM. Since sf v only moves four bytes, the e/fementfield selects the upper or
lower group of four destination register elements. The bytes are taken from the register elements
with their MSB positioned at bit 14. See Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offsetto the contents of the base register (a SU
GPR).

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

T:
Addr « ((offset;5)'® || offset;s o) + GPR[base]
foriin0...3
Addr = Addr+i*4
data < VR[vt][element + i*2]14 7
StoreDMEM (BYTE, data, Addry; o)
endfor

Exceptions:

None

208

Revision 1.0

SH

Store Halfword

Sk

31 26 25 21 20 16 15 0
SH base rt offset
101001
6 5 5 16
Format:

sh rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register baseto form an
unsigned DMEM address. The least-significant halfword of register rtis stored at the DMEM

address.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:
T:

Addr « ((offset;5)'® || offset;5_) + GPR[base]

data « GPRlSO

StoreDMEM (HALFWORD, data, Addry; o)

Exceptions:
None

209

Store Packed Half
SHV from Vector Register SHV

31 26 25 21 20 16 15 11 10 7 6 0
SWC2 base vt SHV element offset
111010 01000
6 5 5 5 4 7
Format:

shv vt[0], offset(base)

Description:

This instruction stores a byte from each of eight VU regsiter elements, to every second byte of a
128-bit word in DMEM. The bytes are taken from the register elements with their MSB positioned
at bit 14. See Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offsetto the contents of the base register (a SU
GPR).

Note: The element specifier element should be 0.

This instruction could be used to pack pixel chroma (UV) values, as required for MPEG
compression.

Operation:

T:
Addr « ((offset;5)'® || offset;s o) + GPR[base]
foriin0...7
Addr = Addr+i*2
data < VR[Vt][i*2]14 7
StoreDMEM (BYTE, data, Addry; o)
endfor

Exceptions:

None

210

Revision 1.0

SLL

Shift Left Logical

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SLL
0000O0O0 00000 0000O0O0
6 5 5 5 5 6
Format:
sll rd, rt, sa
Description:

The contents of general register rtare shifted left by sa bits, inserting zeros into the low-order bits.

The result is placed in register rd.

Operation:

T. GPR[rd] < GPR(rt]3;_sa.0 || 052

Exceptions:

None

211

SLLV Shift Left Logical Variable SLLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLLV
000000O0 00000 000100
6 5 5 5 5 6
Format:

sllvrd, rt, rs

Description:

The contents of general register rtare shifted left the number of bits specified by the low-order five
bits contained in general register rs, inserting zeros into the low-order bits.

The result is placed in register rd.
Operation:

T: S« GP[rs]s. o
GPR[rd]« GPR[rt](31_S)_”0 || 0S

Exceptions:
None

212

Revision 1.0

SLT

Set On Less Than

SLT

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLT
000000 00000 101010
6 5 5 5 5 6
Format:

slt rd, rs,

Description:

The contents of general register rtare subtracted from the contents of general register rs.

rt

Considering both quantities as signed integers, if the contents of general register rsare less than the

contents of general register rZ the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

Operation:

T:

if GPR[rs] < GPR][rt] then
GPR[rd] « 031 || 1

else

endif

Exceptions:

None

GPR[rd] « 032

213

SLT| Set On Less Than Immediate SLT|

31 26 25 21 20 16 15 0
SLTI rs rt immediate
001010
6 5 5 16
Format:

slti rt, rs, inmediate

Description:

The 16-bit /mmediateis sign-extended and subtracted from the contents of general register rs.
Considering both quantities as signed integers, if rsis less than the sign-extended immediate, the
result is set to one; otherwise the result is set to zero.

The result is placed into general register rt.

Since the RSP does not signal an overflow exception for SLTI, this command behaves identically to
SLTIU.

Operation:

T: if GPR[rs] < (immediatel5)16 || immediate,5 g then
GPRJ[rd] « 031 || 1
else
GPR][rd] « 032
endif

Exceptions:

None

214

Revision 1.0

Set On Less Than
SLTIU Immediate Unsigned SLTIU

31 26 25 21 20 16 15 0
SLTIU rs rt immediate
001011
6 5 5 16
Format:

sltiurt, rs, immedi ate

Description:

The 16-bit /mmediateis sign-extended and subtracted from the contents of general register rs.
Considering both quantities as unsigned integers, if rsis less than the sign-extended immediate, the
result is set to one; otherwise the result is set to zero.

The result is placed into general register rt.

Since the RSP does not signal an overflow exception for SLTI, this command behaves identically to
SLTI.

Operation:

T: if (0 || GPRIrs]) < (immediate;5)*® || immediate;s o then
GPR[rd] « 03! || 1
else
GPR([rd] « 0%2
endif

Exceptions:

None

215

SLTU Set On Less Than Unsigned SLTU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLTU
0000O0O0 00000 101011
6 5 5 5 5 6
Format:

sltu rd, rs, rt

Description:

The contents of general register rtare subtracted from the contents of general register rs.
Considering both quantities as unsigned integers, if the contents of general register rsare less than
the contents of general register rz, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.
Operation:

T: if (0] GPR[rs]) <0 || GPR]rt] then
GPR[rd] « 031 1
else
GPR[rd] « 032
endif

Exceptions:

None

216

Revision 1.0

SLV Vettor e SLV
from Vector Register
31 26 25 21 20 16 15 11 10 7
SWC2 base vt SLV element offset
111010 00010
6 5 5 5 4 7

Format:

slv vt[elenent], offset(base)

Description:

This instruction stores a long word (32 bits) from vector register v¢into DMEM.

The effective address is computed by adding the offsetto the contents of the baseregister (a SU

GPR).

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

T:

Addr « ((offset;5)'8 || offset;s o) + GPR[base]

data < VR[vt][element]3; g

StoreDMEM (WORD, data, Addry; q)

Exceptions:

None

217

Store Packed Bytes
SPV from Vector Register SPV

31 26 25 21 20 16 15 11 10 7 6 0
SWC2 base vt SPV element offset
111010 00110
6 5 5 5 4 7
Format:

spv vt[0], offset(base)

Description:

This instruction stores the upper byte from each of eight VU regsiter elements, to consecutive bytes
of a 128-bit word in DMEM. See Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offsetto the contents of the base register (a SU
GPR).

Note: The element specifier element should be 0.

Operation:

T:
Addr « ((offset;5)'8 || offset;s o) + GPR[base]
foriin0...7
Addr = Addr + i
data « VR[vi][i*2];5 g
StoreDMEM (BYTE, data, Addrq1 o)
endfor

Exceptions:

None

218

Revision 1.0

S V Store Quad S QV
Q from Vector Register
31 26 25 21 20 16 15 11 10 7 0
SWC2 base vt SQV element offset
111010 00100
6 5 5 5 4 7
Format:

sqv vt[0], offset(base)

Description:

This instruction stores a vector register vzstarting at byte element O up to byte (address & 15),to a
byte-aligned quad word (128 bits) at the effective address of DMEM up to the 128 bit boundary,

that is (address) to ((address & ~15) + 15) . The remaining portion of the quad word can be stored
with the appropriate SRV instruction. See Figure 3-2, “Long, Quad, and Rest Loads and Stores,” on

page 51.

The effective address is computed by adding the offsetto the contents of the base register (a SU

GPR).

Note: The element specifier elementshould be 0.

Operation:

T:

Addr « ((offset;5) || offset;5_o) + GPR[base]
data « VR[Vvt][0]127. o
StoreDMEM (QUADWORD, data, Addrq1 o)

Exceptions:

None

219

SRA Shift Right Arithmetic SRA

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRA
000000 00000 000011
6 5 5 5 5 6
Format:

srard, rt, sa

Description:

The contents of general register rtare shifted right by sa bits, sign-extending the high-order bits.

The result is placed in register rd.

Operation:

T: GPR[rd] < (GPR[rt]31)°® || GPR[rt] 31_sa

Exceptions:
None

220

Revision 1.0

Shift Right

Arithmetic Variable

SRAV

31 26 25 21 20 16 15 11 10 6 5
SPECIAL rs rt rd 0 SRAV
000000 00000 000111
6 5 5 5 5 6
Format:

srav rd, rt, rs

Description:

The contents of general register rtare shifted right by the number of bits specified by the low-order
five bits of general register rs, sign-extending the high-order bits.

The result is placed in register rd.

Operation:
T: s« GPR[rsl4 o

GPRIrd] < (GPRIrt]3;)° || GPRIrtlz; s

Exceptions:

None

221

SRL Shift Right Logical SRL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRL
000000 00000 000010
6 5 5 5 5 6
Format:

srl rd, rt, sa

Description:

The contents of general register rtare shifted right by sa bits, inserting zeros into the high-order
bits.

The result is placed in register rd.

Operation:

T: GPRI[rd] < 0% || GPRrtl3;. sa

Exceptions:
None

222

Revision 1.0

SRLV

Shift Right Logical Variable

SRLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SRLV
000000O0 00000 000110
6 5 5 5 5 6
Format:
srlv rd, rt, rs
Description:

The contents of general register rtare shifted right by the number of bits specified by the low-order
five bits of general register rs, inserting zeros into the high-order bits.

The result is placed in register rd.

Operation:

T: s« GPR[rsls o
GPR[rd] < 0° || GPRIrt]3;. s

Exceptions:

None

223

Store Quad (Rest)
SRV from Vector Register SRV

31 26 25 21 20 16 15 11 10 7 6 0
SWC2 base vt SRV element offset
111010 00101
6 5 5 5 4 7
Format:

srv vt[e], offset(base)

Description:

This instruction stores a vector register from byte element (16 - (address & 15)) to 15, to the 128 bit
aligned boundary up to the byte address, that is (address & ~15) to (address - 1). See Figure 3-2,
“Long, Quad, and Rest Loads and Stores,” on page 51. A SRV with a byte address of zero writes no

bytes.
The effective address is computed by adding the offsetto the contents of the base register (a SU
GPR).
Note: The element specifier eis the byte element of the vector register, not the ordinal
element count, as in VU computational instructions.
Operation:
T:

Addr « ((offset;5)'® || offset;s o) + GPR[base]
data < VR[Vt][0]157. ¢
StoreDMEM (QUADWORD, data, Addrq1 q)

Exceptions:

None

224

Revision 1.0

SSV Vostor o SSV
from Vector Register
31 26 25 21 20 16 15 11 10 7
SWC2 base vt SSV element offset
111010 00001
6 5 5 5 4 7
Format:

ssv vt[elenent], offset(base)

Description:

This instruction stores a half word (16 bits) from a vector register v¢into DMEM.

The effective address is computed by adding the offsetto the contents of the baseregister (a SU

GPR).

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

T:

Addr « ((offset;5)'8 || offset;s o) + GPR[base]

data < VR[vt][element]5 g

StoreDMEM (HALFWORD, data, Addry4_g)

Exceptions:

None

225

Store Transpose
STV from Vector Register STV

31 26 25 21 20 16 15 11 10 7 6 0
SWC2 base vt STV element offset
111010 01011
6 5 5 5 4 7
Format:

stv vt[elenent], offset(base)

Description:

This instruction gathers a diagonal vector of shorts from a group of eight VU registers, writing to
an aligned 128 bit memory word. The VU register number of each slice is computed as

(VT & 0x18) | ((Slice + (Element >> 1)) & 0x7) , which is to say that vZspecifies the beginning of an
8 register group.

The effective address is computed by adding the offsetto the contents of the base register (a SU
GPR).
Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.
Operation:

See “Transpose” on page 54.

Exceptions:

None

226

Revision 1.0

SUB Subtract SUB
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SUB
000000 00000 100010
6 5 5 5 5 6
Format:

sub rd, rs,

Description:

rt

The contents of general register rtare subtracted from the contents of general register rsto form a

result. The result is placed into general register rd.

Since the RSP does not signal an overflow exception for SUB, this command behaves identically to
SUBU.

Operati
T:

on:

GPR][rd] « GPRJrs] — GPR]rt]

Exceptions:

None

227

SUBU Subtract Unsigned SUBU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SUBU
000000 00000 100011

6 5 5 5 5 6
Format:

subu rd, rs, rt

Description:

The contents of general register rtare subtracted from the contents of general register rsto form a
result.

The result is placed into general register rd.

Since the RSP does not signal an overflow exception for SUB, this command behaves identically to
SUBU.

Operation:
T: GPRJ[rd] < GPR[rs] — GPR]rt]

Exceptions:

None

228

Revision 1.0

SUV

Store Unsigned Packed

from Vector Register

SUV

31 26 25 21 20 16 15 11 10 7
SWC2 base vt SuUvV element offset
111010 00111
6 5 5 5 4 7
Format:

suv vt[0], offset(base)

Description:

This instruction stores eight consecutive bytes in DMEM, extracted from the upper bytes of eight
VU register elements. The bytes are extracted with their MSB positioned at bit 14 from the register
element. See Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offsetto the contents of the base register (a SU

GPR).

Note: The element specifier e/ement should be 0.

This instruction could be used to pack 8-bit pixel data such as RGBA or luma (Y) values.

Operation:

T:

Addr « ((offset;5)'® || offset;s o) + GPR[base]

foriin0...7

Addr = Addr +i
data; o<« VR[VY[*2]14 7

StoreDMEM (BYTE, data, Addry; o)

endfor

Exceptions:

None

229

SW Store Word SW
31 26 25 21 20 16 15 0
SW base rt offset
101011
6 5 5 16
Format:
swrt, offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general register baseto form a
DMEM address. The contents of general register rtare stored at the DMEM location specified by
the DMEM address.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:
T:

Exceptions:
None

230

Addr « ((offset;5)'6 || offset;s o) + GPR[base]

data < GPR31._.O

StoreDMEM (WORD, data, Addryy_g)

Revision 1.0

Store Wrapped
SWV from Vector Register SWV

31 26 25 21 20 16 15 11 10 7 6 0
SWC2 base vt SWV element offset
111010 00111
6 5 5 5 4 7

Format:

sw vt[elenent], offset(base)

Description:

This instruction gathers a diagonal vector of shorts from a group of eight VU registers, writing to
an aligned 128 bit memory word. The VU register number of each slice is computed as

(VT & 0x18) | ((Slice + (Element >> 1)) & 0x7) , which is to say that vZspecifies the beginning of an
8register group. SWV performs a circular shift of the 8 shorts by (element >> 1), which is equivalent
to:

dest _short[Slice] = source_short[((Slice + (Element >> 1)) & 0x7)]
The effective address is computed by adding the offsetto the contents of the base register (a SU
GPR).

Note: The element specifier elementis the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

See “Transpose” on page 54.

Exceptions:

None

231

VABS Vector Absolute Value VABS

of Short Elements

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VABS
010010 010011
6 1 4 5 5 5 6
Format:

vabs vd, vs, vt
vabs vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare conditionally negated on an element-by-element basis

by the sign of the elements of vector register vsand placed into vector register vd. If vsis equal to
0, vsis placed into vector register vd.

If an element specification eis present for vector register vZ the selected scalar element(s) of vzis
used as described below.

232

Revision 1.0

Operation:

T:
foriin0...7

if (e3¢ = 0000) then /* vector operand */
ji

elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)

elseif ((e3_ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)

elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)

endif

if (VR[vs][i*2]15 o < 0) then
resultys o < -(VR[Vt][[*2]3s.. o)

elseif (VR[vs][i*2]15 o = 015. g) then
resultys g« 015 o

elseif (VR[vs][i*2]15 ¢ > 0) then
result;s o« VRVt][*2]15 o

endif

VR[vd][i*2]15. o < result;s._ o

ACClilys5.. 0 « resultys o

endfor

Exceptions:
None

233

234

VA D D of S\:I%Crttoél':ricelznts VA D D

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VADD
010010 010000
6 1 4 5 5 5 6
Format:

vadd vd, vs, vt
vadd vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare added on an element-by-element basis to the elements
of vector register vs. The vector control register VCOis used as carry in; and VCOis cleared.

The results are clamped to 16 bit signed values and placed into vector register vad.

If an element specification eis present for vector register vZ the selected scalar element(s) of vzis
used as described below.

Revision 1.0

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)
elseif ((e3__ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
resultys o <= VR[vs][*2];5 o + VRVH][[*2];5 o + VCO
VR[vd][i*2]15. o < Clamp_Signed(result;s_g)
ACClily5. g « resultys g
endfor
VCO;5,_ o <-- 016

Exceptions:

None

235

VADDC Vector A\(/JIV(iJIthSIE:%rrtr)I/EIements VADDC

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VADDC
010010 010100
6 1 4 5 5 5 6
Format:

vaddc vd, vs, vt
vaddc vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare added on an element-by-element basis to the elements
of vector register vs. The vector control register VCOis used as carry out. The results are not
clamped.

The results are placed into vector register vd.

If an element specification eis present for vector register vz, the selected scalar element(s) of vzis
used as described below.

236

Revision 1.0

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)
elseif ((e3__ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
resultyg o < VRIvs][*2]15 o + VRIVH[*2]15. 0
ACClily5._ o < resultys_o
VR[vd][i*2]15. o < result;s g
VCOjg < 0
VCO; « result;g
endfor

Exceptions:
None

237

VA N D of S\/rle(;::tolrflémgnts VA N D

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VAND
010010 101000
6 1 4 5 5 5 6
Format:

vand vd, vs, vt
vand vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare AND’d on an element-by-element basis with the
elements of vector register vs.

The results are placed into vector register vad.

If an element specification eis present for vector register vZ the selected scalar element(s) of vzis
used as described below.

238

Revision 1.0

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)
elseif ((e3__ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
result;s o < VR[vs][i*2];5. g and VR[Vt][[*2]15 o
ACClily5._ o < resultys_o
VR[vd][i*2]15. o < result;s._ o
endfor

Exceptions:

None

239

240

VCH

Vector Select Clip

VCH

Test High
31 26 25 24 21 20 16 15 11 10 6 0
COP2 1 e vt VS vd VCH
010010 100101
6 1 4 5 5 5 6
Format:

vch vd, vs, vt
vch vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare compared and selected on an element-by-element basis
with the elements of vector register vs. The clip test selects are an optimization for comparing the
elements in vsto a scalar element in vz or the vector vZ such as comparing wto xyzor clamping a

vector to a +/- range. VCH performs

(-VT >= VS <= VT)

generating 16 bits in VCC and updating VCO and VCE with equal and sign values.

The results are placed into vector register vd.

If an element specification eis present for vector register v¢, the selected scalar element(s) of vZis

used as described below.

Revision 1.0

Operation:

T:

VCCjg o« 0%
VCO;5 g < 0'°
VCE; o« 08
foriin0...7
if (e = 0000) then /* vector operand */
j<i
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j < (e3 & 0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j < (e3 & 0011) + (i & 1100)
elseif ((e3._ g & 1000) = 1000) then /* scalar whole of vector */
j<(e3_0&0111)
endif
sign < ((VRIvs][i*2];5...o xor VRIVI][*2];5. o) < 0)
if (sign) then
ge « (VRMI[*2]15_ o) < 0)
le « (VR[vs][*2]15 o + VRIVH[*2]15 o) <= 0)
vee « (VRIvs][i*2];5. o + VRIVI][*2]15.0) = -1)
eq « (VRvs]["2];5_o + VRIVH[*2]15. 0) = 0)
diys o « (Ie) ? -(VRM][*2]15. o) - VRIVS][i*2]15. o
ACClily5. 0 < dizs 0

else
le < (VR[V][[*2]15. o) <0)
ge < (VR[vs][i*2]35. o - VRIVt][*2]15_ o) >=0)
vce < 0
eq < (VR[vs][*2]15_o - VRV][[*2]15. o) = 0)
dijs o < (ge) ? VRIVH][*2]15 o : VRIVS][*2]15 o
ACCli]3s5. o < diis o

endif

241

VRIvd][i*2]35 o < di5 o
neq < ~eqand 1
VCCy5 o9« VCCy5 g or(ge << (i + 8)) or (le <<i)
VCO;y5 g« VCO45 g or (neq << (i + 8)) or (sign << i)
VCE7 o« VCE;_ gor(vce << (i + 8))

endfor

Exceptions:
None

242

Revision 1.0

Vector Select Clip
VC I— Test Low VC L

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VCL
010010 100100
6 1 4 5 5 5 6
Format:

vcl vd, vs, vt
vcl vd, vs, vt[e]
Description:

The 16-bit elements of vector register vtare compared and selected on an element-by-element basis
with the elements of vector register vs. The clip test selects are an optimization for comparing the
elements in vsto a scalar element in vz or the vector vZ such as comparing wto xyzor clamping a
vector to a +/- range. VCL performs

(-VT >= VS <= VT)
generating 16 bits in VCC and updating VCO and VCE with equal and sign values.
The results are placed into vector register vd.

If an element specification eis present for vector register v¢ the selected scalar element(s) of vZis
used as described below.

243

244

Operation:

T:

foriin0...7

if (e = 0000) then /* vector operand */
ji

elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)

elseif ((e3__ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)

elseif ((e3__ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)

endif

le « (VCCy5 g >>i)and 1

ge « (VCCyg o >> (i+8)) and 1

vce « (VCE; g>>i)and 1

eq « ~(VCOq5 o >> (i+8)) and 1

sign <« (VCO;5 g>>i)and 1

if (sign) then
diys o < VR[vs][*2];5_o + VRM[*2]15 0
carrry < (dijs._ o > 116)
if (eq) then

le < (not vce and (((di;5._ o and 116) = 0) and not carry)) or
(vce and (((diy5_o and 116) = 0) or not carry))

endif
diys. o < (Ie) ? -(VRIV][i*2]15..0) : VRIVS][*2]15. 0
ACClily5. o < dizs o
VCE;j« 0

else

Revision 1.0

digs_o < VRIVS][*2]15 o - VRVI[*2]15 o
if (eq) then
ge « (diys_0>=0)
endif
dijs_o < (9€) ? VRIVH[[*2]35 o : VRIVS][*2]15 o
ACClil35. 0 < diz5. 0
endif
VRvd][*2]35. o < dizs..0
VCCy5 g« VCCy5 gand (~(1 || 07| 1) <<i) or (ge << (i+8)) or (le << i)
endfor
VCOq5 o<« 0
VCE; ¢« 0

Exceptions:
None

245

246

VCR

Vector Select Crimp

VCR

Test Low
31 26 25 24 21 20 16 15 11 10 6 0
COP2 e vt VS vd VCR
010010 100110
6 4 5 5 5 6

Format:

ver vd, vs, vt

vcer vd, vs, vt[e]
Description:

The 16-bit elements of vector register vtare compared and selected on an element-by-element basis
with the elements of vector register vs. The clip test selects are an optimization for comparing the
elements in vsto a scalar element in vz or the vector vZ such as comparing wto xyzor clamping a
vector to a +/- range. VCR performs

generating 16 bits in VCC and updating VCO and VCE with equal and sign values. It interprets v¢
as a 1's complement number, useful for clamping to a power of 2. VCR is a single-precision

(-VT >= VS <= VT)

instruction, and ignores VCO for input.

The results are placed into vector register vad.

If an element specification eis present for vector register vz the selected scalar element(s) of vtis
used as described below.

Revision 1.0

Operation:
T:
VCCy5 o« 0%
foriin0...7
if (e = 0000) then /* vector operand */
ji

elseif ((e3._g & 1110) = 0010) then /* scalar quarter of vector */
j < (e3.0&0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j < (e3.0&0011) + (i & 1100)
elseif ((e3._ g & 1000) = 1000) then /* scalar whole of vector */
j<(e3_0&0111)
endif
sign < ((VRIvs][i*2];5...o xor VRIVI][*2];5. o) < 0)
if (sign) then
ge « (VRMI[*2]15_ o) < 0)
le « (VRIs][*2l;5_o + VRIVI[*2]35_o + 1) <= 0)
diys o« (Ie) ? ~(VRM][[*2]15..0) : VRIVS][i*2]35_ 0
ACClily5. 0 < dizs 0
else
le < (VRVI][*2];5_o) < O)
ge « (VRIs][*2]y5. o - VRVI][*2];5.. o) >= 0)
digs. o < (ge) ? VRIV][*2]35. o : VRIVS][*2];15. 0
ACClily5._ o < dizs o
endif
VR[VA][*2];5_ o < dis o
VCCq5 o« VCCy5 g Or (ge << (i+8)) or (le <<i)
endfor
VCO15 g« 0
VCE7 o« 0

247

Exceptions:

None

248

Revision 1.0

VEQ VeCtEoo:uiTleCt VEQ

31 26 25624 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VEQ
010010 100001
6 1 4 5 5 5 6
Format:

veq vd, vs, vt
veq vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare compared and selected on an element-by-element basis
with the elements of vector register vs. VCOand VCE are used as input, VCOand VCE are cleared on
output, and VCC is set with the results of the comparison (the element which is equal).

The results are placed into vector register vd.

If an element specification eis present for vector register vz the selected scalar element(s) of vzis
used as described below.

249

Operation:

T:
foriin0...7

if (e3¢ = 0000) then /* vector operand */
ji

elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)

elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)

elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)

endif

if (VRIvs][*2]y5..0 = VRIV][[*2]15. 0) and VCE;) then
VCC;« 1

else
VCCj« 0

endif

if (VCC;) then

result;s o < VR[vs][i*2]15 o
else

resultys. o < VR[V][*2]15. o
endif
ACClily5. g « resultys g
VR[vd][*2];5 o < resultys o
VCO;« 0
VCOj,g < 0
VCE;«< 0

endfor

250

Revision 1.0

Exceptions:

None

251

Vector Select
VG E Greater Than or Equal VG E

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VGE
010010 100011
6 1 4 5 5 5 6
Format:

vge vd, vs, vt
vge vd, vs, vt[e]
Description:

The 16-bit elements of vector register vtare compared and selected on an element-by-element basis
with the elements of vector register vs. VCOand VCE are used as input, VCOand VCE are cleared on
output, and VCC is set with the results of the comparison (the element which is greater than or
equal).

The results are placed into vector register vd.

If an element specification eis present for vector register vz, the selected scalar element(s) of vzis
used as described below.

252

Revision 1.0

Operation:

T:
VCC« 0
foriin0...7
if (e = 0000) then /* vector operand */
j<i
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j < (e3.0&0001) + (i & 1110)
elseif ((e3. g & 1100) = 0100) then /* scalar half of vector */
j < (e3.0&0011) + (i & 1100)
elseif ((e3._ g & 1000) = 1000) then /* scalar whole of vector */
j<(e3_0&0111)
endif

if (VRIvs][i*2]15. o > VRIV][[*2]15 o) then
VCCi« 1

elseif ((VR[vs][i*2]15 o = VR[V][[*2]15. o) and (~VCO; | VCE))) then
VCCi« 1

else
VCC;« 0

endif

if (VCC;) then
result;s o < VR[vs][i*2]15. g

else
result;s o« VRVt][*2]15 o

endif

ACClily5. g « resultys g

VRIvd][i*2]35.. o < resultys o

VCO;« 0

VCO;+8 «- 0

VCE;« 0

endfor

253

Exceptions:

None

254

Revision 1.0

Vector Select
VLT Less Than VLT

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VLT
010010 100000
6 1 4 5 5 5 6
Format:

vlit vd, vs, vt
vit vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare compared and selected on an element-by-element basis
with the elements of vector register vs. VCOand VCE are used as input, VCOand VCE are cleared on
output, and VCC is set with the results of the comparison (the element which is less than).

The results are placed into vector register vd.

If an element specification eis present for vector register vz the selected scalar element(s) of vzis
used as described below.

255

Operation:

T:
VCC« 0
foriin0...7
if (e3_ o = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j < (e3.0&0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j < (e3.0&0011) + (i & 1100)
elseif ((e3._ g & 1000) = 1000) then /* scalar whole of vector */
j<(e3_0&0111)
endif

if (VR[vs][i*2]15 o < VRVt][[*2]15 o) then
VCCi« 1

elseif ((VR[vs][i*2]15 o = VR[V][[*2]15. o) and VCO; and ~VCE;) then
VCCi« 1

else
VCC;« 0

endif

if (VCC;) then
result;s o < VR[vs][i*2]15. g

else
result;s o« VRVt][*2]15 o

endif

ACClily5. g « resultys g
VRvd][*2]y5 o < resultys g
endfor
VCO « 0
VCE « 0

256

Revision 1.0

Exceptions:

None

257

VMACF Vector Multiply-Accumulate VMACF

of Signed Fractions

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VMACF
010010 001000
6 1 4 5 5 5 6
Format:

vmacf vd, vs, vt
vhmacf vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the
elements of vector register vs, and added to bits 47...16 of the accumulator.

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register
vd.

If an element specification eis present for vector register vz, the selected scalar element(s) of vzis
used as described below.

258

Revision 1.0

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV[[*2]15..0
ACCy7_ 16 <~ ACCy7_ 16 * (productzg o || 0)
VR[vd][i*2]15. g < Clamp_Signed(ACC31 16)
endfor

Exceptions:
None

259

VMACQ

Vector Accumulator

VMACQ

Oddification
31 26 25 24 21 20 16 15 11 10 6
COP2 1 e vt VS vd VMAC
010010 001011
6 1 4 5 5 5 6
Format:

vmacq vd, vs, vt
vhacq vd, vs, vt[e]

Description:

This instruction ignores vsand vtinputs, and performs oddification? of the accumulator by adding
(32 << 16) if the accumulator is negative and ACC, is zero; adding (-32<<16) if the accumulator is

positive and ACC,; is zero; or adding zero if ACC,4; ,q are zero or ACC,, is 1.

Bits 32...17 of the accumulator are clamped to 16 bit signed values and placed into vector register

vd.

If an element specification eis present for vector register vz, the selected scalar element(s) of vzis

used as described below.

L oddification is performed as described in the MPEG1 specification, ISO/IEC 11172-2.

260

Revision 1.0

Operation:

T:
foriin0...7

if (e3¢ = 0000) then /* vector operand */
ji

elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)

elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)

elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)

endif

if (ACC47 o <0 and not ACC5,) then
ACCy7.0 < ACCyz o+ (0%° | 11| 0%)

else if (ACC47._o > 0 and not ACC,q) then
ACCy7.0 < ACCyz o+ (17°]| 11| 0%)

else
ACCy7. o < ACCyz o+ 0%

endif

VR[vd][i*2];5_ o « Clamp_Signed(ACC3;_ 17)

endfor

Exceptions:
None

261

VMACU Vector Multiply-Accumulate VMACU

of Unsigned Fractions

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VMACU
010010 001001
6 1 4 5 5 5 6
Format:

vmacu vd, vs, vt
vhacu vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the
elements of vector register vs, and added to bits 47...16 of the accumulator.

Bits 31...16 of the accumulator are clamped to 16 bit unsigned values and placed into vector register
vd.

If an element specification eis present for vector register vz, the selected scalar element(s) of vzis
used as described below.

262

Revision 1.0

Operation:
T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV[[*2]15..0
ACCy7..16 < ACCy7 16 + (productzg o || 0)
VR[vd][i*2]15. g < Clamp_Unsigned(ACC3z;_16)
endfor
Exceptions:
None

263

264

VMADH Vector Multiply-Accumulate
of High Partial Products

VMADH

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VMADH
010010 001111
6 1 4 5 5 5 6
Format:

vmadh vd, vs, vt
vhmadh vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the
elements of vector register vs, shifted up by 16, and added to bits 31...0 of the accumulator. This
instruction is designed for the high partial product, multiplying an integer (vs) times an integer

(Vo).

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register

vd.

If an element specification eis present for vector register v¢ the selected scalar element(s) of vZis

used as described below.

Revision 1.0

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV[[*2]15..0
ACCg ¢ ¢ ACCyy g+ (products; 6 || 0')
VR[vd][i*2]15. g < Clamp_Signed(ACC31 16)
endfor

Exceptions:
None

265

266

VMADL Vector Multiply-Accumulate VMADL

of Low Partial Products

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VMADL
010010 001100
6 1 4 5 5 5 6
Format:

vmadl vd, vs, vt
vmadl vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the
elements of vector register vs, shifted down by 16, and added to bits 31...0 of the accumulator. This
instruction is designed for the low partial product, multiplying a fraction (vs) times a fraction (v2).

Bits 15...0 of the accumulator are clamped to 16 bit signed values and placed into vector register vd.

If an element specification eis present for vector register vz, the selected scalar element(s) of vzis
used as described below.

Revision 1.0

Operation:
T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV[[*2]15..0
ACCg3;. o« ACCgy o+ products; 16
VR[vd][i*2]15. g < Clamp_Signed(ACC;5)
endfor
Exceptions:
None

267

268

VMADM

Vector Multiply-Accumulate
of Mid Partial Products

VMADM

31 26 25 24 21 20 16 15 11 10 6
COP2 1 e vt VS vd VMADM
010010 001101
6 1 4 5 5 5 6
Format:

vmadm vd, vs, vt
vhmadm vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the
elements of vector register vs, and added to bits 31...0 of the accumulator. This instruction is
designed for the mid partial product, multiplying an integer (vs) times a fraction (vi).

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register

vd.

If an element specification eis present for vector register vz, the selected scalar element(s) of vzis

used as described below.

Revision 1.0

Operation:
T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV[[*2]15..0
ACCg3;. o« ACCgy o * products; o
VR[vd][i*2]15. g < Clamp_Signed(ACC31 16)
endfor
Exceptions:
None

269

270

Vector Multiply-Accumulate
VMADN of Mid Partial Products

VMADN

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VMADN
010010 001110
6 1 4 5 5 5 6
Format:

vmadn vd, vs, vt
vhmadn vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the
elements of vector register vs, and added to bits 31...0 of the accumulator. This instruction is
designed for the mid partial product, multiplying a fraction (vs) times an integer (vi).

Bits 15...0 of the accumulator are clamped to 16 bit signed values and placed into vector register vd.

If an element specification eis present for vector register vz, the selected scalar element(s) of vzis

used as described below.

Revision 1.0

Operation:
T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV[[*2]15..0
ACCg3;. o« ACCgy o * products; o
VR[vd][i*2]15. g < Clamp_Signed(ACC;5)
endfor
Exceptions:
None

271

VMOV ‘ggSmet VMOV

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt de vd VMOV
010010 110011
6 1 4 5 5 5 6
Format:

vhov vd[de], vt[e]

Description:

The scalar 16-bit element e of vector register v¢is moved to the scalar 16-bit element de of vector
register vd.

Operation:

T:
VR[vd][de];s5 o < VR[Vt][e]ss5. o
ACCy5 o < VR[Vt][e]15 o

Exceptions:
None

272

Revision 1.0

VMRG

Vector Select

Merge
31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VMRG
010010 100111
6 1 4 5 5 5 6

Format:

vnrg vd, vs, vt
vnrg vd, vs, vt[e]

Description:

This instruction selects, on an element by element basis, an element from vsor v¢, based on the
value of VCC for that element. The values of VCC, VCO, and VCE remain unchanged.

The results are placed into vector register vd.

If an element specification eis present for vector register vZ the selected scalar element(s) of vzis

used as described below.

273

274

Operation:

T:
foriin0...7

if (e3¢ = 0000) then /* vector operand */
ji

elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)

elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)

elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)

endif

if (VCC;) then
resultys o < VR[vs][i*2]35 o

else
resultys o < VRV][*2];5 o

endif

VR[Vd][i*2]15, o < resultys o
ACC15._0 <« resultlsmo
endfor

Exceptions:

None

Revision 1.0

VMUDH Vector Multiply VMUDH

of High Parital Products

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VMUDH
010010 000111
6 1 4 5 5 5 6
Format:

vmudh vd, vs, vt
vhudh vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the
elements of vector register vs, shifted up by 16, and loaded into the accumulator. This instruction
is designed for the high partial product, multiplying an integer (vs) times an integer (v2).

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register
vd.

If an element specification eis present for vector register vz the selected scalar element(s) of vzis
used as described below.

275

276

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3__ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3__ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV|[[*2]15..0
ACCgy o« products; 16 || 0™
VR[vd][i*2]15. g < Clamp_Signed(ACC31 16)
endfor
Exceptions:
None

Revision 1.0

VMUDL Vector Multiply VMUDL

of Low Parital Products

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VMUDL
010010 000100
6 1 4 5 5 5 6
Format:

vmudl vd, vs, vt
vhudl vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the
elements of vector register vs, shifted down by 16, and loaded into the accumulator. This
instruction is designed for the low partial product, multiplying a fraction (vs) times a fraction (v2).

Bits 15...0 of the accumulator are clamped to 16 bit signed values and placed into vector register vad.

If an element specification eis present for vector register vz the selected scalar element(s) of vzis
used as described below.

277

278

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3__ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3__ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV|[[*2]15..0
ACCg; ¢ < products;*® || products; 16
VR[vd][i*2]15. g < Clamp_Signed(ACC;5)
endfor
Exceptions:
None

Revision 1.0

VMUDM

Vector Multiply
of Mid Parital Products

VMUDM

31 26 25 24 21 20 16 15 11 10 6
COP2 1 e vt VS vd VMUDM
010010 000101
6 1 4 5 5 5 6
Format:

vmudm vd, vs, vt
vhudm vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the

elements of vector register vs, and loaded into the accumulator. This instruction is designed for the

mid partial product, multiplying an integer (vs) times a fraction (vi).

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register

vd.

If an element specification eis present for vector register vz the selected scalar element(s) of vzis

used as described below.

279

280

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3__ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3__ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV|[[*2]15..0
ACCg3; . o < products; o
VR[vd][i*2]15. g < Clamp_Signed(ACC31 16)
endfor
Exceptions:
None

Revision 1.0

VMUDN

Vector Multiply
of Mid Parital Products

VMUDN

31 26 25 24 21 20 16 15 11 10 6
COP2 1 e vt VS vd VMUDN
010010 000110
6 1 4 5 5 5 6
Format:

vmudn vd, vs, vt
vhudn vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the

elements of vector register vs, and loaded into the accumulator. This instruction is designed for the

mid partial product, multiplying a fraction (vs) times an integer (vi).

Bits 15...0 of the accumulator are clamped to 16 bit signed values and placed into vector register vad.

If an element specification eis present for vector register vz the selected scalar element(s) of vzis

used as described below.

281

282

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3__ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3__ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV|[[*2]15..0
ACCg3; . o < products; o
VR[vd][i*2]15. g < Clamp_Signed(ACC;5)
endfor
Exceptions:
None

Revision 1.0

VMULF Vector Multiply VMULF

of Signed Fractions

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VMULF
010010 000000
6 1 4 5 5 5 6
Format:

viul f vd, vs, vt
vhul f vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the
elements of vector register vs, and loaded into the accumulator.

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register
vd.

If an element specification eis present for vector register vz the selected scalar element(s) of vzis
used as described below.

283

284

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3__ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3__ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV|[[*2]15..0
ACCy7..16 < productzg o || 0
ACCy7..0 < ACCy7. o+ (1] 0™)
VRIvd][i*2]35.. o < Clamp_Signed(ACCg; . 16)
endfor

Exceptions:
None

Revision 1.0

VMULQ wpeG Quantisaion ~ VMULQ

31 26 25624 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VMULQ
010010 000011
6 1 4 5 5 5 6
Format:

vmul g vd, vs, vt
vhul g vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the
elements of vector register vs, and loaded into the accumulator.

This instruction is specifically designed to support MPEG inverse quantization. The accumulator is
rounded if the product is negative, otherwise zero is added.

Bits 32...17 of the accumulator are clamped to 16 bit signed values and AND’d with OxFFFO

(producing a result from -2048 to 2047 aligned to the short MSB), writing the results into vector
register vd.

If an element specification eis present for vector register vz the selected scalar element(s) of vtis
used as described below.

285

286

Operation:

T:

foriin0...7

if (e3¢ = 0000) then /* vector operand */
ji

elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)

elseif ((e3__ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)

elseif ((e3__ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)

endif

products; o <« VR[vs][*2]15 o * VRIV|[[*2]15..0

if (productz; g < 0) then
ACCy7, 16 < productys,_o + (01| 1| 0°)

else
ACC,7 16 < productys g

endif

VR[vd][i*2];5. ¢ < (Clamp_Signed(ACCs,._17) and (112 || 0%)

endfor

Exceptions:

None

Revision 1.0

VMULU Vector Multiply VMULU

of Unsigned Fractions

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VMULU
010010 000001
6 1 4 5 5 5 6
Format:

vimul u vd, vs, vt
vhul u vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare multiplied on an element-by-element basis to the
elements of vector register vs, and loaded into the accumulator.

Bits 31...16 of the accumulator are clamped to 16 bit unsigned values and placed into vector register
vd.

If an element specification eis present for vector register vz the selected scalar element(s) of vzis
used as described below.

287

288

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3__ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3__ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)
endif
products; o <« VR[vs][*2]15 o * VRIV|[[*2]15..0
ACCy7..16 < productzg o || 0
ACCy7..0 < ACCy7. o+ (1] 0™)
VR[vd][i*2]15. o < Clamp_Unsigned(ACC3;_16)
endfor

Exceptions:
None

Revision 1.0

VNAND

Vector NAND
of Short Elements

VNAND

31 26 25 24 21 20 16 15 11 10 6
COP2 1 e vt VS vd VNAND
010010 101001
6 1 4 5 5 5 6

Format:

vnand vd, vs, vt
vhand vd, vs, vt[e]

Description:

The 16-bit elements of vector register v¢are NAND’d on an element-by-element basis with the

elements of vector register vs.

The results are placed into vector register vd.

If an element specification eis present for vector register vZ the selected scalar element(s) of vzis

used as described below.

289

290

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3._ 0 & 0111)
endif
result;s o < VR[vs][i*2]15. o nand VR[Vt][[*2]15. o
ACClily5._ o < resultys_o
VR[vd][i*2]15. o < result;s g
endfor

Exceptions:

None

Revision 1.0

Vector Select
VNE Not Equal VNE

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VNE
010010 100010
6 1 4 5 5 5 6
Format:

vne vd, vs, vt
vhe vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare compared and selected on an element-by-element basis
with the elements of vector register vs. VCOand VCE are used as input, VCOand VCE are cleared on
output, and VCC is set with the results of the comparison (the element which is not equal).

The results are placed into vector register vd.

If an element specification eis present for vector register vz the selected scalar element(s) of vzis
used as described below.

201

292

Operation:
T:

VCC « 0
foriin0...7

if (e3_ o = 0000) then /* vector operand */
ji

elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j < (e3.0&0001) + (i & 1110)

elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j < (e3 0 &0011) + (i & 1100)

elseif ((e3__ g & 1000) = 1000) then /* scalar whole of vector */
j < (e3..0&0111)

endif

if (VR[s][i*2]35_o < VRIVI][*2];5 o) then
VCCj«1

elseif (VR[vs][i*2]15_ o > VR[VL][[*2]15 o) then
VCCj«1

elseif ((VR[vs][i*2]15 o = VR[Vt][[*2];5. o) and ~VCE;) then
VCCj«1

else
VCCi« 0

endif

if (VCC;) then
resultys o < VR[vs][i*2];5 o

else
resultys o < VRV[[*2]35.0

endif

VR[Vd][*2];5 o < resultys o

ACClily5. g « resultys g

VCO;« 0

VCE;« 0

endfor

Revision 1.0

Exceptions:

None

293

VNOP Null}gesitrﬂt:tion VNOP

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VNOP
010010 110111
6 1 4 5 5 5 6
Format:
vnop
Description:

This instruction does nothing; it modifies no registers and changes no internal RSP state.

It is useful for program instruction padding or insertion into branch delay slots (when no useful
work can be done).

The Operation:

T: nothing happens

Exceptions:

None

294

Revision 1.0

Vector NOR
VNOR of Short Elements VNOR
31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VNOR
010010 101011
6 1 4 5 5 5 6

Format:

vnor vd, vs, vt
vhor vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare NOR’d on an element-by-element basis with the

elements of vector register vs.

The results are placed into vector register vd.

If an element specification eis present for vector register vZ the selected scalar element(s) of vzis

used as described below.

295

296

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3._ 0 & 0111)
endif
result;s o < VR[vS][i*2]15. o nor VR[V][[*2]15. o
ACClily5._ o < resultys_o
VR[vd][i*2]15. o < result;s g
endfor

Exceptions:

None

Revision 1.0

VNXOR

Vector NXOR
of Short Elements

VNXOR

31 26 25 24 21 20 16 15 11 10 6
COP2 1 e vt VS vd VNXOR
010010 101101
6 1 4 5 5 5 6

Format:

vnxor vd, vs, vt
vnxor vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare NXOR’d on an element-by-element basis with the

elements of vector register vs.

The results are placed into vector register vd.

If an element specification eis present for vector register vZ the selected scalar element(s) of vzis

used as described below.

297

298

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3._ 0 & 0111)
endif
result;s o < VR[vS][i*2]15. o hxor VR[V][[*2]15. o
ACClily5._ o < resultys_o
VR[vd][i*2]15. o < result;s g
endfor

Exceptions:

None

Revision 1.0

Vector OR
VOR of Short Elements VOR

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VNOR
010010 101010
6 1 4 5 5 5 6
Format:

vor vd, vs, vt
vor vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare OR’d on an element-by-element basis with the elements
of vector register vs.

The results are placed into vector register vd.

If an element specification eis present for vector register vZ the selected scalar element(s) of vzis
used as described below.

299

300

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3._ 0 & 0111)
endif
result;s o < VR[vS][i*2]15. o or VR[VL][[*2]15 o
ACClily5._ o < resultys_o
VR[vd][i*2]15. o < result;s g
endfor

Exceptions:

None

Revision 1.0

VRCP

Vector Element Scalar
Reciprocal (Single Precision)

VRCP

31 26 2524 21 20 16 15 11 10 6 5 0
COP2 1 e vt de vd VRCP
010010 110000
6 1 4 5 5 5 6
Format:
vrcp vd[de], vt[e]
Description:

The 32-bit reciprocal of the scalar 16-bit element e of vector register vtis calculated and the lower

16 bits are stored in the scalar 16-bit element dle of vector register vd.

Operation:

T:

if (VR[vi][e]y5_o < O) then

Diving;_o < 0 || -VR[vt][e];5_ o

else

Diving_o < 0 || VRIV][el15. o

endif
Ishift < 0
i« 0
while (i < 32 and ~found)
if (Divin; = 1)
Ishift < O
found «— 1
endif
i«—i+1
endwhile

301

302

Exceptions:
None

if (Diving; o = 03?) then
Ishift « 16
endif

addris o < DivIn(ziishift)...31-Ishift-9)
romData s o < rcpRom[addrys]

resultz; o< 0| 1|l romData;s g ||
rshift « ~Ishift and 1°
resultyy o < 0N || resulta; _(3p.rshify

014

if (VR[vt][e]15 o <0) then
resulty; o<« ~resulty; g

endif

if (VR[vt][e]15 o = O) then
resultg; o« 0] 132

DivOutg; o < resultz; o Il internal register used by vrcph
foriin0...7

ACClily5. 0 < VRV[e]l15 o
endfor

VR[Vd] [de*2]15.__0 < DiVOUt15m0

Revision 1.0

VRCPH Vector Element Scalar VRCPH

Reciprocal (Double Prec. High)

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt de vd VRCPH
010010 110010
6 1 4 5 5 5 6
Format:

vrcph vd[de], vt[e]

Description:

The upper 16 bits of the reciprocal previously calculated is stored in the scalar 16-bit element de of
vector register vad. The 16-bit element e of vector register vtis loaded as the upper 16 bits for a
pending double-precision reciprocal operation.

Operation:
T:
Diving; o « VR[Vi][e]l;5. g || 0°
foriin0...7
ACCli]15..0 « VRIVY[e]15. 0
endfor

VR[vd][de*2];5 o < DivOutz; 16 /I internal register set by vrcp/vrepl

Exceptions:
None

303

VRCPL Vector Element Scalar VRCPL

Reciprocal (Double Prec. Low)

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt de vd VRCPL
010010 110001
6 1 4 5 5 5 6
Format:

vrcpl vd[de], vt[e]

Description:

The 16-bit element eof vector register vtis used as the lower 16 bits of a double-precision reciprocal
calculation (combined with data previously loaded by vr cph). The 32-bit reciprocal is calculated
and the lower 16-bits are stored in the scalar 16-bit element de of vector register vd.

Operation:

T:
Diving; o < Diving; 6 Il VRIVt][e]15 0
Ishift < O
i« 0
while (i < 32 and ~found)
if (Divin; = 1)
Ishift < O
found « 1
endif
i+l
endwhile
if (Diving; o= 0%?) then
Ishift < O
endif

304

Revision 1.0

addrys o < DivInz 1 shift)...31-Ishift-9)
romData;s o« rcpRom[addrys o]

resultz; o<« 0| 1| romDatays_g ||
rshift « ~Ishift and 1°
resultg; o < 0" || resulty; _(32-rshify

014

if (VR[vt][e]15._ o < 0) then
resulty; g < ~resultz; o

endif

if (VRIvi][elys.. o = 0) then
resultg; o« 0]l 1%

DivOuty; o < resultz; g Il internal register used by vrcph
foriin0...7

ACClil15_0 <= VRVt[e];5_ o
endfor

VR[Vd] [de*Z] 15..0 € DiVOUtls___O

Exceptions:
None

305

306

VRNDN Vector Accumulator VRNDN

DCT Rounding (Negative)

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VRNDN
010010 001010
6 1 4 5 5 5 6
Format:

vrndn vd, vs, vt
vrndn vd, vs, vt[e]

Description:

This instruction is specifically designed to support MPEG DCT rounding.

The vector register vt is shifted left 16 bits if the vsfield is 1 (not the contents of vs, but the vs

instruction field bits) and conditionally added to the accumulator. If the accumulator is negative,
vtis added, otherwise zero is added.

If an element specification eis present for vector register vz, the selected scalar element(s) of vzis
used as described below.

Revision 1.0

Operation:

T:
foriin0...7

if (e3¢ = 0000) then /* vector operand */
ji

elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)

elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)

elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)

endif

if (vs and 1) then
products; o < VRIV[*2]35 o Il 0*°

else
products; o < VRIVII[*2]15'° [| VRIVII[i*2]35

endif

if (ACC,47_g < 0) then
ACC47 o< ACC,7 o+ (products;1® || products; o)

else
ACCy7 o< ACCyy o+ 0%

endif

VR[vd][i*2]15. g < Clamp_Signed(ACC31 16)

endfor

Exceptions:
None

307

308

VRNDP

Vector Accumulator
DCT Rounding (Positive)

VRNDP

31 26 25 24 21 20 16 15 11 10 6
COP2 1 e vt VS vd VRNDP
010010 000010
6 1 4 5 5 5 6
Format:

vrndp vd, vs, vt
vrndp vd, vs, vt[e]

Description:

This instruction is specifically designed to support MPEG DCT rounding.

The vector register vt is shifted left 16 bits if the vsfield is 1 (not the contents of vs, but the vs
instruction field bits) and conditionally added to the accumulator. If the accumulator is positive, v

is added, otherwise zero is added.

If an element specification eis present for vector register vz, the selected scalar element(s) of vzis

used as described below.

Revision 1.0

Operation:

T:
foriin0...7

if (e3¢ = 0000) then /* vector operand */
ji

elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3. 0 &0001) + (i & 1110)

elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)

elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3. 0 & 0111)

endif

if (vs and 1) then
products; o < VRIV[*2]35 o Il 0*°

else
products; o < VRIVII[*2]15'° [| VRIVII[i*2]35

endif

if (ACC,47 g >=0) then
ACC47 o< ACC,7 o+ (products;1® || products; o)

else
ACCy7 o< ACCyy o+ 0%

endif

VR[vd][i*2]15. g < Clamp_Signed(ACC31 16)

endfor

Exceptions:
None

309

Vector Element Scalar
VRSQ SQRT Reciprocal VRSQ

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt de vd VRSQ
010010 110100
6 1 4 5 5 5 6
Format:

vrsq vd[de], vt[e]

Description:

The 32-bit reciprocal of the square root of the scalar 16-bit element e of vector register vtis
calculated and the lower 16 bits are stored in the scalar 16-bit element de of vector register vd.

Operation:

T:
if (VR[vt][e]1s. o < 0) then
Diving; o « 0*° || -VRIv][els. .0
else
Diving; o < 0*° || VR[vil[elss. .0
endif
Ishift < 0
i<0
while (i < 32 and ~found)
if (Divin; = 1)
Ishift < 0
found «— 1
endif
i—i+1
endwhile

310

Revision 1.0

if (Diving; o = 0%?) then
Ishift « 16
endif

addrys, o < DivIngzyshifr)...(31-Ishift-9)
addr;s o<« (addrys o or (0° || 1| 0%) and (0° || 1° || O) or (Ishift mod 2)

romDatajs o < rsgRom[addris]
resulty; o« 0| 1 || romDatays_g || 0*
rshift « (~Ishift and 1°)/2

resultg; o < 0" || resulty; _(32-rshify

if (VR[vt][e]15 o < O) then
resulty; g < ~resultz; o

endif

if (VRvi][elss. o = 0) then

resulty; o« 0] 13!
DivOuty; o <« resultz; g Il internal register used by vrsgh
foriin0...7

ACClil15._0 <= VRVt[e];5 o
endfor

VR[Vd] [de*Z] 15..0 € DiVOUtls___O

Exceptions:
None

311

Vector Element Scalar SQRT
VRSQH Reciprocal (Double Prec. High) VRSQH

31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt de vd VRSQH
010010 110110
6 1 4 5 5 5
Format:

vrsgh vd[de], vt[e]

Description:

The upper 16 bits of the reciprocal of the square root previously calculated is stored in the scalar
16-bit element de of vector register vd. The 16-bit element e of vector register vZis loaded as the
upper 16 bits for a pending double-precision reciprocal of a square root operation.

Operation:
T:
Diving; o « VR[vi][e];5. o || 0°
foriin0...7
ACCli]15..0 « VRIVY[e]15. 0
endfor

VR[vd][de*2];5 o < DivOuty; 16 //internal register set by vrsql

Exceptions:

None

312

Revision 1.0

VRSQL

Vector Element Scalar SQRT
Reciprocal (Double Prec. Low)

VRSQL

31 26 2524 21 20 16 15 11 10 6
COP2 1 e vt de vd VRSQL
010010 110101
6 1 4 5 5 5 6
Format:
vrsql vd[de], vt[e]
Description:

The 16-bit element e of vector register vzis used as the lower 16 bits of a double-precision square
root reciprocal calculation (combined with data previously loaded by vr sgh). The 32-bit square
root reciprocal is calculated and the lower 16-bits are stored in the scalar 16-bit element de of vector
register vd.

Operation:

T:

Diving; o < Divingy 16 || VR[Vt[€]15. o
Ishift < 0

i< 0

while (i < 32 and ~found)

if (Divin; = 1)
Ishift < 0
found « 1

endif

i<—i+1

endwhile

if (Diving; o = 0%?) then

endif

Ishift < O

313

addrys o < DivInz1shift)...31-Ishift-9)
addrys o« (addrys o or (0% 1] 0%) and (08 || 1° || 0) or (Ishift mod 2)

romDatays o < rsqgRom[addrys_g]
resulty; o<« 0| 1| romData;s o ||

rshift < (~Ishift and 15)/2
resultz; o « 0"S"™ || resultzy (3p-rshify

014

if (VR[vt][e]15 o < O) then
resulty; o« ~resultz; o

endif

if (VR[vt][e]15._ o = 0) then
resultz; o<« 0] 131

DivOuty; g <« resultz; g Il internal register used by vrsgh
foriin0...7

ACClil35..0 < VRIVt[els5..0
endfor

VR[Vd] [de*2] 15..0 < DiVOUtlS...O

Exceptions:

None

314

Revision 1.0

VSAR

Vector Accumulator
Read (and Write)

VSAR

31 26 25 24 21 20 16 15 11 10 6
COP2 1 e vt VS vd VSAR
010010 011101
6 1 4 5 5 5 6
Format:

vsar vd, vs, vt[e]

Description:

The upper, middle, or low 16-bit portion of the accumulator elements are selected by eand read out

to the elements of vd.

The elements of vsare stored into the same portion of the accumulator.

Operation:
T:
foriin0...7
if (e = 0) then
VR[vd][i*2];5. o <~ ACClil47. 32
ACClil47. 32 « VR[Vvs][i*2]35..0
else if (e = 1) then
VRvd][*2];5 o <~ ACClil3; .16
ACClilz1..16 < VRIVS][i*2]15 o
else if (e = 2) then
VR[vd][*2]35. o <~ ACClil15. 0
ACClil35..0 < VR[Vvs][i*2]35. 0
endif
endfor

315

Exceptions:

None

316

Revision 1.0

VSUB

Vector Subtraction
of Short Elements

VSUB

31 26 25 24 21 20 16 15 11 10 6
COP2 1 e vt Vs vd VSUB
010010 010001
6 1 4 5 5 5 6
Format:

vsub vd, vs, vt
vsub vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare subtracted on an element-by-element basis from the

elements of vector register vs. The vector control register VCOis used as borrow in; and VCOis

cleared.

The results are clamped to 16 bit signed values and placed into vector register vad.

If an element specification eis present for vector register vz the selected scalar element(s) of vzis

used as described below.

317

318

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3._ 0 & 0111)
endif
result;s o < VR[vS][i*2]15. o - VR[Vt][[*2]15 o - VCO
ACClily5._ o < resultys_o
VR[vd][i*2]15. o < Clamp_Signed(result;s_)
endfor
VCOy5 o« 0%

Exceptions:

None

Revision 1.0

VSUBC

Elements With Carry

Vector Subtraction of Short

VSUBC

31 26 25 24 21 20 16 15 11 10 6
COP2 1 e vt Vs vd VSUBC
010010 010101
6 1 4 5 5 5 6

Format:

vsubc vd, vs, vt
vsubc vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare subtracted on an element-by-element basis from the
elements of vector register vs. The vector control register VCOis used as borrow out. The results are

not clamped.

The results are placed into vector register vd.

If an element specification eis present for vector register vz the selected scalar element(s) of vzis

used as described below.

319

320

Operation:

T:
VCO;5 o« 06
foriin0...7
if (e3__ o = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j < (e3.0&0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j < (e3.0&0011) + (i & 1100)
elseif ((e3._ g & 1000) = 1000) then /* scalar whole of vector */
j<(e3_0&0111)
endif
resultys o < VRIVS][i*2]y5. 0 - VRIVE[*2]15. .0
ACClily5. g « resultys g
VR[vd][*2];5 o < resultys o
if (resultyg_g < 0) then
VCO; « 1
VCOjg <1
else if (result;g o > 0) then
VCO;« 0
VCOj,g < 1
else
VCO;« 0
VCOj,g« 0
endif
endfor

Exceptions:

None

Revision 1.0

Vector XOR
VXOR of Short Elements VXOR
31 26 25 24 21 20 16 15 11 10 6 5 0
COP2 1 e vt VS vd VXOR
010010 101100
6 1 4 5 5 5 6

Format:

vxor vd, vs, vt
vxor vd, vs, vt[e]

Description:

The 16-bit elements of vector register vtare XOR’d on an element-by-element basis with the

elements of vector register vs.

The results are placed into vector register vd.

If an element specification eis present for vector register vZ the selected scalar element(s) of vzis

used as described below.

321

322

Operation:

T:
foriin0...7
if (e3¢ = 0000) then /* vector operand */
ji
elseif ((e3_ g & 1110) = 0010) then /* scalar quarter of vector */
j« (e3.0&0001) + (i & 1110)
elseif ((e3._ g & 1100) = 0100) then /* scalar half of vector */
j« (e3. 0 & 0011) + (i & 1100)
elseif ((e3_ g & 1000) = 1000) then /* scalar whole of vector */
j« (e3._ 0 & 0111)
endif
result;s o < VR[vS][i*2]15. g Xor VRVt][j*2]15 o
ACClily5._ o < resultys_o
VR[vd][i*2]15. o < result;s g
endfor

Exceptions:
None

Revision 1.0

Exclusive Or

XOR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 XOR
000000O0 00000 100110
6 5 5 5 5 6
Format:
xor rd, rs, rt
Description:

The contents of general register rsare combined with the contents of general register rzin a bit-wise
logical exclusive OR operation.

The result is placed into general register rd.

Operation:

T:

Exceptions:

None

GPR[rd] <~ GPR][rs] xor GPR]rt]

323

XORI Exclusive OR Immediate XORI

31 26 25 21 20 16 15 0
XORI rs rt immediate
001110
6 5 5 16
Format:

xori rt, rs, imediate

Description:

The 16-bit /mmediateis zero-extended and combined with the contents of general register rsin a
bit-wise logical exclusive OR operation.

The result is placed into general register rt.

Operation:

T: GPR[rt] « GPR]rs] xor (0° || immediate)

Exceptions:
None

324

Symbols

- 108, 110, 122, 123

108
#define 20
#ifdef 20
#include 20
$ 112, 123
$0 32

$31 32, 174, 175

$at 123

$c 123

$c0 82, 83, 94
$cl 82, 83, 94
$c10 82, 89, 94
$c11 82, 90, 94
$c12 82, 92, 94
$c13 82, 92, 94
$c14 82, 93, 94
$c15 82, 93, 94
$c2 82, 83, 94
$c3 82, 83, 94
$c4 82, 85, 94
$c5 82, 88, 94
$c6 82, 88, 94
$c7 82, 88, 94
$c8 82, 88, 94
$c9 82, 89, 94
$ra 123

$s8 123

$sp 123

$v 123

$vee 112, 123
$vee 112, 123
$vco 112, 123

% 108, 110, 122

& 108, 110, 122
(122

() 108

) 122

* 108, 110, 122
*/ 108

+ 108, 110, 122, 123

, 108

Index

. 108

.align 119, 127, 136
.bound 119, 127, 136
byte 111, 119

.dat 20, 126, 127

.data 109, 119, 136

.dbg 20

.dmax 119

.end 119

.ent 119

half 111, 119, 136

JAst 20

.name 112, 119

.print 108, 119, 120, 127
.Space 120

.sym 20

.symbol 107, 111, 120, 127
.text 109, 120

.unname 120

.word 111, 120, 136
/108, 110, 122

/* 108

: 108, 109

; 108

<< 108, 110, 122

>> 108, 110, 122

[1108

A 108, 110, 122

_ 107
__0sSpDeviceBusy 143
__0sSpGetStatus 144
__osSpRawReadlo 134, 143
__0sSpRawsStartDma 143
__0sSpRawWritelo 144
__0sSpSetPc 144
__0sSpSetStatus 144
_LANGUAGE_ASSEMBLY 20
| 108, 110, 122

~ 108, 110, 122

Numerics

0x04000000 95, 126
0x04001000 95, 145

325

Nintendo Ultra 64 RSP Programmer’s Guide

0x04040000 94
0x04040004 94
0x04040008 94
0x0404000c 94
0x04040010 94
0x04040014 94

bgtz 121, 165
BGTZALL 28
BGTZL 28
big-endian 32, 34
bitwise and 110

bitwise exclusive or 110

0x04040018 94 bitwise or 110
0x0404001c 94 blez 121, 166
0x04080000 95 BLEZL 28
0x04100000 94 bltz 121, 167
0x04100004 94 bltzal 121
0x04100008 94 BLTZALL 28
0x0410000c 94 BLTZL 28
0x04100010 94 bne 121, 169
0x04100014 94 BNEL 28
0x04100018 94 BNF 119
0x0410001c 94 BNF Specification of the RSP Assembly Language 119
0x80 142 borrow in 37
128-bit 26 branch 132
48-bit 36 branch target 43
64-bit 43 break 28, 46, 122, 170
breakpoint 170
A buildtask 21, 136, 139, 140
ACC, pipeline stage 41 built-in register names 112
accumulator 26, 36, 57, 61 bypass (pipeline) 44
add 28, 121, 156, 159 bypassing 44
addi 28, 121, 157, 158 byte ordering, big-endian 34
addition 110
addiu 28, 121, 157, 158 C
addu 28, 121, 156, 159 c 112
alignment 43 C compiler 20
American National Standards Institute 62 C programming language 20, 111
and 121, 160 carry out 37
andi 121, 161 cc 20
ANSI 62 cfc0 43
assembler 19 cfc2 43, 56, 72, 122, 171
assembly directive 106 chroma 185, 210
clamping 63
B clip compare 37
Backus-Naur 119 CLK 133
base address for assembly 109 CMD_BUF_READY 91
BCzF 28 CMD_BUSY 82
BCzT 28 CMD_CLOCK 82
beq 121, 162 CMD_CURRENT 82, 100, 101
BEQL 28 CMD_END 82, 100, 101
bgez 121, 163 CMD_PIPE_BUSY 82
bgezal 121, 164, 168 CMD_START 82, 100, 101
BGEZALL 28 CMD_STATUS 82
BGEZL 28 CMD_TMEM_BUSY 82

326

Revision 1.0 Index

colon 108, 109

comments 108, 119
complement 110

consecutive labels 109
constants 107, 109, 110, 126
control register 112

COP2 57

coprocessor 0 27, 33, 45, 81, 148
coprocessor 2 26, 27, 171
cpp 20, 108

CPU 24, 46

CPU-RSP semaphore 82, 97
Cray 23, 130, 132

ctc2 43, 56, 72, 122, 172

D

DADD 28

DADDI 28

DADDIU 28

DADDU 28

data dependency 130, 134
data memory 30

data recurrence 130

data section 20, 109

DCT rounding, MPEG 62, 306
DDIV 28

DDIVU 28

debugger 21, 22

debugging, microcode 145
decimal constants 107

delay slot 43

delayed load instructions 48
DF, pipeline stage 41
directive 109, 119

DIV 28

divide 75

division 110

DIVU 28

DMA 24, 29, 30, 48, 83, 96
DMA Examples 97

DMA FULL 96

DMA LENGTH 97

DMA READ length 82
DMA setup 96

DMA transfer 84, 135, 141, 143
DMA WRITE length 82
DMA_BUSY 82, 88, 91, 96
DMA_CACHE 82
DMA_DRAM 82

DMA_FULL 82, 88
DMA_READ_LENGTH 82
DMA_WRITE_LENGTH 82
DMEM 24, 30, 48, 95, 109, 126
DMULT 28

DMULTU 28

Doherty, Mary Jo 43

double precision add 37

double precision compare 37, 71
double precision multiply 63
double precision reciprocal 79
DPC_SET_XBUS_DMEM_DMA 101
DRAM 48

DSLL 28

DSLL32 28

DSLLV 28

DSRA 28

DSRA32 28

DSRAV 28

DSRL 28

DSRL32 28

DSRLV 28

DSUB 28

DSUBU 28

dual execution 128, 134

dual issue 39, 43

E

element 34, 58, 75, 123

ELF 19, 20, 21, 127, 139
EX, pipeline stage 41
exception 46

exception handling 46
exceptions 27

expression 109, 110, 111, 122
expression operators 110

F

floating point 27

flushed 90

forwarding 44
forward-referencing symbol 111
fourth 52

frozen 90

G

Gameshop 22, 145
gbi2mem 146
GCLK 90, 91

327

Nintendo Ultra 64 RSP Programmer’s Guide

guDumpGbiDL() 146 LD 27
gvd 21, 22, 145 LDC1 27
LDC2 27
H LDL 27
h 113 LDR 27
half 52 ldv 49, 122, 180
halves 58 Ifv 49, 52, 122, 181
hazard 43 Ih 121, 183
Heinrich, J. 17 lhu 121, 184
Hennessy, J. 16 lhv 49, 52, 122, 185
hexadecimal constants 108 linker 21, 136
host 1/0 interface 146 linking RSP objects 20
listing 20
| LL 27
identifier 107, 109, 110, 111, 123 LLD 27
iexpression 111, 115, 116, 118, 123 llv 49, 122, 187
IF, pipeline stage 41 load delay 56
IMEM 24, 29, 95, 106, 126 load delay slot 48
Indy 146 loop inversion 131
instruction 119 loop unrolling 132
instruction fetch cycle 39 lpv 49, 52, 122, 188
instruction memory 29 lqv 49, 122, 189
instruction ordering 39 Irv 49, 122, 190
integer expression 111, 114 Isv 49, 122, 191
interrupt 46, 85 Itv 54, 122, 192
interrupts 27 lui 121, 193
inverse quantization, MPEG 62, 285 luma 194, 229
ISA 16 luv 49, 52, 122, 194
I-type (instruction) 40 lw 121, 196
lwc2 48
J LWL 27
j 122,173 LWR 27
jal 32, 122, 174 LWu 27
jalr 32, 175
Japanese Industrial Standards Committee 62 M
JISC 62 m4 21, 109
jr 121, 176 makerom 21
J-type (instruction) 40 man 17
jump tables 126 Mary Jo’s Rules 43
merge 71
K mfc0 43, 197
keywords 109 mfc2 43, 56, 122, 198
MFHI 28
L MFLO 28
label 109, 119, 127 MI_INTR_SP 46, 170
labels 109 minus (unary) 110
Ib 121, 177 MIPS assembly language 105, 106
lou 121, 178 MIPS coprocessor 0 27
lov 49, 122, 179 MIPS coprocessor 1 27

328

Revision 1.0 Index

MIPS coprocessor 2 27

MIPS coprocessor extensions 25, 40, 106

MIPS Instruction Set Architecture 16, 25, 40, 47
MIPS R4000 Microprocessor User’s Manual 17, 40
mixed precision multiply 64

modulo 110

MPEG 62, 185, 210, 260, 285, 306, 308
MPEG specification 62

mtc0 43, 82, 199

mtc2 43, 56, 122, 200

mtf0 82

MTHI 28

MTLO 28

MUL, pipeline stage 41

MULT 28

multimedia instructions 26

multiplication 110

MULTU 28

N

Newton-Raphson 78

nop 122

nor 121, 201, 202

normal VU loads and stores 50

(0]

octal constants 108
oddification, MPEG 62, 260
operator 107, 108, 109

or 121, 203

ori 121, 204

OS_READ 143
OS_TASK_YIELDED 149
OS_WRITE 143
osSpTaskStart() 142
osSpTaskYield() 148
OSTask 137, 140, 142, 145, 146, 147
overlay, microcode 21, 135

P

pack 52

packed VU loads and stores 52
parentheses 111

Patterson, D. 16

PC 29, 95

PIPE_BUSY 91

pipeline delay 130, 134
pipeline depth 27

pipeline stall 39, 43, 44

plus (unary) 110

precedence, assembler expressions 111
profiling 133

program 119

program sections, RSP 109
programmed 10 144

pseudo-opcode 106

Q

q 113
quad 50
quarters 58

R

R4000 25

R4000 instruction set 27, 40, 105
Rambus 135

RCP 24

rcp.h 31, 144, 148

RD, pipeline stage 41

RDP clock counter 82

RDP command buffer 82, 88
RDP command buffer BUSY 82
RDP COMMAND END 91
RDP Command FIFO 100
RDP COMMAND START 91
RDP pipe BUSY 82

RDP status 82, 90

RDP TMEM BUSY 82

Reality Signal Processor 23
reciprocal 76

register conflict (see also "register hazard") 39
register halves 113

register hazard 43

register quarters 113

registers 112

remainder 110

rest 50

RISC 16, 23, 44

rmonPrintf() 146

rounding 62

rsp (simulator) 21, 22, 31, 145
RSP boot microcode 142

RSP clock 26

RSP interrupt 170

RSP Program Counter 95

RSP simulator 133

RSP status 82, 85, 86

RSP status register 46, 170

329

Nintendo Ultra 64 RSP Programmer’s Guide

RSP yielding 147

rsp.h 82

rsp2elf 19, 20, 21, 139

rspasm 19, 20, 21, 31, 105, 136
rspboot 145

rspg (simulator) 21, 22, 145
R-type (instruction) 40

S
sb 121, 205

sbv 49, 122, 206
SC 27

scalar element of a vector register 112

scalar half 35, 58
scalar instruction 113, 119
scalar quarter 35, 58
scalar register 112
scalar unit 25

SCD 27

SD 27

SDC1 27

SDC2 27

SDL 27

SDR 27

sdv 49, 122, 207
semaphore 88

sfv 49, 52, 122, 208
sh 121, 209

shift left 110

shift right 110

shv 49, 52, 122, 210
SIGO 148

SIG1 148

signal 0 85, 148
signal 1 85, 148
signal 2 85

signal 3 85

signal 4 85

signal 5 85

signal 6 85

signal 7 85

SIMD 16, 23, 128, 129, 130
single issue 43
single-step 85

slave processor 27, 45
sll 121, 211

sllv 121, 212

slt 121, 213

slti 28, 121, 214, 215

330

sltiu 28, 121, 214, 215
sltu 121, 216

slv 49, 122, 217

software pipelining 130
SP_RESERVED 82
SP_SET_YIELD 148
SP_STATUS 82
SP_STATUS_BROKE 170
SP_STATUS_INTR_BREAK 170
SP_UCODE_DATA_SIZE 126
SP_YIELDED 148
sptask.h 142

spv 49, 52, 122, 218
square root 76

sqv 49, 122, 219

sra 121, 220

srav 121, 221

srl 121, 222

srlv 121, 223

srv 49, 122, 224

ssv 49, 122, 225
statements 107, 113

status register, RSP 28, 148
string constants 108

stv 54, 122, 226

SU 25

sub 121, 227

subtraction 110

subu 121, 228

suv 49, 52, 122, 229

sw 121, 230

swap, microcode 135

swc2 48

SWL 27

SWR 27

swv 54, 122, 231

SYNC 28

SYSCALL 28

system control coprocessor 45

T
TEQ 28

TEQI 28

text section 20, 109
TGE 28

TGEI 28

TGEIU 28

TGEU 28

TLT 28

Revision 1.0 Index

TLTI 28

TLTIU 28

TLTU 28

TMEM 90, 93

TNE 28

TNEI 28

tokens 108

transpose VU loads and stores 54
traps 27

U

ucode.h 126
ucode_data 149
unsigned pack 52

\

v 112

vabs 67, 122, 232

vadd 67, 122, 234

vaddc 37, 67, 122, 236

vand 74, 122, 238

VCC 36, 38, 56, 70, 72, 112
VCE 38, 56, 112

vch 37, 38, 70, 72, 122, 240
vel 37, 38, 70, 72, 122, 243
VCO 37, 38, 56, 68, 70, 112
ver 37, 70, 73, 122, 246
vector add 68

vector carry out register 37
vector compare code register 36
vector compare extension register 38
vector computational instructions 112
vector control register 26, 112
vector divide 75, 78

vector instruction 47, 113, 119
vector loads, stores, and moves 35, 40, 47, 113
vector multiply 36, 64

vector register 26, 34, 112
vector register element 112, 113
vector select 37, 73

vector slice 34

vector unit 26, 34

vectorization 128

veq 37, 70, 122, 249

vge 37, 70, 122, 252

vit 37, 70, 122, 255

vmacf 61, 122, 258

vmacq 61, 62, 122, 260

vmacu 61, 122, 262

vmadh 62, 122, 264
vmadl 61, 122, 266
vmadm 61, 122, 268
vmadn 61, 122, 270
vmov 75, 76, 122, 272
vmrg 37, 70, 122, 273
vmudh 62, 63, 122, 275
vmudl 61, 63, 122, 277
vmudm 61, 63, 122, 279
vmudn 61, 63, 122, 281
vmulf 61, 62, 63, 122, 283
vmulqg 61, 62, 122, 285
vmulu 61, 62, 63, 122, 287
vnand 74, 122, 289

vne 37, 70, 122, 291
vnoop 75, 76, 122

vnop 294

vnor 74, 122, 295

vnxor 74, 122, 297

vor 74, 122, 299

vrep 75, 76, 122, 301
vreph 75, 76, 122, 303
vrepl 75, 76, 77, 122, 304
vrnd 62

vrndn 61, 62, 122, 306
vrndp 61, 62, 122, 308
vrsq 75, 76, 122, 310
vrsgh 75, 76, 122, 312
vrsgl 75, 76, 77, 122, 313
vsar 36, 68, 122, 315
vsub 67, 122, 317

vsubc 37, 67, 71, 122, 319
VU 26, 27

vxor 74, 122, 321

W
WB, pipeline stage 41
whitespace 107, 109, 112

X

XBUS 24, 90, 101
XBUS initialization 101
XBUS DMEM_DMA 91
xor 121, 323

xori 121, 324

Y
yielding 147

331

	Version 1.1
	Nintendo Ultra64 RSP Programmer’s Guide

	Chapter 1
	Introduction

	Document Description
	What It Is
	What It Is Not
	Information Presentation

	RSP Software Development Tools
	rspasm
	cpp
	m4
	buildtask
	rsp2elf
	rsp, rspg
	Gameshop Debugger (gvd)
	Chapter 2
	RSP Architecture

	Overview
	Slave to the CPU
	Part of the RCP
	Figure 2-1 Block Diagram of the RCP

	R4000 Core
	Clock Speed
	Vector Processor

	Major R4000 Differences
	Pipeline Depth
	No Interrupts, Exceptions, or Traps
	Coprocessors
	Missing Instructions
	Modified Instructions

	IMEM
	Addressing
	Explicitly Managed

	DMEM
	Addressing
	Explicitly Managed Resource

	External Memory Map
	Scalar Unit Registers
	SU Register Format
	Figure 2-2 SU Register Format

	Register 0
	Register 31
	SU Control Registers

	Vector Unit Registers
	VU Register Format
	Figure 2-3 VU Register Format

	VU Register Addressing
	Computational Instructions
	Loads, Stores, and Moves

	Accumulator
	Figure 2-4 VU Accumulator Format

	VU Control Registers
	Vector Compare Code Register (VCC)
	Figure 2-5 VCC Register Format

	Vector Carry Out Register (VCO)
	Figure 2-6 VCO Register Format

	Vector Compare Extension Register (VCE)
	Figure 2-7 VCE Register Format

	SU and VU Interaction
	Dual Issue of Instructions

	RSP Instruction Set
	Instruction Formats
	SU Instruction Format
	VU Instruction Format

	Distinguishing SU and VU Instructions
	Illegal Instructions

	Execution Pipeline
	RSP Block Diagram
	Figure 2-8 RSP Block Diagram

	Mary Jo’s Rules
	1. VU register destination writes 4 cycles later (need 3 cycles between load and use). This applies to vector computational instructions, vector loads, and coprocessor 2 moves (mtc2).
	2. SU register load takes 3 cycles (need 2 cycles between load and use). This applies to SU loads and coprocessor moves (mfc0, cfc2, mfc2). SU computational results are available in the next cycle (see “SU is Bypassed” on page 44).
	3. Any load followed by any store 2 cycles later, causes a one cycle bubble. Coprocessor moves (mtc0, mfc0, mtc2, mfc2, ctc2, cfc2) count as both loads and stores.
	4. A branch target not 64-bit aligned always single issues.
	5. Branches:
	a. Can dual issue (with preceding instruction).
	b. No branch instruction permitted in a delay slot.
	c. Delay slot always single issues.
	d. Taken branch causes a 1 cycle bubble.

	Register Hazards
	SU is Bypassed
	Figure 2-9 Pipeline Bypassing

	Coprocessor 0
	Interrupts, Exceptions, and Processor Status
	Interrupts
	Exceptions
	Processor Status
	Chapter 3
	Vector Unit Instructions

	VU Loads and Stores
	Figure 3-1 VU Load and Store Instruction Format
	Table 3-1 VU Load/Store Instruction Summary
	Normal
	Figure 3-2 Long, Quad, and Rest Loads and Stores

	Packed
	Figure 3-3 Packed Loads and Stores
	Figure 3-4 Packed Load and Store Alignment

	Transpose
	Figure 3-5 Transpose Loads and Stores

	VU Register Moves
	Figure 3-6 VU Coprocessor Moves

	VU Computational Instructions
	Figure 3-7 VU Computational Instruction Format
	Table 3-2 VU Computational Instruction Opcode Encoding
	Using Scalar Elements of a Vector Register
	Table 3-3 VU Computational Instruction Element Encoding
	Figure 3-8 Scalar Half and Scalar Quarter Vector Register Elements

	VU Multiply Instructions
	Figure 3-9 VU Multiply Opcode Encoding
	Table 3-4 VU Multiply Instruction Summary
	Figure 3-10 Double-precision VU Multiply
	Vector Multiply Examples

	VU Add Instructions
	Figure 3-11 VU Add Opcode Encoding
	Table 3-5 VU Add Type Encoding
	Vector Add Examples

	VU Select Instructions
	Figure 3-12 VU Select Opcode Encoding
	Table 3-6 VU Select Type Encoding
	Vector Select Examples

	VU Logical Instructions
	Figure 3-13 VU Logical Opcode Encoding
	Table 3-7 VU Logical Type Encoding

	VU Divide Instructions
	Figure 3-14 VU Divide Opcode Encoding
	Table 3-8 VU Divide Type Encoding
	Table 3-9 VU Divide Instruction Summary
	Reciprocal Table Lookup
	Higher Precision Results
	Vector Divide Examples
	Chapter 4
	RSP Coprocessor 0

	Register Descriptions
	RSP Point of View
	Table 4-1 RSP Coprocessor 0 Registers
	$c0
	$c1
	$c2, $c3
	Figure 4-1 DMA Transfer Length Encoding

	$c4
	Table 4-2 RSP Status Register
	Table 4-3 RSP Status Write Bits

	$c5
	$c6
	$c7
	$c8
	$c9
	$c10
	$c11
	Table 4-4 RDP Status Register
	Table 4-5 RSP Status Write Bits (CPU VIEW)

	$c12
	$c13
	$c14
	$c15

	CPU Point of View
	Table 4-6 RSP Coprocessor 0 Registers (CPU VIEW)
	Other RSP Addresses
	Table 4-7 Other RSP Addresses (CPU VIEW)

	DMA
	Alignment Restrictions
	Timing
	DMA Full
	DMA Wait
	DMA Addressing Bits
	CPU Semaphore
	DMA Examples
	Figure 4-2 DMA Read/Write Example
	Figure 4-3 DMA Wait Example

	Controlling the RDP
	How to Control the RDP Command FIFO
	Examples
	Figure 4-4 RDP Initialization Using the XBUS
	Figure 4-5 OutputOpen Function Using the XBUS
	Figure 4-6 OutputClose Function Using the XBUS

	Chapter 5
	RSP Assembly Language

	Different From Other MIPS Assembly Languages
	Why?
	Major Differences from the R4000 Instruction Set

	Syntax
	Tokens
	Identifiers
	Constants
	Operators
	Comments
	Program Sections
	Labels
	Keywords
	Expressions
	Expression Operators
	Table 5-1 Expression Operators
	Operator
	Meaning

	Precedence
	Table 5-2 Expression Operator Precedence
	least binding, lowest precedence:
	binary +,-
	...
	most binding, highest precedence

	Expression Restrictions

	Registers
	Vector Register Element Syntax
	Program Statements

	Assembly Directives
	.align
	.bound
	.byte
	.data
	.dmax
	.end
	.ent
	.half
	.name
	.print
	.space
	.symbol
	.text
	.unname
	.word

	BNF Specification of the RSP Assembly Language
	Chapter 6
	Advanced Information

	DMEM Organization and Usage
	Jump Tables
	Constants
	Labels in DMEM
	Dynamic Data
	Diagnostic Information

	Performance Tips
	Dual Execution
	Vectorization
	Software Pipelining
	Loop Inversion
	Loop Unrolling
	Program Flow of Control

	Profiling RSP Code
	Figure 6-1 Real-time Clock Watching on the RSP

	Microcode Overlays
	Memory System Implications
	Entirely Up to You
	RSP Assembler Tricks
	A Sample RSP Linker
	Figure 6-2 buildtask Operation

	Overlay Example
	Overlay Makefile
	Overlay DMEM Initialization
	Overlay Initialization Code
	Overlay Decision Code
	Overlay DMA Code

	Controlling the RSP from the CPU
	Starting RSP Tasks
	RSP Boot Microcode

	Hidden OS Functions
	__osSpDeviceBusy
	__osSpRawStartDma()
	__osSpRawReadIo()
	__osSpRawWriteIo()
	__osSpGetStatus()
	__osSpSetStatus()
	__osSpSetPc()

	Microcode Debugging Tips
	RSP Yielding
	Requesting a Yield
	Checking for Yield
	Yielding
	Saving a Yielded Process
	Restarting a Yield Process
	Appendix A
	RSP Instruction Set Details
	Table A-1 RSP Instruction Operation Notations

	Symbol
	Meaning
	Instruction Notation Examples

