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1 Introduction

TheMoosehead system I/O asic forms the heart of the I/O subsystem. It contains all of the basic I/O interfaces
including: keyboard & mouse, interval timers, serial, parallel, i2c, audio, video in & out, and fast ethernet. The I/O
asic also contains an interface to an external 64-bit PCI expansion bus that supports five masters (two SCSI control-
lers and three expansion slots). A block diagram of the entire I/O asic is shown below:
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1.1  Main Features:

❑ A 64-bit PCI expansion bus with support for five external masters (cards or motherboard devices)

• Two programmable arbitration levels, round-robin or fixed priority for external bus masters

• Eight PCI external interrupts for connection to slots and motherboard devices

• Two kilobytes of read ahead buffering for read cache line and read multiple PCI commands

• Selectable byte swapper for bus master traffic to and from CRIME memory

❑ Two independent video input channels with variable resize, filtering, and color space conversion

• Connects to NTSC/PAL video decoder, D1 digital video, or camera input sources

❑ One video output channel with color space conversion

• Connects to NTSC/PAL video encoder or D1 digital video output

• Internal loopback switch to either of the two video input channels

❑ Stereo audio TDM interface that supports one external multi-media codec

• One stereo input channel and two stereo output channel

• Independent rate DMA ring buffers for each stereo channel

• Each stereo pairs sample rate clock can be locked to any one of three external sources

❑ Switchable 100Mbit/10Mbit Fast-Ethernet interface

• MII interface for connection to external T2/T4/TX 110Mbit transceivers

• CSMA-CD or packet switched full-duplex operation

❑ An 8-bit ISA bus with parallel, serial, RTC, and Flash-ROM

• EPP/ECP-1284 Parallel interface

• Dual 16C550C Serial ports with 16 byte FIFOs

✔ DMA support for serial data rates up to 460.8 kilobaud

✔ Hardware support for CTS/RTS hardware flow control in T.I. ACE 16550

✔ HP IR link support integrated into each serial port with independant serial in

✔ Per serial port clock prescaler selects 7.33Mhz or 4.00Mhz baud rate clock base

• Five dma channels for the parallel, and serial interfaces

• Dallas DS1687 Battery backed up Calendar clock with system serial number

• Atmel 512Kx8 Flash-ROM

❑ Integrated PS/2 keyboard & mouse serial ports

❑ Integrated I2C bus interface

• Supports both 100K baud and 400K baud data rates

❑ Integrated 32-bit time base and four interval timers

• PCI bus referenced 960 nanosecond resolution for time base

• Three 32-bit compare registers for interval timer interrupt generation
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1.2  DMA Ring Buffers
All of the devices on the peripheral controller inside the I/O asic use a common DMA interface that is based on ring
buffers. Each device or data stream has a private ring buffer associated with it. DMA for a device is done by reading
or writing data from the ring buffer data stored in CRIME main memory.

The memory based ring buffers each have a base address, a read pointer, a write pointer, and a size. The ring buffer
base and size remain constant once the buffer is setup while the read and write pointers move around the ring as data
is added or removed. The read and write pointers are indexes (or offsets) into the ring buffer relative to the start
address. A picture of a ring buffer is shown below:

The memory based ring buffers all use a common control register format with slight variations. Each ring buffer has
four registers: a base & size register, a read pointer register, a write pointer register, and a configuration & status reg-
ister. The base & size register point to the start address in CRIME memory where the ring buffer is stored. The read
and write pointers are indexes (or offsets) into the ring buffer relative to the start address.

The read and write pointers automatically wrap around the ring because the ring size is really a mask that is applied to
the pointers each time they are used. To construct an address in the ring, the following equation is used:

The constants N, M, O, P, and Q vary from device to device to some degree, but the basic principle is the same for all
of the ring buffer DMA channels. The read and write pointers are masked and then logic or’d with the ring buffer
base address to generate an address in main memory. Since the ring size is controlled by a mask, the rings are
restricted to power of two sizes (i.e. 2, 4, 8, 16, 32, ...).

The last register of the four control registers, the configuration and status register, contains flags to enable the DMA
channel and set the interrupt threshold and check the status of the ring. It also contains a field which represents the
number of elements in the ring buffer from the hardwares point of view. This field is updated by the hardware DMA
engine as data is added to or removed from the ring buffer by moving the read and write pointers.

The normal mode of operation for the ring buffer read and write pointers is for the DMA engine to control one and for
software to control the other. As an example, for a DMA input channel the hardware would control updates to the
write pointer and software would control updates to the read pointer. As data is placed into the ring by the hardware,
the write pointer would be advanced and the count of items in the ring would increment. When the software reads
items from the ring it updates the read pointer to tell the hardware how many it read (up to all of them). This implies
that the hardware quickly recalculates the count of items in the ring after software updates it’s read pointer.

1.2.1  Number of Elements
The number of elements in the ring buffer at any given time is based on the relative distance between the write pointer
and the read pointer. When the write pointer offset and the read pointer offset are equal the ring buffer is empty and
the number of elements in the ring is zero. A ring buffer by definition has one ambiguous point, that is, what does it

Base Address

Write Pointer

Read Pointer
Size

Fill

Figure: Ring Buffer Layout, Partially Filled in Wrapped Condition

Address[31:0] = BaseAddress[31:N] | (PointerOffset[M:O] & (SizeMask[P:Q] | 1[Q-1:O]))

Figure: Ring Buffer Address Calculation
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mean to say that the ring buffer is full? This is caused by the fact that the write pointer offset and the read pointer off-
set being equal could also mean that the ring buffer is full. To avoid this problem, the rule for the ring buffers used
here is that the ring is full when the write pointer offset is one less than the read pointer offset. This makes calculating
the number of elements in the ring trivial since no context is involved:

1.2.2  Interrupts
The ring buffers provide a single FIFO threshold like interrupt. The interrupt is based on the number of items cur-
rently in the ring buffer and the interrupt condition selected. The ring buffer DMA engines provide four basic ring
interrupt selections: none, empty, full, and levels. The first interrupt option, none, just disables the interrupt output
and keeps the signal in the inactive state. Note that the interrupt selections all observe the ring size mask value.

The second and third interrupt options are generated using simple all zero and all ones detectors on the current ring
count of items. The empty condition is true if all bits of the count are zero, while the full condition is true if all bits of
the item count are ones (note that the full condition is true when the ring item count is N - 1 which observes the rule
set above in section 1.2.1). The complement of these two conditions are also available: not empty and not full. Both
of these tests use the size mask to force unused item count bits to zero or one.

The fourth option allows the system software to select among three possible levels 25%, 50%, and 75%. The 50%
level condition is generated by looking at the most significant bit, based on the size mask, of the item count. When the
MSB is true the ring buffer is >= 50% full, while when the MSB is false the ring buffer is < 50% full. The 25% and
75% level conditions are generated by looking at the two most significant bits, based on the size mask, of the current
item count. When the two MSBs are zero the ring buffer is < 25% full, while when the two MSBs are true the ring
buffer is >= 75% full. The complements of these two conditions generate the >= 25% and < 75% selections.

1.3  Memory Utilization
The memory interface provided by the CRIME asic gives the best performance when accesses are multiples of 64-bit
quantities. Because of this, all of the DMA ring buffer engines within the I/O asic perform read and write operations
using blocks of 64-bit words. For those devices where this is not a natural block size, such as serial and parallel for
example, packet formats have been introduced so that the DMA engine can perform full 64-bit memory operations.

Number = (WritePointer - ReadPointer) & (SizeMask[P:Q] | 1[Q-1:0])

Figure: Number of Elements in Ring Buffer
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2.0  Video Input & Output

2.1  Overview

2.1.1  Introduction

This document describes the video portion of the Moosehead MACE chip.This includes the video input and
output channels, filtering and colorspace conversion and the DMA engine.

2.1.2  Features

Video Input Channels

• 4 video input D1 sources (2 general purpose D1 sources, analog decoder, digital camera)
• 2 independent input channels supporting 4:2:2 YUV (from one or two input ports) or 1

channel supporting 4:2:2 YUV and 1 channel supporting Alpha.
• Clipping

Video Input Filtering and Scaling

• Conversion from non-square pixel format to square PAL or NTSC
• Down-scaling of image to any size
• Mipmap generation
• Color space conversion to RGB with optional dithering

Video Output Channels

• 3 video output D1 ports (2 general purpose D1 and an analog encoder)
• 1 output channel supporting either 4:2:2 YUV (to one output port) or 4:2:2:4 YUVA (to two

combined output ports)
• Padding

Video Output Filtering

• Color space conversion
• Conversion from square PAL or NTSC pixel formats to non-square
• Notch filter

Video DMA

• Linear or tiled (CRIME Compatible) buffer formats
• Field or interleaved frame modes

Pixel Formats (big endian only)

• 32-bit RGBA
• 16-bit RGBA
• 4:2:2 YUV (8-bit or 10 bit)

Other features

• Time Stamp with Field/Frame Counter
• Genlock output to video input port
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• Diagnostic Loop-back modes

2.1.3  Issues
1. How to handle VITC/Closed Captioned data?

2. Detecting loss of video sync?

3. Detecting loss of video clock?

4. Synchronizing changes to video filter parameters on field boundaries?

5. Pause/resume of video stream?

6. Handling VINO/Galileo compatible AGBR pixels?

7. Input field size for mipmapped restricted to be at least 512 pixels wide?

2.1.4  Video Overview

FIGURE 1. MACE Video Block Diagram
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2.1.4.1  Video Input

There are 2 input channels each of which can be programmed to receive video data from one of 4 possible
sources: an analog video decoder input, an 8-bit D1 input from a digital camera, or 1 of 2 general purpose
D1 input ports (8 or 10 bit). These sources are multiplexed outside the chip so that there are effectively
only 2 input ports on the chip. The primary port can be either the analog decoder or a general purpose D1,
and the secondary port can be either the digital camera or a general purpose D1. The input channels can
be configured as 2 independent channels of YUV 4:2:2 or can be used together to receive 1 channel of
4:2:2 YUV and 1 channel of Alpha. The merging of the Alpha with the data stream is done by software.

Clipping registers for both horizontal and vertical for each channel determine which portion of the video
input field will be used as video data. This allows data to be sent with or without the ancillary data period,
and also allows arbitrary clipping of the video input to any size field.

2.1.4.2  Input Filtering and Scaling

Each of the following functions may be performed in the order in which they are described below. All func-
tions are optional. All filtering is done in YUV color space with sub-sampled UV.

2.1.4.2.1  Non-square to square pixel conversion

This filter will convert from non-square CCIR 601 pixels to square NTSC or PAL. There are 2 fixed scaling
factors which can be selected. For NTSC the conversion will scale down by 10/11 (or 654/720). For PAL
the conversion will scale up by 12/11 (or 786/720). This filter can also scale down by 1/2 horizontally. The
scaling is implemented with a Mitchell filter, which provides the highest quality conversion that is feasible
for this chip.

2.1.4.2.2  Arbitrary Down-scaling

The incoming fields can be scaled in both the vertical and horizontal by any ratio less than 1. The horizon-
tal and vertical scaling are independent and can use different scaling factors. The down-scaler uses a
block filter which is considered to be somewhat low quality. This essentially calculates output pixels based
on the weighted average of the input pixels.

2.1.4.2.3  Mipmap Generation

The chip can generate mipmaps real-time from incoming fields of video. The mipmap function operates on
a starting field size of either 512x256 or 512x128, which will be the size of the first mipmap. Subsequent
mipmaps will be generated by repeatedly reducing the field in both directions by powers of 2. Thus, the fol-
lowing mipmaps will be generated:

• Starting from 512x256: 512x256, 256x128, 128x64, 64x32, 32x16, 16x8, 8x4, 4x2
• Starting from 512x128: 512x128, 256x64, 128x32, 64x16, 32x8, 16x4, 8x2, 4x1

The reduction will be done with a simple averaging method. Before mipmapping, the image must first be
scaled and/or clipped to the appropriate starting size using the previous clipping/filtering/scaling functions.
There is an option in the clipping block which may be used to pad the incoming image with extra blank
lines in the case that the incoming field contains less lines than the desired starting mipmap size. This will
add a border of black lines at the bottom of the image. This black border will be averaged in with the rest of
the image as it is reduced, which may result in some loss of image quality at the edges.

Mipmapping can only be used with the 16-bit RGBA pixel format.
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2.1.4.3  Input Color Space Conversion and Pixel Packing

Depending on the pixel format selected, the following operations may be performed:

• Upsampling of YUV (using simple interpolation of the missing U and V values)
• Color space conversion to RGB
• Dithering
• Packing into the appropriate format for DMA

2.1.4.3.1  Pixel Formats

The following pixel formats are supported:

• 32-bit RGBA and ABGR
• 16-bit RGBA (5551 with dither)
• 4:2:2 YUV, both 8-bit and 10-bit

2.1.4.4  Video Output

There is 1 video output DMA stream which can be either 4:2:2 YUV going to one output port or 4:2:2:4
YUV going to 2 combined output ports. The 2 D1 output ports supply 3 destinations: an analog encoder
and 2 general purpose D1 interfaces (8 or 10 bit). The analog encoder interface will share the data portion
of one of the D1 interfaces but uses additional video timing signals from the Mace chip.

2.1.4.5  Output Color Space Conversion and Pixel Unpacking

The video output path supports the same pixel formats as the input path. Depending on the pixel format
selected, the following operations may be performed:

• Unpacking data
• Notch filter
• Color space conversion to YUV
• Down sampling of UV (using a 1/4 1/2 1/4 FIR filter)

The notch filter is a simple 1/2 0 1/2 FIR filter. It is opitional and can be useful when the video data has pre-
viously been dithered. If the DMA data is an RGBA format, the notch filter will be applied to the Y,U and V
components after color space conversion, but before subsampling. If the DMA data is YUV format, then
the notch filter will only be applied to the Y component. The notch filter is not applied to alpha.

2.1.4.5.1  Output Filtering - Square to Non-square Conversion Pixel Conversion

This filter will convert from square NTSC or PAL pixels to non-square CCIR 601. There are 2 fixed scaling
factors which can be selected. For NTSC the conversion will scale up by 11/10 (or 720/654). For PAL the
conversion will scale up by 11/12 (or 720/786). This filter can also scale up by 2 horizontally.The scaling is
implemented with a Mitchell filter, which provides the highest quality conversion that is feasible for this
chip.

All functions are optional. All filtering is done in YUV color space with sub-sampled UV. If output data is 10-
bit D1, any filtering will result in an immediate truncation of the lower 2 bits of precision. Filtering will also
be done on the alpha component.
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2.2  Architecture

2.2.1  Video Input

In this document, video input port refers to the physical ports into the MACE chip. Video input processing
channel refers to clipping, filtering and color space conversion internal to the chip (as differentiated from
the DMA channel).

2.2.1.1  Video Input Ports

There are 2 video input ports to the video section of the MACE chip. Each of these ports may come from 2
sources which are multiplexed outside the chip:

• Primary D1 from an analog video decoder or general purpose D1
• Secondary D1 from a digital camera (moosecam) or general purpose D1

The following notations are used to refer to the video input ports:

Port A = Analog Decoder
Port B = Primary D1
Port C = Moosecam
Port D = Secondary D1

Thus, internal to the Mace chip there are effectively 2 input sources refered to as AB and CD.

FIGURE 2. External Video Input Selectors

The analog inputs are selected via I2C commands, and the input multiplexor is selected with the Video
Hardware Configuration Register.
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Additionally, the chip’s D1 output stream may be fed back into the video input path as shown in the follow-
ing figure.

D1 MUXING EXTERNAL TO MACE CHIP

D1 Data / analog decoder (A)
D1 Data / primary D1 (B) D1 Data / port AB

D1 Clk / analog decoder (A)
D1 Clk / primary D1 (B)

MACE CHIP
D1 Data / moosecam (C)
D1 Data /secondary D1 (D) D1 Data / port CD

D1 Clk / moosecam (C)
D1 Clk / secondary D1 (D)

D1 Data / port AB

D1 MUXING INTERNAL TO MACE CHIP

D1 clk/ port A
D1 clk/ port B

D1 clk/ port AB

D1 Data / port AB

D1 Data / port CD

D1 clk/ port C
D1 clk/ port D

D1 clk/ port CD

D1 Data / port CD
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For input in YUV 4:2:2, either of the 2 chip input ports, or either of the output streams, may be selected as
the input for each video input processing/DMA channels. If desired, the same input port may be selected
for both channels. This would be useful to capture full size video while displaying a reduced size image on
the monitor to view the image as it is being captured. The user may also wish to receive YUV on one chan-
nel and Alpha data on the other channel, however the data from these 2 streams will be DMA’ed sepa-
rately and must be merged by software.

FIGURE 3.  Video Input Ports

2.2.2  Video Output

There is only one video output DMA channel which can process one YUV data stream plus Alpha (if an
RGBA DMA pixel format is used).

2.2.2.1  Video Output Ports

There are 2 video output ports from the video section of the MACE chip:

• Port E: D1 port which can go to both a general purpose D1 and to an analog encoder
• Port F: General purpose D1

Each ouput port can be programmed to drive data from 1 of 3 sources: the YUV data stream, the Alpha
data stream or the selected D1 input port. The latter case, referred to as passthru mode, allows the user to
monitor data on an external monitor as it is being captured via one of the input ports. This mode may also
be useful for diagnostics. When passthru mode is selected, the D1 input port (AB or CD) which will be used
is that which has been selected as the genlock source.

Both output ports will generate standard 10-bit D1 (compatible with 8-bit D1) with embedded control infor-
mation. In order to accomodate the analog encoder, seperate control signals for blanking and field will be
driven on Port E.

D1 / port AB

VIDEO INPUT PORTS

D1 port E from video output
D1 port F from video output

SynchronizerD1 clk/ port AB
Sync D1 / AB

33 Mhz clk (from system clock)

D1 / port CD
SynchronizerD1 clk/ port CD

Sync D1 / CD

33 Mhz clk (from system clock)

D1 Channel A

D1 Channel B
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2.2.2.2  Video Output Timing Generation and Genlock

Video output timing can be genlocked to either D1 input port or an external sync source which provides the
requried timing signals (h,v,f and clock) to the Mace chip. In order to be genlocked, the video output timing
must be programmed to match the timing of the genlock source. A programmable register allows the out-
put to be delayed (in the hardware) from the input by as much as 1 line. Any additional adjustment
between the genlock source and the output must be handled in software via the video timing (Hpad/Vpad)
registers.

Output may also be generated with no genlock source. In this case, the output will use a fixed 27 Mhz
clock (corresponding to a 13.5 Mhz pixel clock) as it’s timing source.

NOTE: THE MAXIMUM FREQUENCY AT WHICH THE VIDEO OUTPUT CAN RUN IS 30 MHZ.

Although the diagram below shows a certain amount of flexibility as to what video is driven to the 2 output
ports, it is important to note that both video output ports must run with the same video timing.
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VIDEO OUTPUT TIMING GENERATION AND GENLOCK

FIGURE 4.

2.2.2.2.1  Audio Sync

The MACE chip provides 2 sync signals to the audio codec. The first sync, shown below, is programmati-
cally selected from either of the 2 D1 inputs (AB or CD). The other sync (shown above) will always come
from the video output. The frequency of the sync signal is the same as the H bit encoded in the corre-
sponding D1 stream.

D1/port AB

D1/port CD

VIDEO OUTPUT TIMING GENERATION AND GENLOCK

D1
start of field

vblank, hblank, cblank, field

field
Video

Decode

D1 Data port E

Timing

TO
AUDIO
CODEC

Registers
(HPAD/VPAD)

D1 data E

D1 data F
Genlock

Ext sync (hvf)

Genlock
Delay

PORT E
D1/ ANALOG

D1 Data port F
D1
Decode

PORT F
D1

YUV Data

Alpha Data

Register

D1
Decode

D1 clk /port CD
Ext sync clk

D1 clk /port AB

27 Mhz clk

Video Output D1 clk

hblank (hsync)

D1 data E

D1 data F Timing
Generation

S
yn

ch
ro

ni
ze

r
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2.2.2.2.2  GBE Framelock

A framelock signal is provided to the GBE chip. It can be programatically selected from either D1 input or
the D1 output. The frequency of the framelock signal will be the same as the frequency of start-of-field in
the corresponding D1 stream.

D1/port AB

D1/port CD

AUDIO SYNC

D1
Decode

TO
AUDIO
CODEC

D1 clk /port CD

D1 clk /port AB clk

hblank (hsync)

D1/port AB

D1/port CD

GBE FRAMELOCK

D1 start of field

vblankDecode
TO
GBE

Framelock

D1 clk /port CD
D1 clk /port AB

clk

framelock

D1/port E
Generation

D1 clk /port E



July 15, 1996 21

SGI Confidential DSS

July 15, 1996 21

SGI Confidential DSS

2.2.2.3  Video Input Filtering

FIGURE 5. VIDEO INPUT FILTERING

2.2.2.3.1  Non-square <=> Square Pixel Conversion

The native mode for the MACE chip video input and output is non-square pixel which is 720 pixels horizon-
tally for either PAL or NTSC. For applications which will use square pixels internally, a high quality Mitchell
filter is used to convert from non-square to square on input and from square to non-square on output.
These conversions are done with fixed ratios which are determined by the CCIR 601 and PAL and NTSC
standards. The following table shows the conversions which can be performed.

The Mitchell filter can also be used to scale horizontally on input by 1/2 and on output by 2.

The same scaling ratios will be applied, regardless of the size to which the incoming image is clipped.

2.2.2.3.2  Horizontal and Vertical Down Scaling

Arbitrary horizontal and vertical down scaling is done with a simple block filter which effectively calculates
the output as a weighted average of the input. An offset at the start of the line will be used, such that the
first coefficient used will be 1/2 of the specified scaling ratio. This will slightly improve the quality of the filter

TABLE 1. Non-square <=> Square Conversions

Video
Format

Input
Non-square to square

Output
Square to non-square

NTSC 720 to 654
10/11

654 to 720
11/10

PAL 720 to 786
12/11

786 to 720
11/12

Nonsquare
to Square
Filter

Horizontal
Down Scale

Vertical
Down Scale

MipMap
Generation

Line buffer Line buffers

YUV 4:2:2 YUV 4:2:2

Nonsquare
to Square
Filter

Horizontal
Down Scale

Vertical
Down Scale

MipMap
Generation

Line buffer Line buffers

YUV 4:2:2 YUV 4:2:2

Channel A

Channel B

VIDEO INPUT FILTERING
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for some ratios (ie, 1/2, 1/3, 1/4, etc). An example of the coefficients applied when scaling by 1/2 is shown
below:

2.2.2.4  Video Output Filtering

FIGURE 6. VIDEO OUTPUT FILTERING

TABLE 2. Scale by 1/2

input pixel/line
=>

output pixel/line
||

0 1 2 3 4 5 6 7 8

0 1/4 1/2 1/4
1 1/4 1/2 1/4
2 1/4 1/2 1/4
3 1/4 1/2 1/4

Square to
YUV 4:2:2

YUV 4:2:2 or YUVA 4:2:2:4

VIDEO OUTPUT FILTERING

Nonsquare
Filter A :4
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2.2.2.5  Video Input /Output Color Space Conversion

FIGURE 7. VIDEO INPUT COLOR SPACE CONVERSION

FIGURE 8. VIDEO OUTPUT COLOR SPACE CONVERSION

2.2.2.5.1  Sub-sampling and Up-sampling U and V

If the input pixels are converted to RGB space, the U and V components will be up-sampled prior to the
conversion. The missing U and V samples are interpolated by a simple filter that calculates the simple
average of the adjacent horizontal samples. The following formula is used:

Upsample YUVYUV 4:2:2 (8-bit)

Channel A

VIDEO INPUT COLOR SPACE CONVERSION

UV to
RGB

to RGBA16

D
ith

er RGBA16

RGBA32

YUV 4:2:2 (8-bit)

to pixel packing
and DMA

YUV 4:2:2 (10-bit)YUV 4:2:2 (10-bit)

Upsample YUVYUV 4:2:2 (8-bit)

Channel B

UV to
RGB

to RGBA16

D
ith

er RGBA16

RGBA32

YUV 4:2:2 (8-bit)

to pixel packing
and DMA

YUV 4:2:2 (10-bit)YUV 4:2:2 (10-bit)

Alpha register

Alpha register

SubsampleRGBA
to RGBA32 YUV 4:2:2 (8-bit)

VIDEO OUTPUT COLOR SPACE CONVERSION

UVto
YUVA

RGBA16

RGBA32

YUV 4:2:2 (8-bit)

YUV 4:2:2 (10-bit)

from DMA

YUV 4:2:2 (10-bit)

Notch
Filter

U/V

Y

U/V

Yand pixel
unpacking

ALPHA
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Un = (Un-1 + Un+1) / 2
Vn = (Vn-1 + Vn+1) / 2

This formula is implemented using shifts and adds as follows:

Un = (Un-1 + Un+1) >> 1
Vn = (Vn-1 + Vn+1) >> 1

If the output pixels are being converted from RGB space, the U and V components will be sub-sampled
after the conversion. The U and V samples are horizontally pre-filtered with a 1/4 1/2 1/4 FIR filter prior to
decimation to suppress aliasing:

For even values of n:
Un = 1/4 * Un-1 + 1/2 Un + 1/4 Un+1
Vn = 1/4 * Vn-1 + 1/2 Vn + 1/4 Vn+1

This formula is implemented using shifts and adds (with rounding) as follows:

Un = (Un-1 + (Un<<1) + Un+1 + 0x2) >> 2
Vn = (Vn-1 + (Vn<<1) + Vn+1 + 0x2) >> 2

Subsampling and upsampling are not selected by the programmer, but will be performed automatically
whenever required.

2.2.2.5.2  Color Space Conversion

Graphics pixels are RGB, while video pixel are YUV based, requiring conversion to allow the system to
manipulate and display the video stream. For all RGB pixel formats, the YUV data is first upsampled and
then converted to RGB.

Although the conversion process is theoretically perfect, in practice, errors are introduced by approxima-
tions, truncation and rounding.

2.2.2.5.2.1  RGB to YUV

The following equations are from p. 288 of Video Demystified:

Y = 0.257 * R + 0.504 * G + 0.098 * B + 16
U = -0.148 * R - 0.291 * G + 0.439 * B + 128
V = 0.439 * R - 0.368 * G - 0.071 * B + 128

This can be approximated with fixed coefficient multipliers as follow:

Y = 263/1024 * R + 516/1024 * G + 100/1024 * B + 16
U = -152/1024 * R - 298/1024 * G + 450/1024 * B + 128
V = 450/1024 * R - 377/1024 * G - 73/1024 * B + 128

The equations can be manipulated further to produce the following hardware implementation:

Y = (263 * R + 516 * G + 100 * B + 16384)/1024
U = (-152 * R - 298* G + 450 * B + 131072)/1024
V = (450 * R - 377 * G - 73 * B + 131072)/1024
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Before the divide, 512 is added for rounding:

Y = (263 * R + 516 * G + 100 * B + 16896)/1024
U = (-152 * R - 298* G + 450 * B + 131584)/1024
V = (450 * R - 377 * G - 73 * B + 131584)/1024

Given RGB values in the range 0-255, these equations will produce Y values in the range 16-235 and U/V
values in the range 16-240.

2.2.2.5.2.2  YUV to RGB

The following equations are from p. ??? of Video Demystified:

R = 1.164 * (Y - 16) + 1.596 * (V - 128)
G = 1.164 * (Y -16) - 0.813 * (V -128) - 0.391 * (U -128)
B = 1.164 * (Y -16) + 2.018 * (U - 128)

This can be approximated with fixed coefficient multipliers as follow:

R = 1192/1024 * (Y - 16) + 1634/1024 * (V - 128)
G = 1192/1024 * (Y -16) - 832/1024 * (V -128) - 401/1024 * (U -128)
B = 1192/1024 * (Y -16) + 2066/1024 * (U - 128)

The equations can be manipulated further to produce the following hardware implementation:

R = (1192 * Y + 1634 * V - 228224)/1024
G = (1192 * Y - 832 * V- 401 * U + 138752)/1024
B = (1192 *Y + 2066 * U - 283520)/1024

Before the divide, 512 is added for rounding:

R = (1192 * Y + 1634 * V - 227712)/1024
G = (1192 * Y - 832 * V- 401 * U + 139264)/1024
B = (1192 *Y + 2066 * U - 283008)/1024

The conversion from YUV to RGB can produce values out of range. These values are clamped to the
appropriate minimum (0) or maximum (255) for the range.

2.2.2.5.3  Dithering

When video data is to be input in 16-bit RGBA (5551), dithering may be performed. An ordered dither with
a matrix which minimizes introduced texture and beating, is performed on a field basis. Initially the intensity
level of the pixel is scaled to evenly repartition existing values into the fewer number of bits. These bits are
then modulated according to a comparison of the remainder of the scaling and the value returned by index-
ing into the dither matrix by the pixel position. This method has the nice feature that overflow will never
occur on the resultant pixel value.
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Dithering is turned on or off via a bit in a programmable register.

TABLE 3. Dither Matrix

12 7 11 0

10 1 13 6

5 14 2 9

3 8 4 15
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2.3  Programmer ’s Interface

2.3.1  Pixel Data Formats

All data passed into and out of the MACE video ports is expected to be in YUV 4:2:2 and can be either 8 or
10-bit resolution. The supported pixel formats are listed below. Note: The 10-bit YUV format is supported
only for 10-bit D1 and does not allow any processing of the data

FIGURE 9. .PIXEL DATA FORMATS FOR DMA

OpenGL ABGR
R0G0B0A0

63 56 55 48 47 40 32

V0 Y1U0 Y0

R1G1B1A1
31 24 23 16 15 8 7 039

V2 Y3U2 Y2

P1P0 P3P2

A GR
15 89 4 0

B
514

Y0U0

63 48 47 32
Y1V0

31 16 15 0

Left alignment for 10-bit components: 10-bit component
15 5 06

XXXXX

x = ignored for memory to video
0 for video to memory

PIXEL DATA FORMATS FOR DMA (BIG ENDIAN ONLY)

8-bit/component
32-bit/pixel

63 56 55 48 47 40 3231 24 23 16 15 8 7 039VL 4:2:2 YUV

8-bit/component
16-bit/pixel

RGBA 1:5:5:5

16-bit/pixel

63 48 47 3231 16 15 0

10-bit 4:2:2 YUV

16-bit/component
32-bit/pixel

OpenGL RGBA
A0B0G0R0

63 56 55 48 47 40 32
A1B1G1R1

31 24 23 16 15 8 7 039

8-bit/component
32-bit/pixel

U0 A0V0 Y0 U1 A1V1 Y1
63 56 55 48 47 40 3231 24 23 16 15 8 7 039VL 4:2:2:4 YUVA

8-bit/component
32-bit/pixel

Note: On input V1 and U1 are duplicates of V0 and U0.
On Output, they are not used.
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2.3.2  Buffer, Capture and Page Formats

There are three forms of buffer formats: linear, tiled and mipmapped; two capture formats: fields and
frames; and two forms of buffer pages: 4k pages and 64k super-pages. Here are the differences between
these formats:

• Linear Video - Linear video has the characteristic that the pixels of a video lines are placed in
memory in a linear fashion with possible breaks to accommodate page layouts.

• Tiled Video - Tiled video is placed in memory such that the pixels from a video line are spread
across one or more “tiles” with only a certain number of pixels in each line. The tiles supported in
MOOSEHEAD are 512 bytes wide thereby making the tiles 512, 256, or 128 pixels wide depend-
ing on whether the pixels are 1, 2, or 4 bytes in size. This mode is compatible with the pixel layout
used by the CRIME rendering engine.

• MipMapped Video - This is a further extension of Tiled Video where in addition to the 3 sized tiles
produced by Subsampled Video a 4th Tile is generated which is a combination of the remaining
decimated sizes: 1/64th, 1/256th, 1/1024th, etc. Software then reassembles these pixels into the
appropriate format for input to the CRIME rendering engine as a Texture Map. This mode is appli-
cable to Video Input only.

• Field Capture Mode - In field capture, an entire field is captured in consecutive memory locations
and a new buffer is used for each subsequent field.

• Frame Capture Mode - In frame capture, two fields are assembled into memory in an “interleaved”
fashion so that the first field is placed in lines 1, 3, 5 and so on, and the second field is placed in
lines 2, 4, 6, on up. Which field is placed first is the so-called “Dominant” field.

• 4K Pages - Traditional UNIX systems have allocated real memory in 4096 byte blocks and
assigned these to addresses that span 4096 bytes of virtual address space. The actual location of
these 4K pages could be totally random within the memory system of the host computer as the
“contiguous” nature of the memory was achieved by assigning contiguous virtual memory
addresses. In the Redwood release of IRIX (6.0), pages were increased in size to 16Kb to accom-
modate the larger address space of the Challenge class machines. [Note that 4K Page mode is
not supported in the MACE Video DMA.]

• 64K Super Pages - To accommodate the requirement for high bandwidth from memory to graph-
ics, the concept of 64K Super Pages were introduced. This involves allocating physically contigu-
ous memory in 65,536 byte chunks, which is still mapped into user memory using 4K addresses
(needing then 16 page translation table entries). Because this access requires fewer bits to
“locate” the physical page (only the upper 16 bits), it is being designed into the hardware for other
components of the Moosehead system. One usage is in the VICE memory translation table. It is
designed to contain pointers to 4Mb of system memory simultaneously, therefore it only needs 64
16-bit translation table entries. Another usage of these “Super Pages” is in the GBE to Main Mem-
ory video capture path. Since it’s largest size of capture involves a PAL sized field (768x288 field x
4 byte RGBA pixel), the frame can be described by 13.5 (14) 16 bit “Super Page” descriptors.
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2.3.2.1  Linear Field Video

Linear field video uses 64k “super pages” where the beginning of each video line immediately follows the
previous one and the video line is split at page boundaries. The diagram below shows 32 bit RGBA pixels
in a full sized NTSC (640x240) field.

FIGURE 10.  Linear Field Video

0x220000

Lines 1 .. 25.6

0x340000

Lines 25.7 .. 51.2

0x2a0000

Lines 214.5 .. 240

video line 1
video line 2
video line 3
video line 4

0x0000 0x09ff
0x0a00
0x1400
0x1e00

0x13ff
0x1dff
0x27ff

0xfa00 0xffff
0xf000 0xf9ff

0xe600 0xefffvideo line 24
video line 25

video line 26 (pix 1-384)

video line 26 (pix 385-640)

video line 27
video line 28
video line 29

0x0000 0x03ff
0x0400
0x0e00
0x1800

0x0dff
0x17ff
0x21ff

0xfa00 0xffff
0xf000 0xf9ff
0xe600 0xefffvideo line 50

video line 51
video line 52 (pix 1-128)

0x390000

Lines 51.3 .. 76.8

0x430000

Lines 76.9 .. 102.4

video line 215 (pix ???-???)

video line 216

video line 217

video line 218

0x0000 0x03ff

0x0400

0x0e00

0x1800

0x0dff

0x17ff

0x21ff

0x???? 0x????
0x???? 0x????video line 239

video line 240

64K “Super Pages”

(Unused Memory)
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2.3.2.2  Linear Frame (Interleaved) Video

This is an example of NTSC 640x480 video frames (interleaved fields) packed as 32 bit RGBA pixels in a
64K Super Pages of memory.

FIGURE 11. Linear Frame (Interleaved) Video

0x220000

Odd/Even

0x340000

Odd/Even

0x2a0000

Odd/Even

odd video line 1
even video line 1
odd video line 2
even video line 2

0x0000 0x09ff
0x0a00
0x1400
0x1e00

0x13ff
0x1dff
0x27ff

0xfa00 0xffff
0xf000 0xf9ff
0xe600 0xefffeven video line 12

odd video line 13
even video line13 (pix 1-384)

even video line13 (pix 385-640)
odd video line 14
even video line 14
odd video line 15

0x0000 0x03ff
0x0400
0x0e00
0x1800

0x0dff
0x17ff
0x21ff

0xfa00 0xffff
0xf000 0xf9ff
0xe600 0xefffeven video line 25

odd video line 26
even video line 26 pix (1-128)

0x390000

Odd/Even

0x430000

Odd/Even

odd video line216 (pix ???-???)
even video line 216
odd video line 217
even video line 218

0x0000 0x03ff
0x0400
0x0e00
0x1800

0x0dff
0x17ff
0x21ff

0x???? 0x????
0x???? 0x????odd video line 240

even video line 240

64K “Super Pages”

Lines 1 .. 13.6

Lines 13.7 .. 26.2

Lines 26.3 .. 38.8

Lines 38.9 .. 51.4

Lines 214.5 .. 240
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2.3.2.3  Mipmapped Field Video
This example shows capturing 16 bit RGBA Pixels in fields into 64K Tiles of memory.

0x650000
512x128

0x930000
512x128

0x330000
512x128

0x480000
512x128

0x4e0000
512x128

0x5d0000
512x128

0xd30000
512x128

0xb40000
512x128

0xa70000
512x128

0xb00000
512x128

0x510000
512x128

0x370000
512x128

pixels 1-128 pixels 129-256

pixels 1-128

pixels 1-128

pixels 129-256

pixels 129-256

pixels 257-384 pixels 385-512

pixels 257-384 pixels 385-512

pixels 1-128

lines 1-128 lines 1-128 lines 1-128 lines 1-128

lines 129-256 lines 129-256 lines 129-256 lines 129-256

lines 1-256 lines 1-256

0x3d0000
512x128

Full Size:

1/4th Size:

1/16th Size:

Remaing Sizes:

lines 1-128

pixels 1 .. 128 pixels 129 .. 256 pixels 257 .. 384 pixels 385 .. 512
video line 1

pixels 1 .. 128 pixels 129 .. 256 pixels 257 .. 384 pixels 385 .. 512
video line 2

Tile 0 Tile 1 Tile 2 Tile 3

512 bytes 512 bytes 512 bytes 512 bytes

pixels 1 .. 128 pixels 129 .. 256 pixels 257 .. 384 pixels 385 .. 512
video line 128

128 lines
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2.3.3  Register Descriptions

In the following register descriptions, all bits not explicitly defined are read back as 0 and all registers are
defined on 64-bit aligned boundaries and are read or written using 64-bit programmed i/o operations.

Note that an approved “Name” has been suggested for each register. This name appears as part of each
registers paragraph title (so that it will show up in the table of contents) and in the Table Title. Where a reg-
ister is representative of a set of registers (one per channel) all register names are listed in the section
paragraph while the first channel is listed in the Paragraph and Table titles. This will help both hardware
and software refer to the register throughout the life of this hardware by using the same moniker.

2.3.4  Register Address Map Summary

The video registers are divided into 4 groups, one that is global for the whole device and one each for each
of the video channels, two for input, one for output.

TABLE 4. Video Register Set Description

Offset Register Set Description

0x100000 Video Input Channel (#1) Control and Status Registers

0x180000 Video Input Channel (#2) Control and Status Registers

0x200000 Video Output Channel (#3) Control and Status Registers
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2.3.5  Video Channel Registers

Each video channel (2 input and 1 output) has a set of registers for control and status of that channel. The
Input Channel Offset and Output Channel Offset indicates the offset from the beginning of that register set.
A blank entry indicates that that particular register is not present for that channel.

Notes:

TABLE 5. Video Input and Output Channel Registers

Input
Channel
 Offset

Output
Channel
Offset Type Bits Register Name Register Function

0x0 0x0 RW 9:0 CONTROL DMA Control

0x8 0x8 RW 10:0 STATUS DMA Status

0x10 - RW 16:0 CONFIG Input Channel configuration options

- 0x10 RW 21:0 CONFIG Output Channel configuration options

0x18 0x18 RW 31:6
2:0

NEXT_DESC* Pointer to next descriptor block

0x20 0x20 RW 15:3 FLD_OFFSET* Offset into first page for first pixel

0x28 - RW 11:3 LINE_WIDTH* Width of each video line in bytes

0x28 RW 21:0 FIELD_SIZE* Width and height of output field

0x30 - RW 40:0 HCLIP_ODD Specifies the pixel boundaries for odd
video input line

0x38 - RW 38:0 VCLIP_ODD Specifies the line boundaries for odd
video input line

0x40 - RW 7:0 ALPHA_ODD Alpha value for RGBA input pixels for
odd video input line

0x48 - RW 40:0 HCLIP_EVEN Specifies the pixel boundaries for even
video inpu line

0x50 - RW 38:0 VCLIP_EVEN Specifies the line boundaries for even
video input line

0x58 - RW 7:0 ALPHA_EVEN Alpha value for RGBA input pixels for
even video inpu line

- 0x30 RW 41:0 HPAD_ODD Specifies the pixel boundaries for odd
video output line

- 0x38 RW 39:0 VPAD_ODD Specifies the line boundaries for odd
video output line

- 0x40 RW 41:0 HPAD_EVEN Specifies the pixel boundaries for even
video output line

- 0x48 RW 39:0 VPAD_EVEN Specifies the line boundaries for even
video output line

- 0x50 RW 10:0 GEN_DLY Genlock Delay Value

- 0x58 RW 18:0 VHW_CFG Hardware Configuration

0x80 -
0xB8

0x80 -
0xB8

RW 63:0 DMA_DESC Dma Descriptors
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1. the “*” indicates this register is double-buffered, that is, the contents are not used by the hardware until the beginning of the next
field. These double-buffered registers are updated simultaneously when the next descriptor address (NDA) is read for the next field.
A “-” indicates that this register is not present for this type of channel (input or output).

2.3.5.1  Control Register

This register controls the individual channel’s operation and enables various interrupt. All bits initialize to 0
on reset..

2.3.5.1.1  Enable DMA

A zero in this bit stops any ongoing DMA operation and resets the DMA engine to a quiescent state. A one
in this bit enables the DMA engine to begin processing input and output pixels.

2.3.5.1.2  Vertical Sync Interrupt

Vertical sync interrupt occurs when the video input detects Start of Field or the video output generates
Start of Field (internal timing) or detects Start of Field (genlocked). This interrupt, when enabled, occurs as
long as the video signal is active.

TABLE 6. VCHAN-CONTROL - Control Register Bit Fields - Video Input

Bits Type Description

0 RW Enable DMA (0 - resets DMA)

1 RW Enable Vertical Sync Interrupt

2 RW Enable DMA Complete Interrupt

3 RW Enable Lost Sync Interrupt (external pin)

4 RW Enable Buffer Field Overflow Interrupt

5 RW Enable Horizontal Overflow Interrupt

6 RW Enable Vertical Overflow Interrupt

7 RW Enable FIFO Overflow Interrupt

8 RW Enable CRIME memory error Interrupt

9 RW Enable GPIB Interrupt

TABLE 7. VCHAN-CONTROL - Control Register Bit Fields - Video Output

Bits Type Description

0 RW Enable DMA (0 - resets DMA)

1 RW Enable Vertical Sync Interrupt

2 RW Enable DMA Complete Interrupt

3 RW Enable Genlock Lost Interrupt

4 RW Enable Buffer Field Overflow Interrupt

5 RW Not used

6 RW Not used

7 RW Enable FIFO Underflow Interrupt

8 RW Enable CRIME memory error Interrupt
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2.3.5.1.3  DMA Complete Interrupt

DMA Complete interrupt occurs when the last byte of the field buffer has been transferred either to memory
(video input) or has been read from FIFO (video output).

2.3.5.1.4  Lost Sync / Genlock Lost Interrupt

Lost sync interrupt occurs when the HLOCK input pin becomes inactive. This is normally caused by either
removing the video connector or removing power from the external video equipment.The Sync Present
status bit indicates the dynamic state of the sync of this channel.

For video out, this interrupt is generated when synchronization with the genlock signal is lost.

2.3.5.1.5  Buffer Field Overflow

Buffer field overflow occurs when the DMA engine encounters a DMA descriptor with a value of zero. This
indicates that the expected video field is larger than the allocated buffer. The current transfer (if any) is ter-
minated and the FIFO is reset.

2.3.5.1.6  Horizontal Field Overflow

For video input only, this interrupt occurs when the video interface is programmed to capture data past the
end of the current line.

2.3.5.1.7  Vertical Field Overflow

For video input only, this interrupt occurs when the video interface is programmed to capture data beyond
the last line of the current field.

2.3.5.1.8  FIFO Underflow/Overflow

FIFO underflow or overflow occurs when the DMA engine is not filling or emptying the FIFO at a rate suffi-
cient to maintain the video rate. Underflow occurs on video output, while overflow occurs on video input.
The current transfer (if any) is stopped and no further memory transfers occur for this channel.

2.3.5.1.9  CRIME Memory Error

The CRIME memory error enables the detection of those errors in dealing with CRIME memory transfers.

2.3.5.1.10  GPIB Interrupt

This interrupt occurs when the GPIB input pin is active (logic ‘1’).
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2.3.5.2  DMA Status Register

The Status Register indicates which interrupts are active from the device. Reading this register clears any
bits that are active. Rereading the register a second time will indicate interrupts that occurred since the last
time this register was read. All bits initialize to 0 on reset..

Note: “*” indicates that this register does not reset to zero when read but reflects the active state of this sta-
tus signal.

2.3.5.2.1  DMA Active Status

The DMA Active Status reflects the “active” status of the DMA transfer and does not reset to zero when
read.

TABLE 8. VCHAN_STAT -DMA Status Register Bit Fields - Video Input

Bits Type Description

0 RO DMA Active Status (*)

1 RO Vertical Sync Interrupt

2 RO DMA Complete Interrupt - Last line of video has been transferred.

3 RO Lost Sync Interrupt - Input Device detected lost sync.

4 RO Buffer Field Overflow - incoming video field exceeded buffer size, (encountered
zero memory descriptor)

5 RO Horizontal Overflow Interrupt

6 RO Vertical Overflow Interrupt

7 RO FIFO Overflow - CRIME memory interface failed to keep up with FIFO require-
ments.

8 RO CRIME Memory Error Interrupt

9 RO GPIB Interrupt

10 RO Sync Present Status (*)

TABLE 9. VCHAN_STAT -DMA Status Register Bit Fields - Video Output

Bits Type Description

0 RO DMA Active Status (*)

1 RO Vertical Sync Interrupt

2 RO DMA Complete Interrupt - Last line of video has been transferred.

3 RO Lost Sync Interrupt - Input Device detected lost sync.

4 RO Buffer Field Overflow - outgoing video field exceeded buffer size, (encountered
zero memory descriptor)

5 RO Not Used

6 RO Not Used

7 RO FIFO Underflow - CRIME memory interface failed to keep up with FIFO require-
ments.

8 RO CRIME Memory Error Interrupt
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2.3.5.2.2  Sync Present Status

The Sync Present Status reflects the “active” state of the HLOCK Pin and does not reset to zero when
read.

2.3.5.3  Configuration Registers

The Configuration register is specific for each of the input channels and the output channel.

2.3.5.3.1  Channel Reset

The configuration register contains control bits which are changed infrequently and cannot be changed ‘on
the fly’. The channel will power up in reset mode and should be left in reset mode until all relevant registers
have been programmed. The channel should be in reset mode whenever any fields in this configuration
register are to be changed. It does not affect the DMA section.

TABLE 10. Input Channel Configuration Register

Bits Field Name Description

0 CHANNEL RESET 0 = reset processing this channel
1 = enable processing this channel

1 D1 RESET 0= reset D1 circuitry
1= enable D1 circuitry

3:2 VIN_SOURCE Video Input Source
00 = Use primary D1/analog port (AB) as source
01 = Use secondary D1 port/moosecam (CD) as source
10 = Loopback mode: use video output port E as source
11 = Loopback mode: use video output port F as source

4 D1 PRECISION External Pixel Precision of input D1 stream
0 = 8-bit D1
1 = 10-bit D1

5 D1 ECC Error Correction of input D1 stream
0 = disable D1 error correction
1 = enable D1 error correction

9:6 D1 SOF_COUNT Start of field count for input D1 stream
Number of lines to wait after start of vertical blank (following active
video) before checking field id bit

12:10 DMA Pixel FORMAT 000 = Open GL RGBA 32-bit (8-bit per component)
001= 16-bit RGBA (5551)
010= VL 4:2:2 YUV (8-bit per component)
011 = VL 4:2:2 YUV (10-bit per component)
100 = Open GL ABGR 32-bit (8-bit per component)
101 = VL 4:2:2:4 YUVA (8-bit per component)

13 DITHER Only used if 16-bit RGB format is selected
0 = disable dither
1= enable dither

15:14 MEM_MODE 00 = Linear 64K buffers
01 = Tiled 64K buffers
10 = Mip-mapped 64K buffers starting with 512x128 image
11 = Mip-mapped 64K buffers starting with 512x256 image

16 INTERLEAVED Interleaved Mode
0 = field mode
1 = frame (interleaved) mode
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2.3.5.3.2  D1 Reset

The D1 should be in reset mode whenever any changes are made affecting the stability of the D1 input
source (ie, changing the select in the Video Hardware configuration register). This reset basically resets all
the circuitry in the seciton of the video input channel which decodes the D1 stream.

2.3.5.3.3  VIN_SOURCE - Video Input Source

There are 4 possible sources for each video input channel: the 2 D1 input sources or the 2 output ports.
When one of the D1 input sources is selected, the Video Hardware Configuration register (described later)
must be also be programmed to select which of the 2 external D1 ports is selected for the desired D1 input
source.

Loopback mode allows the programmer to send data from memory out through the video output channel
and back in through the video input channel. This allows the programmer to take advantage of the hard-
ware processing capabilities of the chip. To use Loopback mode, select either the E or F port to be passed
back into video input. The Video Ouput Configuration register (described later) must be programmed to
select which D1 stream (YUV or alpha) will driven to ports E and F. When using Loopback mode, you will
still get a video output stream. Note that for Loopback mode to work properly, the video timing for the input
and output channels must be programmed consistently.

Selection of the input source for each of the 2 video input channels is independent. Each channel may be
programmed to use either of the 4 sources regardless of the source used by the other channel. Both chan-
nels may alos use the same source.

2.3.5.3.4  D1 PRECISION

This field indicates whether the input D1 stream should be interpreted as 8-bit D1 or 10-bit D1. This is used
solely in detection of marker codes. In 8-bit mode, only the upper 8 bits of data will be used to detect the
0xFF and 0x00 marker codes. In 10-bit mode, all 10-bits will be used to detect the 0x3FF and 0x000
marker codes. This bit does not affect the precision of the D1 data which is captured and is independent of
the DMA data format used. That is, you can set 8-bit mode and still capture 10-bit data, or vice versa.

2.3.5.3.5  D1 ECC - Error Correction

This bit determines whether error correction will be applied to the control codes D1 source. Note, that when
capturing imbedded control codes as data, the non-corrected codes will be captured.

2.3.5.3.6  D1 SOF_COUNT - Start of field count

Due to variation in interpretation of the D1 standard, there is some ambiguity as to when the “start of field”
(SOF) occurs. Since there is no specific control code indicating SOF, this event it is normally inferred. This
count allows for a (hopefully) foolproof method of dealing with this situation by making SOF programmable.
The SOF can thus occur at a somewhat arbitrary point, although the programmer would normally want to
be consistent with the spec. The Field ID bit in the control codes MUST be valid for the current field at SOF.
The SOF count is the number of lines between the start of the D1 vertical blanking period which follows
active video and the start of the next field. Thus, it would normally equal the number of blank lines at the
bottom of the field. Note that the VSYNC interrupt occurs at SOF.
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2.3.5.3.7  FORMAT - DMA Pixel Format

The DMA Pixel Formats are described in the subsection Pixel Data Formats. The video input channel will
perform upsampling and color space conversion (YUV to RGB) as required by the specified format. Note
that all data is processed as 8-bit components. When the YUV 10-bit format is selected all processing
(except for clipping) is bypassed.

2.3.5.3.8  DITHER

The dither bit enables dithering when RGB16 is selected as the video input pixel format. When a pixel for-
mat other than RGB16 is selected, this bit will be ignored.

2.3.5.3.9  MEM_MODE - Memory Mode

This selects which type of buffers will be used in memory.

2.3.5.3.10  INTERLEAVED - Interleaved Mode

A one will enable interleaved (or frame) mode.
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TABLE 11. Output Channel Configuration Register

Bits Field Name Description

0 CHANNEL RESET Channel Reset
0 = reset processing this channel
1 = enable processing this channel

2:1 PORT_E_SOURCE Data source for video output port E
00 = disble port
01 = pass thru D1 input (genlock source)
10 = data from YUV stream
11 = data from alpha stream

4:3 PORT_F_SOURCE Data source for video output port F
00 = disble port
01 = pass thru D1 input (genlock source)
10 = data from YUV stream
11 = data from alpha stream

5 Genlock Reset Reset Genlock and video output circuitry
0= reset
1= enable

7:6 Genlock Source Output Genlock Source
00 = no genlock (use 13.5 Mhz pixel clock and internal timing)
01 = external sync (hvf) input
10 = Port AB D1 input
11 = Port CD D1 input

8 Genlock Precision External Pixel Precision for genlock source
0 = pixels are 8-bit D1
1 = pixels are 10-bit D1

9 Genlock Ecc Error Correction for genlock source
0 = disable D1 error correction
1 = enable D1 error correction

13:10 Genlock
SOF_COUNT for

Odd field

Number of lines to wait after start of vertical blank (following
active video) before checking field id bit for odd field

16:14 Pixel FORMAT DMA Pixel Format
000 = Open GL RGBA 32-bit (8-bit per component)
001= 16-bit RGBA (5551)
010= VL 4:2:2 YUV (8-bit per component)
011 = VL 4:2:2 YUV (10-bit per component)
100 = Open GL ABGR 32-bit (8-bit per component)
101 = VL 4:2:2:4 YUVA (8-bit per component)

17 NOTCH_FILTER This is generally used if RGB data to be output has been previ-
ously dithered
0 = disable filter
1 = enable filter

19:18 CLAMPING/
EXPANSION

00 = no clamping
01 = clamp to extended data range
10 = clamp to legal YCrCb range
11 = special expansion

20 INTERLEAVED Interleaved Mode
0 = field mode
1 = frame (interleaved) mode

21 MEM_MODE Memory Mode
0 = Linear 64k Buffers
1 = Tiled 64k Buffers
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25:22 Genlock
SOF_COUNT for

Even field

Number of lines to wait after start of vertical blank (following
active video) before checking field id bit for even field

TABLE 11. Output Channel Configuration Register

Bits Field Name Description
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2.3.5.3.11  Channel Reset

The configuration register contains control bits which are changed infrequently and cannot be changed ‘on
the fly’. The channel will power up in reset mode and should be left in reset mode until all relevant registers
have been programmed. The channel should be in reset mode whenever any fields in this configuration
register are to be changed. It does not affect the DMA section.

2.3.5.3.12  PORT_E_SOURCE/PORT_F_SOURCE - D1 Video Output Source

The video output section always produces 2 data streams internally, YUV and alpha, regardless of the
DMA data format. (If the DMA data format is YUV, then the alpha stream defaults to the equivalent of
black). The chip itself has 2 D1 data ports: E and F. The programmer can route either data stream, YUV or
alpha, independently to either output port. A third option, passthru, will route data from the D1 genlock
source to either output port. Passthru mode can only be used if a D1 input has been selected as the gen-
lock source.

Note that the analog decoder hangs transparently off the E port and so will get whatever data stream goes
to the E-port.

2.3.5.3.13  Genlock Reset

The genlock should be in reset mode whenever any genlock parameter is changed or when the genlock
source is not expected to be stable or match the video output channel timing. This reset basically resets all
the circuitry in the video output channel which uses the genlock (or default 27 MHz) clock. This bit must be
set to enable to produce video output (or loopback data to video input), even if no output genlock source is
specified.

2.3.5.3.14  Genlock Source

The video output D1 streams can be locked to either one of the D1 input sources. It can also be lock to an
external sync source which provides H/V/F signals. If no output genlock source is selected, the D1 output
streams will free run using a 27 MHz clock. Note that there is only one genlock source which is used for
both the E and F ports. For genlock to work properly, the programmed video timing for the video output
(see VPAD and HPAD registers) must match that of the genlock source.

To run in loopback (to video input) mode with no video output, select no genlock source.

2.3.5.3.15  Genlock Precision

This bit is used only if the output is genlocked to one of the D1 input ports. It indicates whether the input D1
stream should be interpreted as 8-bit D1 or 10-bit D1. This is used solely in detection of marker codes. In
8-bit mode, only the upper 8 bits of data will be used to detect the 0xFF and 0x00 marker codes. In 10-bit
mode, all 10-bits will be used to detect the 0x3FF and 0x000 marker codes. This bit does not affect the pre-
cision of the video output D1 streams.

2.3.5.3.16  Genlock ECC - Error Correction

This bit is used only if the output is genlocked to one of the D1 input ports. It determines whether error cor-
rection will be applied to the genlock source D1 data stream.This bit does not affect the video output D1
stream, which will always include error correction bits.
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2.3.5.3.17  Genlock SOF Count

This field is used only if the output is genlocked to one of the D1 input ports or to the external sync (HVF)
source. Please see the description of the D1 SOF Count field of the Video Input Configuration Register.

2.3.5.3.18  FORMAT - DMA Pixel Format

The DMA Pixel Formats are described in the subsection Pixel Data Formats. The video output channel will
perform color space conversion (RGB to YUV), expansion and subsampling (to YUV 4:2:2) as required by
the specified format. Note that all data is processed as 8-bit components. The YUV 10-bit format is pre-
served as 10-bits only if no filtering is performed.

2.3.5.3.19  NOTCH_FILTER

The notch filter is a 1/2 0 1/2 FIR filter. It is useful when the video data has previously been dithered. When
DMA data is a YUV format, the notch filter will only be applied to the Y component. When the DMA data is
an RGB format, the notch filter, is applied to the Y, U and V components after the data has been converted
to YUV space, but before it is subsampled. The filter is never applied to alpha.

2.3.5.3.20  CLAMPING/EXPANSION

The video output section always attempts to generate a d1 output stream that will be valid as either 8-bit
D1 or 10-bit D1. There is no configuration bit indicating which mode the destination device operates in.
Marker codes and control codes will be generated as 10-bit values and thus will be compatible with either
8 or 10 bit D1 devices. If DMA data is sent in 10-bit YUV format and is not processed, the precision will not
be altered. If DMA data is any other format or undergoes any processing in the video output path, the
resultant final YUV data will have only 8-bit precision. The data will normally be expanded to 10 bits by left
justifying and adding zeros to the 2 lsb’s. This expansion will occur before the clamping function, which
may subsequently alter the data. Note that both expansion and clamping will occur after all color space
conversion and filtering.

There are 4 options for clamping/expanding data which is passed out of the MACE chip via the D1 ports.

No Clamping:
Data will not be altered, with the following exception for expansion:
If the DMA pixel format is NOT 10-bit YUV then the 8-bit value 0xFF will be expanded to 0X3FF.
This option only makes sense if no color space conversion is being done on the output. It is most likely to
be used when sending the image along with imbedded ancillary data. Selecting this mode will preserve
any embedded marker codes (0x000 and 0x3FF). The exception described above is used to preserve
embedded 8-bit marker codes.

Extended Range Clamping:
Data is altered only to avoid sending marker codes in the data stream. Thus:
0x3FF is changed to 0x3FB
0x000 is changed to 0x004
This option assures that there will be no possible confusion of data with the control code sequence, without
significantly modifying the image data. This may be used when the MACE chip is configured to drive the
output back to the input, so that the programmer can maximize the range of data which is processed by the
chip.

Legal Range Clamping:
Data is clamped to legal YCrCb ranges. For 8-bit data the range is 16-235 for Y and alpha, 16-240 for Cr/
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C. For 10-bit data the range is 64-940 for Y and alpha, 64-960 for Cr/Cb. This option will be used in typical
applications when image data is being color space converted or processed and output to a video device.
The actual clamping will be performed after all processing and filtering.

Special Expansion:
This is a special expansion function which has been included for the sole purpose of allowing the D1 inter-
face to be used as a general purpose interface sending non-video data. This effectively modifies the way
expansion from 8-bit to 10-bit is done. The 8-bit data will be right-justified and the 2 msbs will be set to “01”.
No clamping is done.

 INTERLEAVED - Interleaved Mode

A one will enable interleaved (or frame) mode of input or output.

2.3.5.3.21  MEM_MODE - Memory Mode

This selects which type of buffers will be used in memory.

2.3.5.4  Next Descriptor Address - Video Input

The address in the NDA register is restricted to be on a 64 byte boundary.The Next Descriptor Address
(NDA) register points to the DMA Descriptor table in memory and is loaded with the address of the first
descriptor by software. During vertical blanking, the DMA descriptor page table is read into the translation
cache. If the Valid bit is set to 0, then the next field is skipped (not transferred to/from memory). This regis-
ter is double buffered and the buffer is loaded into the NDA register at the end of the field.

The Valid Bit is set to one by software to indicate that a valid address has been written to this register. The
hardware will zero this bit after it is copied. The Field Capture Bits indicate which field to begin processing
for this descriptor. This allows the software to implement an odd or even “dominance”.

For video output, bit 1 of this register is ignored, and bit 0 defines the output field ID.

TABLE 12. Next Descriptor Address

Bits Description

31:6 Next Descriptor Address (aligned on 64 byte boundary)

2 Valid Bit

1:0 Field Capture Bits
0x - Capture next field (either type)
10 - Capture next odd field
11 - Capture next even field

TABLE 13. Next Descriptor Address - Video Output

Bits Description

31:6 Next Descriptor Address (aligned on 64 byte boundary)

2 Valid Bit

1 Not used

0 Field to send
0 - send as next odd field
1 - send as next even field
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2.3.5.5  Field Offset

The Field Offset register points to the first pixel of the first page of the buffer. In linear mode, it can span the
entire 64K page but is restricted to be on an 8 byte boundary. It is normally written by software at the begin-
ning of each field when interleaving fields into frames, or for cases where the input field will be put into the
2nd part of a 64k page that is being shared between fields or frames. This register is double buffered and
the buffer is loaded into the Field Offset register at the end of a field.

In Tiled mode, field offsets are restricted to 512 byte boundaries, i.e. the image offset must be left-justified
within the tile.

2.3.5.6  Line Width (Video input only)
The Line Width register is programmed with the number of bytes in each video line. In Linear mode with
Interleaving enabled, it is added to the current pixel address at the end of a line so that an empty video line
is left for input, or on the second field, the previous odd video lines are skipped.

2.3.5.7  Field Size (Video output only)

This register defines the output field size.

2.3.5.8  Input Filtering, Clipping and Scaling Registers

The incoming video stream may contain a variable number of pixels per line and lines per field, both visible
and blanked, depending on the input device. The programmer may choose to capture just active video, or
may capture active video and some portion of the blanking period, which may contain ancillary data. The
data window which is captured is fully programmable and thus can support a number of standard or non-
standard devices. There are however, practical limitations to this. Mace Video is being designed to support
standard non-square NTSC and PAL D1 formats, pseudo-standard NTSC and PAL square D1 formats, as
well as all formats driven by the moosecam.

The registers described below will determined how data is captured from the incoming D1 stream and how
it will be resized. There are 2 sets of registers: one for the even field and one for the odd field. This allows
the programmer to dynamically and smoothly change the capture region (clipping) and re-sizing. To
accomplish this, the programmer would change the odd registers after the start of the even field, and the
even registers after the start of the odd field, such that the hardware will always be using a quiescent reg-
ister. The burden for smooth transitions is entirely on the programmer. The hardware merely looks at the

TABLE 14. FLD_OFFS - Field Offset Register

Bits Description

15:3 Byte Offset of first pixel in first page

TABLE 15. LINE_WIDTH - Line Width Register

Bits Description

11:3 Line Width in bytes (multiple of 8 bytes)

TABLE 16. Field Size

Bits Description

21:12 Number of lines in field.

11:3 Line Width in bytes (multiple of 8 bytes)
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appropriate register during each field and if the register changes at the wrong time, something undefined
will happen.

In the horizontal direction, there are 3 sizing blocks executed in the following order:
input clipping => non-square to square conversion => horizontal down-scaling

In the vertical direction there are 2 sizing blocks executed in the following order:
input clipping => vertical down-scaling

With the exception of the input clipping, the resizing blocks are all optional and independently pro-
grammed. NOTE: ALL CLIPPING REGISTERS, BOTH EVEN AND ODD, MUST BE PROGRAMMED
WITH VALID VALUES BEFORE THE CHANNEL IS ENABLED.

Hstart and Hend define the region of active video which will be clipped from the D1 stream. This may be
either the entire active video region, an area within the active video region, or any arbitrary area including
the active video and/or a protion of the blanking regions. Both values are pixel counts relative the the “start
of line” which is defined as the end of active video (EAV) control sequence. Pixel 0 is defined as the first
pixel after the EAV control code, thus it is not possible to capture the first 4 bytes which comprise the EAV
control sequence. Clipping can only be done on even pixel boundaries since D1 consist of u-y-v-y pixel
pairs.

TABLE 17. HCLIP (_ODD & _EVEN) Registers

Bits Name Description
9:0 Hstart Starting pixel position of video to be captured. Relative to the start of horizontal

blanking.
= # pixels preceding region to be clipped - 2

19:10 Hend Ending pixel position of video to be captured. Relative to the start of horizontal
blanking.
= HSTART + # pixels to be clipped - 1

29:20 Filt_cnt Number of pixels per line at output of nonsquare to square conversion filter. This
count is used only if the nonsqaure to square conversion filter is used. This must
be an even number.

30:37 H Scaling ratio This 8-bit value represents the ratio for Horizontal scaling (see explanation of
scaling ratios below). This is essentialy the ratio by which the image will be
scaled down in the horizontal direction multiplied by 256. Used only if horizontal
scaling is enabled.

38 H Scaling on 0 = no scaling
1 = scale down horizontally

39:40 Filter mode Mode for Nonsquare to square conversion filter:
00 = none
01 = pal nonsquare to square (scale up by 7868/720)
10 = ntsc nonsquare to square (scale down by 654/720)
11 = scale down by 1/2
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 Some examples:

To capture all of active video:
hstart = #blank pixels - 2
hend = hstart + #active pixels - 1

To capture a smaller region within the active video region:
hstart = #blank pixels - 2 + #pixels in the active region preceding area to be clipped
hend = hstart + #pixels to be clipped - 1

To capture a region including active video and part of the blanking region:
hstart = #pixels preceding region to be clipped -2
hend = hstart + #pixels to be clipped - 1

If the nonsqaure to square conversion filter is to be used, the Filter Count field must be used. This value is
required since it would be cumbersome and inexact to have the hardware calculate this. This should be set
to the number of pixels -1 which will be output by the Filter. Again, since all hardware operates on pixel
pairs, this must reflect an even number of pixels. The number of pixels which will be produced should be
calculated by multiplying the selected scale factor by the number of pixels produced by the clipping logic.
This number can then be rounded either up or down to the nearest even pixel count (but no further). Note
that the scaling factors applied by the filter are the same regardless the number of pixels in the clipped
region. The setting of the filter mode is independent of the actual D1 format being used on the input
source. If the filter mode is set to none, no conversion will occur and the Filter Count will not be used.

EAV = 4 byte control sequence for end of active video

active region
SAV

horizontal blanking

active region

vertical blanking

vertical blanking

Start of field (SOF)

S
ta

rt
 o

f L
in

e 
(S

O
L)

SAV = 4 byte control sequence for start of active video

EAV
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Note that when dynamically changing the clipping region, the Filter Count (if the filter is used) must also be
adjusted with the change in the clipping region size.

Note that there are restrictions imposed by the DMA requiring the total line size to be a multiple of 8 bytes.
Thus, it is incumbent upon the progammer to produce a multiple of 8 bytes given the combination of clip-
ping, filtering and scaling and selected pixel format. This requirement is explained in detail in the section
on DMA.

Vstart and Vend define the region of active video which will be clipped from the D1 stream. This may be
either the entire active video region, an area within the active video region, or any arbitrary area include
either the active video or blanking regions. Both values are line counts relative to the “start of field” (SOF).
(See Video Input Configuration regsiter for an expalnation of SOF). Line 0 is defined as the first line after
the SOF. Some examples:

To capture all of active video:
vstart = #blank lines preceding image
vend = vstart + #active lines - 1

To capture a smaller region within the active video region:
vstart = #blank lines preceding image + #lines within active region preceding area to be clipped
vend = vstart + #lines to be clipped - 1

To capture a region including active video and part of the blanking region:
vstart = #lines preceding region to be clipped
vend = vstart + #lines to be clipped - 1

The Vblkend field allows for the use of a special function which allows the programmer to pad a small num-
ber of black lines at the beginning of the field. This feature is intended to be used in conjunction with mip-
mapping, if the actual number of visible lines in a field is less than the desired starting mipmap. Using the
mipmap function requires that the number of lines (after clipping and vertical scaling) be either 128 or 256.
If the actual number of lines in the active portion of video is less than the desired mipmap size, the pro-
grammer can program the clipping register to capture additional lines from the vertical blanking region
which precedes the active area. This will put extra blank lines at the top of the image. Using the Vblkend
field will force these extra lines to black. When the Vblkend field is set to a value greater than Vstart, the
captured lines at the start of the field from the Vstart line to the Vblkend line will be forced to black. To use
this function, there must be sufficient blank lines in the actual D1 field, so that the desired total number of
lines can be captured. If no additional black lines are to be added to the image, set Vblkend to 0.

TABLE 18. VCLIP (_ODD & _EVEN) Registers

Bits Name Description
9:0 VStart Starting line position of video to be captured. Relative to the start of field.

= # lines preceding region to be clipped
19:10 Vblkend Line position of video to end padding with black. Relative to the start of field.

=
29:20 VEnd Ending line position of video to be captured. Relative to the start of field.

= VSTART + # lines to be clipped - 1
37:30 V Scaling ratio This 8-bit value represents the ratio for vertical scaling (see explanation of scal-

ing ratios below). This is essentialy the ratio by which the image will be scaled
down in the vertical direction multiplied by 256. Used only if vertical scaling is
enabled.

38 V Scaling on 0 = no scaling
1 = scale down vertically
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Example:

To capture all of active video with additional black lines preceding the image:
vstart = #blank lines preceding image - #additional black lines
vblkend = vstart + #additional black lines
vend = vstart + #additional black lines + #active lines - 1

2.3.5.8.1  Limitations on Clipping Regions

Theoretically, it is possible to program almost any clipping region, constrained only by the bit width of the
various clipping register fields. In reality, however, there are a number of limitations on what can be
clipped. The limitations are somewhat difficult to enumerate concisely, and at this point, not all the potential
limitations may be known. It is expected that there will be no restrictions when clipping a ‘realistic’ image
from an actual D1 stream, however it is possible to hit a corner case that produces and error when attempt-
ing to capture an ‘unrealistic’ artificial video scenario. The restrictions are:

• It is not possible to capture the first or last line of a field.

• There must be at least 8 blank or uncaptured pixels in a line. (possibly less)

• When the Pal non-square to square conversion filter is enabled, the chip generates more
pixels than it receives. It uses a portion of the blanking period to generate these extra pix-
els. Therefore the horizontal blanking period must be at least the difference between the
number of active (captured) pixels going into the filter and the number going out of the fil-
ter (as indicated by the filter count field), or a minimum of 16.

• When Mipmapping is used, there must be at least 138 blank (or uncaptured)pixels per
line. And at least 2 bl;ank (uncaptured) lines at the bottom of the field.

• It may not be possible to capture 720 pixels, perform Pal non-square to square conversion
to produce 768 pixels, then scale down with the horizontal scaler to produce 512 pixels
and then mipmap the results. (Don’t ask!).

244 active lines

vertical blanking

vertical blanking start clipping here

12 additional blank lines
end padding with black
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• When using vertical scaling, there can be no more thatn 768 pixels per line (after non-
square to square conversion and horizontal scaling).

• The number of active (captured) pixels per line must be a multiple of 2 pixels at any point
in the video processing channel. The final number of bytes per line (a function of the pixel
format) must always be a multiple of 8 bytes.

2.3.5.8.2  Scaling Ratio

The following c-code shows an example of how to calculate the scaling ratio for either the vertical or hori-
zontal scaling. Using this algorithm will ensure that the hardware generates the number of pixels or lines
desired. Since there are only 255 levels of scaling, there are some output sizes which cannot be produced
from the given input size. For horizontal scaling, both the input size and the output size must the number of
U/V samples, that is, the size divided by 2.

int insize, outsize; /* number of input pixels or lines, desired number of output pixels or lines
float scalefactor;
int r; /* scaling factor to enter into register field

scalefactor = (((float) outsize) / ((float) insize)) * 256.0 + 0.5;
r = (int) scalefactor

while ( (r/2 + (insize-2)*r + 256) < (outsize*256) )
 r++;

while ((r/2 + (insize-2)*r + 1) > (outsize*256))
 r--;

if ((r < 1 || r > 255) ||  (r/2 + (insize-2)*r + 256) < (outsize*256) )
 /* it is not possible to produce the desired number of output pixels/lines */
 ;

2.3.5.9  ALPHAIN(_ODD & _EVN) - Alpha Registers

The Alpha register is used in the video input channels to supply alpha when the DMA pixel format is an
RGBA format. There are 2 copies of this register: one for the even field and one for the odd field, so that
the alpha values can be programmed to change smoothly on field boundaries.

2.3.5.10  Output Filtering and Padding Registers

The outgoing video stream may contain a variable number of pixels per line and lines per field, both visible
and blanked, depending on the output device. The programmer may choose to output just active video, or
may output active video and some portion of the blanking period, which may contain ancillary data. The
data window which is output is fully programmable and thus can support a number of standard or non-
standard devices. There are however, practical limitations to this. Mace Video is being designed to support
standard non-square NTSC and PAL D1 formats, pseudo-standard NTSC and PAL square D1 formats.

TABLE 19. ALPHA(_ODD,_IN) Registers

Bits Description
7:0 8 Bit value placed in the Alpha component of the RGBA pixel
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The output pad and timing registers determine the horizontal and vertical blanking periods for the ouput D1
stream, as well as where the data is placed within the D1 field. This the programmer may also specify pad-
ding of the outgoing image so that it can be displayed in a larger window. This will allow the DMA stream to
have fewer pixels than the required visible picture region. The hardware will pad with the correct level of
black to allow compatibility with files that may not fill a selected Television output standard. This will allow
playback of smaller than full size video pictures through the video output port with the active picture framed
in black while still meeting the various fixed timing formats of PAL and NTSC.There are 2 sets of registers:
one for the even field and one for the odd field. This allows the programmer to dynamically and smoothly
change the padding region and re-sizing. To accomplish this, the programmer would change the odd regis-
ters after the start of the even field, and the even registers after the start of the odd field, such that the
hardware will always be using a quiescent register. The burden for smooth transitions is entirely on the pro-
grammer. The hardware merely looks at the appropriate register during each field and if the register
changes at the wrong time, something undefined will happen.

For horizontal padding and timing, all values are expressed in pixel pairs (or 4-byte quantities in the D1
stream). The horizontal counters are all 10-bits which allows for 1024 pixel pairs, or 2048 pixels or 4096
bytes. In the normal case where only image data is sent, the hardware will insert the correct EAV and SAV
control codes in the D1 stream. If the programmer is output image data as well as a portion of the blanking
region, then the DMA data must include the SAV control code in the correct location. The EAV control code
is always generated by the hardware.

Some examples:

To output active video with no additional padding:
EAV to SAV = #blank pixels/2 - 2
EAV to image = #blank pixels/2 - 1
EAV to EAV = #total pixels/2 - 1

To output active video with padding:
EAV to SAV = #blank pixels/2 - 2
EAV to image = #blank pixels/2 + #pixels of padding/2 - 1
EAV to EAV = #total pixels/2 - 1

To output active video and part of the blanking region:
EAV to SAV = not used, set to all 1’s
EAV to image = #pixels preceding region to be output/2 -1
EAV to EAV = #total pixels/2 - 1

TABLE 20. HPAD (_ODD & _EVEN) Registers

Bits Name Description
9:0 EAV to SAV EAV control code to the SAV control code:

#blank pixels/2 - 2
19:10 EAV to EAV EAV control code to EAV control code:

#total pixels/2 - 1
29:20 EAV to image EAV control code to start of data:

#pixels preceding image/2 -1
39:30 Filter Count Total number of pixels at output of square to non-square filter
41:40 Filter Mode 00 = no filtering

01= PAL square to non-square conversion 11/12
10 = NTSC square to non-square conversion 11/10
11 = zoom up by 2 horizontally
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Note that the hardware will automatically pad to black after the end of the image until the EAV.

In addition to the input padding, there are registers provided to specify the number of pixels output from the
Mitchell filter stage, since it would be cumbersome and inexact to have the hardware determine this. Thus
in addition to specifying the total number of pixels and lines being output by DMA, the programmer speci-
fies the number of pixels to be output by the Mitchell filter. This number should be determined from the
actual scaling factor, however, it may be rounded up or down. If the output of any filter stage is pro-
grammed to be less than the actual size produced, clipping will occur. It is not recommended to use a num-
ber greater than that produced by the relevant filter stage, other than rounding up to the nearest whole.
Note that there are restrictions imposed by the DMA requiring the total line size to be a multiple of 8 byte.

TABLE 21. VPAD(_EVEN, _ODD ) Registers

Some examples:EAV

To output active video with no additional padding:
SOF to end vblank = #blank lines preceding active video -1
SOF to start image = #blank lines preceding active video -1
SOF to start vblank = #blank lines before active video + lines of active video - 1
SOF to EOF = # total lines -1

To output active video with padding:
SOF to end vblank = #blank lines preceding active video -1
SOF to start image = #blank lines preceding active video + #lines padding preceding image -1
SOF to start vblank = #blank lines before active video + lines of active video - 1
SOF to EOF = # total lines -1

To output active video and part of the blanking region:
SOF to end vblank = #blank lines preceding active video - 1
SOF to start image = #lines preceding image -1
SOF to start vblank = #blank lines before active video + lines of active video - 1
SOF to EOF = # total lines -1

Note that the hardware will automatically pad to black after the end of the image until the start of vblank.

2.3.5.11  Genlock Delay Register

When the video output is genlocked, there will be a small amount of implicit delay between the genlock
source and the video output. This register can be used to add a fixed amount of additional delay, up to one
line. With clever programming of the video timing parameters, it is possible to have the output lead the

Bits Name Description
9:0 SOF to end Vblank Start of field to the end of the vblank region which precedes active

video.
#blank lines preceding image - 1

19:10 SOF to start of vblank Start of field to the start of the vertical blanking region which follows
active video.
#lines preceding final vertcal blanking region -1

29:20 SOF to EOF Start of field to end of field
#total lines - 1

39:30 SOF to start image Start of field to start of active data.
#lines preceding image - 1
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input. This register is only used when an external genlock source is selected in the Genlock Source field of
the Output Channel Configuration register.

NOTE THAT WHEN A GENLOCK SOURCE IS USED, THIS REGISTER MUST NEVER BE SET TO
ZERO.

When the genlock source is one of the chip’s D1 ports, the delay between the output and the source is 15
clock cycles plus the Genlock Delay Register value , a minimum of 16 cycles. When the genlock source is
the external hvf sync input, the delay between the output and the source is 10 clock cycles plus the Gen-
lock Delay Register value, a minimum of 11 cycles. (This is measured from the assertion of the H bit from
the sync source to the corresponding 0xff marker code of the chip’s d1 output stream).

2.3.5.12  Video Hardware Configuration Register

The hardware configuration register controls the setup of hardware related to video, but which falls outside
the realm of the individual input or output channels.

TABLE 22. Genlock Delay Register

Bits Description
10:0 Number of clock cycles (bytes) of additional Genlock delay (must be > 0)

TABLE 23. VHW_CFG Register

Bits Field Name Description

0 PORT AB RESET Reset circuitry for port AB
0 = reset
1 = enable

1 PORT AB SELECT 0= select the analog encoder (A)
1= select the primary D1 (B)

2 Port CD RESET Reset circuitry for port CD
0 = reset
1 = enable

3 PORT CD SELECT 0= select the moosecam (C)
1= select the secondary D1 (D)

4 Audio Sync Reset Reset circuitry for audio sync from AB/CD
0 = reset
1 = enable

6:5 Audio Sync D1
Source

Select input D1 source to use for Audio Sync
00 = none
01 = external sync source
10 = Input Port AB
11 = Input Port CD

7 Audio Sync D1 Pre-
cision

External Pixel Precision for D1 input
0 = pixels are 8-bit D1
1 = pixels are 10-bit D1

8 Audio Sync D1 Ecc Error Correction for input D1
0 = no D1 error correction
1 = enable D1 error correction
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2.3.5.12.1  Port AB Reset / Port AB Select

Although there may be up to 4 video sources in the system (A,B,C,D), there are only 2 D1 input ports to the
MACE chip (AB and CD). The muxing for this is done external to the chip. This field selects which source,
A or B will be driven into the AB port. This will effect the video input channels if the input video source for
the channel is AB. It also effects the video output channel if it is genlocked to the AB port. Whenever this
bit is modified, it is a good idea to put the port into reset mode.

2.3.5.12.2  Port CD Reset / Port CD Select

Although there may be up to 4 video sources in the system (A,B,C,D), there are only 2 D1 input ports to the
MACE chip (AB and CD). The muxing for this is done external to the chip. This field selects which source,
C or D will be driven into the CD port. This will effect the video input channels if the input video source for
the channel is CD. It also effects the video output channel if it is genlocked to the CD port. Whenever this
bit is modified, it is a good idea to put the port into reset mode.

2.3.5.12.3  Audio Sync Reset/ Source/ D1 precision / D1 ECC

There are 2 outputs of the chip which can be used for audio sync, HSYNC1 and HSYNC2. Both of these
signals will generate a signal which has the same frequency as the hsync (or hblank) for the corresponding
D1 stream. HSYNC2 is generated from the D1 stream from video output Ports E/F. The timing of this signal
will match that of the output video timing as programmed by the video output registers. None of the bits in
this register will affect HSYNC2. HSYNC1 can be generated from 3 possible sources: either of the 2 D1
input ports (AB or CD) or the external sync (HVF) source. The Source field determines which source is
used. The definition of D1 precision and D1 ecc as the same as in the VIdeo input Configuration register. If
the external HVF sync source is selected then the D1 precision and D1 ecc bits are not used. Whenever
any of these bits are modified, the audio reset circuitry should be in reset mode.

9 GBE Framelock
Reset

Reset circuitry for GBE Framelock
0 = reset
1 = enable

11:10 GBE Framelock D1
Source

GBE Framelock Source
00 = Output Port E/F
01 = external sync source
10 = Input Port AB
11= Input Port CD

12 GBE Framelock D1
Precision

External Pixel Precision
0 = pixels are 8-bit D1
1 = pixels are 10-bit D1

13 GBE Framelock D1
Ecc

Error Correction
0 = no D1 error correction
1 = enable D1 error correction

17:14 GBE Framelock
SOF Count Odd

Number of lines to wait after start of vertical blank (following
active video) before checking field id bit for odd field

18 GPIBO Controls value of GPIB output pin.

22:19 GBE Framelock
SOF Count Even

Number of lines to wait after start of vertical blank (following
active video) before checking field id bit for even field

31:23 RESERVED RESERVED

35:32 Revision Code Revision code for MACE

TABLE 23. VHW_CFG Register

Bits Field Name Description
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2.3.5.12.4  GBE Framelock Reset/ Source/ D1 precision / D1 ECC/ SOF Count

The chip can produce a GBE Framelock signal for the GBE chip which has the same frequency as the
vsync (or sof) for the corresponding D1 stream. GBE Framelock can be generated from 4 possible
sources: the D1 output port (EF) , either of the 2 D1 input ports (AB or CD) or the external sync (HVF)
source. The Source field determines which source is used. The definition of D1 precision, D1 ecc, and
SOF count as the same as in the VIdeo input Configuration register. If the external HVF sync source is
selected then the D1 precision and D1 ecc bits are not used. Whenever any of these bits are modified, the
GBE Framelock reset circuitry should be in reset mode.

2.3.5.12.5  GPIBO

This bit directly drives the GPIB output pin of the chip.



56 July 15, 1996

SGI ConfidentialDSS

56 July 15, 1996

SGI ConfidentialDSS

2.3.6  DMA Descriptors

2.3.6.1  Linear or Tiled DMA Descriptor

The DMA Descriptor contains a list of addresses specifying the addresses of the 32 pages making up the
video pixel buffer. Each page table entry contains the upper 16 bits (31:16) of a 64K page real address.
Note that the DMA descriptor must start on a 64 byte boundary.

Note that any descriptor that’s a zero (0) indicates there is no buffer associated with these pixels. In the lin-
ear mode it constitutes the “end of field” and a video field overflow error will be posted and further pixel pro-
cessing of this field will be terminated. For tiled format, then a zero (0) indicates that this size is not wanted.

2.3.6.2  UST/MSC- Unadjusted System Time/Media Stream Counter Register

[This register is actually in the Timer section of MACE. It is described here only for reference.]

The field counter is a free running counter that is updated at the end of each field. Note that the least sig-
nificant bit of this register is actually a field identification bit that is a logical 0 for the odd field and a logical
1 for even field. To reset, the programmer writes the desired reset value into the register. The UST portion
is a snapshot of the MACE uptime (UST) counter when Start of Field occurred. This register increments as
long as there is an active video signal.

Both registers can be read with one 64 bit read operation to guarantee an autonomous values.

TABLE 24. Linear or Tiled DMA Descriptor

Offset 63:48 47:32 31:16 15:0

0x80 Page 0 Page 1 Page 2 Page 3

0x88 Page 4 Page 5 Page 6 Page 7

0x90 Page 8 Page 9 Page 10 Page 11

0x98 Page 12 Page 13 Page 14 Page 15

0xA0 Page 16 Page 17 Page 18 Page 19

0xA8 Page 20 Page 21 Page 22 Page 23

0xB0 Page 24 Page 25 Page 26 Page 27

0xB8 Page 28 Page 29 Page 30 Page 31

TABLE 25. UST/MSC- Unadjusted System Time/Media Stream Counter Register

Bits Name Description
0 Field ID 0= odd field

1= even field
31:1 Frame Count

63:32 Universal System Time Snapshot of MACE uptime (UST) counter
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2.4  Revision History

2.4.1  12/01/94

1. Dropped the following pixel formats:

VL 4:2:2:4/4:4:4:4 YUVA 8-bit per component

RGB 3:3:2

8-bit Y-only

RGB 4:4:4:1

RGBA 16-bit per component

4:2:2:4/4:4:4:4 YUVA 16-bit per component

2. Dropped field/frame rate control.

3. Dropped gamma/de-gamma

4. Although Alpha can still be input on of the input channels, the alpha stream will not be merged with the
data stream from the other channel. It will have to be done in software.

5. Eliminate programmable first coefficient for horizontal and vertical down-scaling. The first coefficient is
now fixed at 1/2 the scaling ratio.

6. Changes were made to the clipping registers which does not effect chip functionality. Clipping registers
now specify start and end line and pixel numbers.

7. Eliminate vertical scale output line count. The hardware does not need to have thus supplied.

8. Clamping requirements on input and output have been defined. Output will have 3 clamping options
that can be set by the programmer: 1) don’t clamp, 2) clamp 0 to 1 and 255 to 254, and 3) clamp data to
correct YCrCb levels. Input will only be clamped so that data does not underflow or overflow the 0 to
255 range.

9. Mipmapping hardware only generates mipmaps down to 2x1. It cannot do 1x1 mipmap.

10.Allow programmer to disable D1 error correction on input, in case the Phillips chip does not correctly
generate the error checking bits.

2.4.2  12/13/94

11.Merged in register descriptions from the video DMA specification.

12.Added video device interrupt mask and status registers.

13.Combined channel configurations into one register with parts applicable to input, output or both.

14.Modified field counter to be UST/MSC (this register is in the Timers section now).

2.4.3  12/19/94

15.Modified addresses to conform to MACE address map.

16.Merged HSCALE and VSCALE into FILT_IN register.

17.Swapped input descriptions of D1/digital camera and D1/analog decoder to match output D1 port.

18.Removed common device interrupt and control registers.

19.Added linear/tiled/mipmapped buffer format (with corresponding changes in the text.)

20.Merged in programming examples.
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21.Rearrange specification to more readable format:
• Overview

• Architecture

• Programming Interface

• Pixel formats

• DMA Descriptors

• Buffer formats

• Register Descriptions

• Examples

• Revision History

22.Added “figure caption” to most of the diagrams.

2.4.4  2/13/95

23.Changed LINE_SIZE to LINE_WIDTH

24.Removed (obsolete) examples

25.Updated config register

26.Merged Input and Output Filter/Scaling registers

2.4.5  2/21/95

27.Rearranged some register bits, eliminated somethings that aren’t needed, added somethings that were
missing.

2.4.6  3/21/95

28.Updated register address map. Identified VHW_CFG register in Output channel.

2.4.7  3/22/95

29.Added “type” and “bits” to register summary list. Added bit fields to other registers that didn’t have them

2.4.8  3/27/95

30.Added ABGR 32 pixel format. (All ready existed, just somehow never got into spec).

2.4.9  3/29/95

31.Changed field assignment for Vend and Vblkin in VCLIP register so that it matches vhdl.

32.Reordered registers in regsiter description.

2.4.10  4/3/95

33.Slight changes to video out config register and vhw_vfg register.
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2.4.11  4/6/95

34.Fixed bit fields for horizontal scaling ratio and scaling on bit.

2.4.12  5/12/95

35.Fixed bit posiitons and added missing signals to some of the registers.

2.4.13  6/13/95

36.Fixed bit positions for HPAD register.

2.4.14  9/28/95

37.Fixed bit positions for VPAD register.

38.added more descriptions for video out status and next descriptor registers

2.4.15  10/12/95

39.Clarified genlock delay register.

40.Updated video configuration register descriptions.

2.4.16  3/20/96

41.Fixed some errors in register definitions.

2.4.17  6/10/96

42.In VHW_CFG register: change GBE Framelock SOF count to 2 fields, one for even and one for odd.

43.InVideo Output Configuration register: change Genlock SOF count to 2 fields, one for even and one for
odd.

44.Add pixel format YUVA8.

45.Change Mitchell Filter ratios.

2.4.18  7/15/96

46.Field size (video out) and line_width (video in) registers are now double buffered.

47.revision code added to hardware configuration register
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3 Audio Codec Interface

TheMoosehead system I/O asic contains a simple audio interface that supports an external stereo audio codec like
the Analog Devices AD1843. The interface also contains dma ring buffers for each stereo channel. These ring buffers
are stored in system main memory and system software must copy data into or out of the ring buffers if needed (i.e.
no scatter/gather hardware is provided). A high level block diagram of the audio interface is shown below:

Main features:

• Support for one AD1843 Stereo Multi-media Audio Codec on a single TDM bus

• Independent rate DMA channels for each stereo input or output channel (3 total)

• Per-sample counting and 960ns resolution time stamping (MSC/UST)

• Continuous read of codecs “channel status” register over TDM bus

3.1  Audio
The audio interface provides a single TDM serial bus that is intended to support one Analog Devices AD1843 codec
or similar device. The TDM bus can support other devices that use the same style of interface, but it is not the inten-
tion of this design to provide a completely flexible interface that could handle every device on the market.

The audio interface supports one stereo input channel and two stereo output channels in the maximum configuration
of one codec. Each stereo channel operates independently using a time base provided by the codec that is adjustable
in 1 hertz increments. This implies that the audio interface does not provide a sample rate time base of its own ala
HAL2. Note that each time base can also be independently sync’d to any of the three video channels.

The audio interface provides some assistance for changing the external codec configuration through a simple register
read and write interface. The hardware is given a codec register address and data value to write which is sent to the
codec every TDM cycle. This also implies that the audio interface knows nothing about the internal register interface
of the codecs it supports.

AD1843

Out-A

Out-B

Input

SDO

SDI

SCLK

SDFS

BM

Vcc

(Master)

DMA LogicTo CPU

RESET

Sync[2:0]
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3.2  Register Programming Interface
The following table shows all of the audio interface registers. All bits not explicitly defined are read as zeros. All reg-
isters are defined on 64-bit aligned boundaries and can be read or written using 64-bit programmed i/o operations.

3.2.1  Interrupts
All interrupts for the audio subsystem are reported in the peripheral controller master interrupt status register (see the
ISA interface chapter for details). The peripheral controller contains one master interrupt status and mask register for
all of the subsystems contained within it. System software must read that interrupt status register and dispatch to the
attached subsystems. Note that interrupts are still cleared within the individual subsystems.

3.2.2  Reset Control & Status Register

The following table shows the reset control and status register for the audio interface:

TABLE 26. Audio Interface Registers

Offset Register Name Type Bits Function

0x00 Control & Status RW 24:0 Reset control & status register

0x08 Codec status cntl RW 23:0 Stereo codec status address, control, write value

0x10 Codec status input mask RW 15:0 Value to mask the read value with for interrupts

0x18 Codec status input RO 15:0 Stereo codec last register read value

0x20 Ch1 in Ring Control RW 10:5 Stereo input channel #1 ring buffer control

0x28 Ch1 in Read Pointer RW 11:5 Stereo input channel #1 ring read pointer

0x30 Ch1 in Write Pointer RW 11:5 Stereo input channel #1 ring write pointer

0x38 Ch1 in Ring Depth RO 11:5 Stereo input channel #1 ring buffer depth

0x40 Ch2 out Ring Control RW 10:5 Stereo output channel #2 ring buffer control

0x48 Ch2 out Read Pointer RW 11:5 Stereo output channel #2 ring read pointer

0x50 Ch2 out Write Pointer RW 11:5 Stereo output channel #2 ring write pointer

0x58 Ch2 out Ring Depth RO 11:5 Stereo output channel #2 ring buffer depth

0x60 Ch3 out Ring Control RW 10:5 Stereo output channel #3 ring buffer control

0x68 Ch3 out Read Pointer RW 11:5 Stereo output channel #3 ring read pointer

0x70 Ch3 out Write Pointer RW 11:5 Stereo output channel #3 ring write pointer

0x78 Ch3 out Ring Depth RO 11:5 Stereo output channel #3 ring buffer depth

TABLE 27. Reset Control & Status Register Bit Fields

Bits
Reset
Value Type Description

0 1 RW Codec RESET control
0 - reset inactive
1 - reset signal to external codec active

1 0 RO Codec present
0 - codec not present
1 - codec detected on the serial bus (clock active)

8:2 0 RO Stereo input channel #1 ring write pointer alias
15:9 0 RO Stereo output channel #2 ring read pointer alias
22:16 0 RO Stereo output channel #3 ring read pointer alias
24-23 0 RW Volume control positive edge latched inputs

External volume push button inputs. Latched on rising edge, clear by writing zeros.
Logic OR’d together to generate the level sensitive volume status change interrupt.
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3.3  Codec internal register reading and writing
The codec interface includes a simple register read/write channel to be used for access to the codec’s internal regis-
ters. To load a register, the system software should write the value it wants to write along with the address and write
code into the address and control register. A register read operation can be performed the same way by writing the
address and read code into the address and control register.

Any or all of the bits in the status word buffer can be used to generated an interrupt condition. This is controlled by a
mask in the codec status input mask register.

3.3.1  Codec Read/Write Interface Registers

The following tables show the individual bits for the codec register read/write interface:

3.4  Stereo DMA MSC/UST Registers
The stereo DMA channels each have a single 64-bit register (see Timer chapter) that holds the current count of stereo
samples sent or received and the time when that last sample was sent or received. The sample pair counter (MSC) is
incremented every time the codec delivers or asks for a new sample pair (i.e. even when the ring buffers are full or
empty), except when the DMA channel is in the RESET state. Each time one of the DMA channels processes a sam-
ple it increments the sample pair counter (MSC) and snaps the value of the 32-bit MACE uptime counter (UST). The
two values can be read together using a single read operation. Note that the register is writable so that the device
driver software can zero out the MSC counter if desired.

The picture below shows the format of the MSC/UST registers:

TABLE 28. Codec Status Address and Control Register

Bits
Reset
Value Type Description

23:17 0 RW Address of register to read or write in the codec
Should be set to the channel status word when not used to reprogram the codec

16 1 RW Read or Write operation
0 - register write
1 - register read

15:0 0 RW Word to be sent to the codec on every TDM cycle (note: always repeats)

TABLE 29. Codec Channel Status Input Mask Register

Bits
Reset
Value Type Description

15:0 0 RW Mask to apply to channel status word input buffer before generating interrupt

TABLE 30. Codec Channel Status Input Word Buffer Register

Bits
Reset
Value Type Description

15:0 0 RO The last channel status word received from the codec

063

MSC - Sample Pair Counter

3132

Figure: Stereo DMA MSC/UST Format

UST - Uptime Counter Value
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3.4.1  Stereo pair DMA registers
The following tables show the individual register bits for each stereo pair DMA channel:

TABLE 31. Channel Read Pointer Register

Bits
Reset
Value Type Description

15:12 0 RO <reserved, read as zeros>

11:5 0 RW Ring buffer read pointer

4:0 0 RO <reserved, read as zeros>

TABLE 32. Channel Write Pointer Register

Bits
Reset
Value Type Description

15:12 0 RO <reserved, read as zeros>

11:5 0 RW Ring buffer write pointer

4:0 0 RO <reserved, read as zeros>

TABLE 33. Channel Control Register

Bits
Reset
Value Type Description

10 1 RW RESET
0 - channel active
1 - reset channel (inactive), all registers reset, interrupt output inactive, fifos flushed,

MSC does not increment.

9 0 RW DMA enable
0 - channel disabled, but state not modified, just frozen
1 - channel enable and active (pointers must be setup)

8 0 RO <reserved, read as zeros>

7:5 0 RW Interrupt threshold
000 - interrupt disabled, interrupt output at inactive level
001 - interrupt on input channel ring buffer >= 25% full (< 25% for output channels)
010 - interrupt on input channel ring buffer >= 50% full (< 50% for output channels)
011 - interrupt on input channel ring buffer >= 75% full (< 75% for output channels)
100 - interrupt on ring buffer empty
101 - interrupt on ring buffer not empty
110 - interrupt on ring buffer full
111 - interrupt on ring buffer not full

4:0 0 RO <reserved, read as zeros>

TABLE 34. Channel Current Ring Depth Register

Bits
Reset
Value Type Description

15:12 0 RO <reserved, read as zeros>

11:5 0 RO Number of 32-byte blocks in the ring buffer (computed by DMA engine)
Computed using a subtracter: WritePointer - Readpointer.
All zeros is the empty condition, all ones is the full condition.

4:0 0 RO <reserved, read as zeros>
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3.5  Stereo Audio DMA

The audio DMA uses one ring buffer for each stereo audio input or output pair. The hardware assumes that all sam-
ples are stored in the ring buffers as 8 byte items. That way any item always starts on an 8 byte aligned boundary.

3.5.1  Stereo pair input data format
The stereo DMA input channels collect samples from the codecs and write that data out into the main memory ring
buffers. The following general rules apply to the audio input DMA format:

• Each item written to main memory is a multiple of 64-bits of data

• Each 64-bit sample contains a left & right audio word that has been sign extended to a 32-bit value

• The left & right stereo samples come directly from the codec and are not modified

The picture below shows the format of a 64-bit input sample:

The stereo DMA input channels will always write four 64-bit samples to memory in one transaction.

3.5.2  Stereo pair output data format
The stereo DMA output channels collect samples from the ring buffers in main memory and write them to the codecs.
The DMA engine will read from the input ring buffers as long as data is left in the ring. When data is exhausted the
DMA channel outputs zeros to the codec repeatedly until more data is provided. The following general rules apply to
the audio output DMA format:

• Each item read from main memory is a multiple of 64-bits of data

• Each 64-bit word contains a left and right audio sample

• The output sample format is compatible with the input format (a functional subset)

• The left & right stereo samples are sent directly to the codec

• Each 24-bit wide left/right sample is clipped (saturated) to 16-bit resolution

The picture below shows the format of a 64-bit output sample:

The stereo DMA output channels will always read four 64-bit samples from memory in one transaction. Note that the
don’t care areas of the output sample are ignored by the hardware.

3.5.2.1  Output clipping/saturation
The rule that is followed for clipping the 24-bit samples to 16-bits is: if bit 31 is a ‘1’ and any of bits 30-24 are ‘0’ or
if bit 31 is a ‘0’ and any of bits 30-24 are ‘1’, then saturate the output sample to the all ones value.
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Left-Sample Right-Sample

31323940

Figure: Stereo Input Pair Data Format

7824 2356 55
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Sign

Extension
Sign
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Figure: Stereo Output Pair Data Format
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3.5.3  Stereo pair ring buffer

Each stereo input/output pair has a DMA ring buffer that is controlled by a set of channel registers. The size of all
three of the audio ring buffers is fixed at 4Kbytes. The three ring buffers are all stored together in system main mem-
ory using a 32KB aligned base address supplied by the peripheral controller. Each 4KB ring buffer occupies one of
eight 4KB pages within the 32KB range supplied. The three audio ring buffers occupy the first three 4KB pages in the
32KB block. Whenever the DMA engine reads or writes data from the ring it takes the value of the read or write
pointer logic ORs it with the ring base address and ring ID to compute the memory address to use.

The address calculation is shown below:

The DMA ring buffers for the audio controller are all uni-directional. For each channel one of the two ring pointers is
controlled by the hardware and one by system software. If the channel is an input channel, the DMA engine controls
the ring write pointer and it is read-only. If the channel is an output channel, the DMA engine controls the ring read
pointer and it is read-only. In both cases, the other pointer is controlled by system software and it is used to tell the
DMA engine how full (or empty) the ring buffer is with data.

When the two pointers become equal the hardware assumes that the ring buffer is empty. When the write pointer is
equal to one minus the read pointer the hardware assumes that the ring buffer is full. Note that DMA operation starts
automatically as soon as system software changes it’s pointer so that the ring is no longer full/empty as long as DMA
is enabled. In the case of a DMA FIFO underflow (the ring is not empty but CRIME failed to refill the outgoing data
FIFO in time) the DMA channel does not start reading again even if the data eventually arrives but is late. This is a
fatal error, no pointers are updated, and requires a DMA channel reset to clear.

3.5.4  Stereo output idle zero fill

For the audio interfaces, the audio output logic has a special property such that it will send zero stereo sample pairs to
the codec until data is available from the DMA engine. This is true no matter what the current state of the DMA hard-
ware. This is required so that the audio outputs remain quiet when the DMA is either inactive or not initialized.

3.6  Time Base Connections

The Analog Devices AD1843 codecs used in this design have the ability to sync their sample rate clocks to an exter-
nal source such as a video input or output channel or other time base. The codec has a three external inputs that are
wired up according to the diagram below:

TABLE 35. Ring ID

RingID Ring Buffer

000 Audio input channel

001 Audio output channel #1

010 Audio output channel #2

TABLE 36. Time Base Sync Connections

Input Connection

Sync[3] External sync source

Sync[2] Video input (A or B) horizontal sync

Sync[1] Video output horizontal sync

Address[31:0] = BaseAddress[31:15] | RingID[2:0] | PointerOffset[11:5] | “00000”

Figure: Ring Buffer Address Calculation
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The video input horizontal sync source comes from the MACE video back end. See that section of the spec for infor-
mation on selecting which of the two video input channels to use for the Sync[2] input.

3.7  Software DMA Appendix

The audio DMA engine does not provide for scatter/gather operation, system software must arrange for the data to be
copied into and out of the ring buffers. To aid in the copy operations, all dma data has been aligned on 64-bit bound-
aries in the ring buffers. The software device driver can use uncached load and store double instructions, R4K MIPS-
III 64-bit integer ops, to copy the data words into and out of the ring buffers.

3.7.1  Sample device driver source code
The following samples are available from - rowan:/d1/moosehead/subsystem/io/doc/mace_spec

/*
 * Sample copy routine for audio input
 */

#include “ring.h”

audio_input(long long *src, long long *dst, int signextend)
{

register long long mask;

/* Setup mask for sign extension removal */
if (signextend) {

mask =0xFFFFFF00FFFFFF00LL;
} else {

mask =0x00FFFF0000FFFF00LL;
}

/* Copy everything out of the ring */
while (count-- > 0) {

*dst++ = *src++ & mask;
src++;

}
}
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4 Fast Ethernet Interface

TheMoosehead system I/O asic contains a simple ethernet interface that supports 10Base-T conventional ethernet
and a 100Mbit TX fast ethernet connections through an MII interface. The interface also contains a small on chip
message cluster address FIFO to hold the memory addresses for receive packets. The transmit and receive packets
themselves are stored in system main memory. A block diagram of the ethernet interface is shown below:

Main features:

• Both 100Mbit and 10Mbit operation

• Both half-duplex CSMA-CD and full-duplex circuit switched modes

• Detailed transmit & receive status vectors for each packet

• Internet IP checksum computed for all received packets

• Multicast address filtering using 64 hash bit buckets

• Automatic transmit padding of short packets to minimum ethernet length

• Programmable receive interrupt delay timer

• Programmable receive gathering of short packets into single buffers

• Programmable inter-packet gap spacing

• Flexible transmit and receive buffering

• Functional subset of IOC3 ethernet interface

4.1  Ethernet
The ethernet interface consists of the back end MII mux, the LSI Logic Cascade-110 MAC, the receive dma section
and address filtering, and the transmit dma section. The goal of this design was to have a simple hardware interface
that is memory traffic efficient and one that can be implemented and verified quickly. The design also tried to stress
minimum memory usage and the minimization of data copying.
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4.2  Register Programming Interface
The following table shows all of the ethernet interface registers. All bits not explicitly defined are read as zeros. All
registers are defined on 64-bit aligned boundaries and can be read or written using 64-bit programmed i/o operations.

TABLE 37. Ethernet Interface Registers

Offset Register Name Type Bits Function
0x00 MAC Control RW 31:0 Ethernet MAC Control & Configuration flags

0x08 Interrupt Status RW 30:0 Interrupt status flags

0x10 DMA Control RW 15:0 Transmit & Receive DMA control

0x18 Timer RW 5:0 Receive Interrupt delay timer

0x20 Transmit Interrupt Alias WO 0:0 Alias of transmit interrupt control bits

0x28 Receive Interrupt Alias WO 9:4 Alias of receive interrupt control bits

0x30 TX Ring buffer r/w ptr RW 31:0 Transmit DMA ring buffer read & write pointers

0x38 Alias of above register RW 31:0 Alias of above register

0x40 RX mcl FIFO w/r/d RO 23:0 Receive msg cluster FIFO write/read pointer & depth

0x48 Alias of above register RO 23:0 Alias of above register

0x50 Alias of above register RO 23:0 Alias of above register

0x58 Interrupt Request WO 31:0 Generate interrupt update packet (diag)

Last Transmit Vector RO 63:0 Status vector from last transmit packet (diag)

0x60 PHY data out WO 15:0 PHY data out register

PHY data in RO 16:0 PHY data in register and busy status flag

0x68 PHY address RW 9:0 PHY device and register address registers

0x70 PHY read start WO 0:0 PHY read initiate operation register

0x78 Backoff WO 10:0 Random number seed for LFSR backoff counter

0x80 Incoming msg hdr #1 RO 63:0 Incoming message queue, reserved

0x88 Incoming msg dword #1 RO 63:0 Incoming message queue, reserved

0x98 Incoming msg hdr #2 RO 63:0 Incoming message queue, reserved

0x98 Incoming msg dword #2 RO 63:0 Incoming message queue, reserved

0xA0 Physical Address RW 47:0 Physical station address

0xA8 Secondary Physical Address RW 47:0 Secondary physical or multicast station address

0xB0 Multicast Filter RW 63:0 Multicast logical address filter hash mask

0xB8 Transmit Ring Base RW 31:13 Transmit ring buffer base address in main memory

0xC0 Tx pkt #1, cmd hdr RO 63:0 Transmit packet #1, command header word (diag)

0xC8 Tx pkt #1, cat ptr/size RO 63:0 Transmit packet #1, concatenation buffer #1 (diag)

0xD0 Tx pkt #1, cat ptr/size RO 63:0 Transmit packet #1, concatenation buffer #2 (diag)

0xD8 Tx pkt #1, cat ptr/size RO 63:0 Transmit packet #1, concatenation buffer #3 (diag)

0xE0 Tx pkt #2, cmd hdr RO 63:0 Transmit packet #2, command header word (diag)

0xE8 Tx pkt #2, cat ptr/size RO 63:0 Transmit packet #2, concatenation buffer #1 (diag)

0xF0 Tx pkt #2, cat ptr/size RO 63:0 Transmit packet #2, concatenation buffer #2 (diag)

0xF8 Tx pkt #2, cat ptr/size RO 63:0 Transmit packet #2, concatenation buffer #3 (diag)

0x100
-

0x1F8

MCL Receive FIFO RW 31:12 Receive msg cluster FIFO data port
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4.2.1  Ethernet MAC Control Register

The following table shows the control and status bits for the ethernet MAC:

TABLE 38. Ethernet MAC Control & Status Register Bit Fields

Bits
Chip
Reset Type Description

0 1 RW Core RESET
0 - Mac110 active in run mode
1 - Global reset signal to MAC110 core is active

1 0 RW Full duplex
0 - Disable full duplex operation
1 - Enable full duplex operation

2 0 RW Loopback internal select
0 - Normal mode, follows 100/10 Mbit and M10T/MII select
1 - Internal loopback test mode, loops internal MII bus, selects ignored

3 0 RW 100/10 Mbit operation select
0 - 10Mbit operation
1 - 100Mbit operation

4 0 RW M10T/MII select
0 - MII bus is selected
1 - SIA bus is selected
Note: when internal loopback is selected this bit becomes the collision control for the
internal looped back MII bus. Setting this bit to logic one true will cause a collision
indication to be reported to the MAC. This can be used during loopback testing to force
retries and transmit packet aborts.

6:5 0 RW Destination address filter mode
0 - Accept physical station address only
1 - Accept physical, broadcast, and multicast filter matches only
2 - Accept physical, broadcast, and all multicast packets
3 - Accept any packet regardless of destination address

7 0 RW Link Failure enable
0 - disabled
1 - hardware automatically scans for link failure condition in the external PHY

14:8 0 RW Inter-Packet Gap IPGT
Counter which sets the length of the inter-packet gap for back-to-back transmissions in
the case where the MAC110 is the transmitter. Counter increments are based on twice
the transmit clock period (40ns for 100Mbit and 400ns for 10Mbit operation).

21:15 0 RW Inter-Packet Gap IPGR1
Counter which is used to reset the inter-packet gap timer when a carrier sense is
detected within a short time of receiving a packet. If carrier sense goes active within
two thirds the period of the IPG, the IPG counter will be reset as this carrier-sense may
be because of a collision fragment.

28:22 0 RW Inter-Packet Gap IPGR2
Counter which sets the length of the inter-packet gap for the MAC110 if it received a
packet from the network and now wants to transmit a packet itself. Note that this value
may need to be adjusted based on internal delays in the external PHY used.

31:29 1 RO Implementation revision
0 - initial implementation
1 - first revision with improved transmit concatenation support
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4.2.2  Ethernet Interrupt Status Register

The following table shows the individual status bits for the ethernet interrupts (CRIME IR Byte 3 / Bit 3):

Note: interrupt bits can be cleared by system software by writing a one to the bit position. Writes of zeros to any of
the interrupt status flags are ignored.

TABLE 39. Ethernet Interrupt Status Register Bit Fields

Bit
MAC
Reset Type Description

0 0 RW TX ring empty interrupt event set
0 - no interrupt pending
1 - the transmit ring buffer is empty [read pointer = write pointer]

1 0 RW TX packet user request interrupt event set
0 - no interrupt pending
1 - a transmit message had the interrupt request bit set, the packet has been sent

2 0 RW TX link failure condition detected
0 - no interrupt pending
1 - the external PHY reported that the link has failed (see MAC control bit 7)

3 0 RW TX crime memory error interrupt event set
0 - no interrupt pending
1 - a memory error occurred during a DMA transaction, DMA has stopped, fatal error

4 0 RW TX abort interrupt event set
0 - no interrupt pending
1 - the transmitter aborted operation, DMA has stopped, fatal error, system software

should examine the transmit status vector register for the abort reason

5 0 RW RX threshold interrupt event set
0 - no interrupt pending
1 - the selected receive threshold interrupt condition is valid

6 0 RW RX cluster FIFO underflow interrupt event set
0 - no interrupt pending
1 - the cluster FIFO was empty and new packets arrived that could not be queued

7 0 RW RX dma FIFO overflow interrupt event set
0 - no interrupt pending
1 - the internal DMA FIFO overflowed, DMA has stopped, fatal error

12:8 0 RO Alias of Receive mcl FIFO read-pointer

15:13 0 RO Reserved, always zero

24:16 0 RO Alias of Transmit ring buffer read-pointer

29:25 0 RO Receive sequence number
This is the starting sequence number for the message cluster at the queue top.

30 0 RO Multicast hash output
This is a test/debug interface bit. When RX dma enable is inactive, the output of the
hash select logic is latched here (select based on DMA control 14 downto 9).

31 0 RO Reserved, always zero
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4.2.3  DMA control register

The following tables show the individual bits for the DMA control register:

4.2.4  Interrupt delay register
The following tables show the individual bits for the receive DMA interrupt delay register:

TABLE 40. DMA Control Register

Bits
MAC
Reset Type Description

15 0 RW Receive DMA Enable
0 - channel inactive, receive interrupts masked
1 - channel active

14:12 0 RW Receive DMA Starting Offset
This is the index of the double word (64-bit word) were the DMA logic starts to fill the
first receive bucket in each packet. All of the double words before the starting offset are
treated as garbage padding. A starting offset of zero is not recommended.

11 0 RW Receive Packet Gathering Enable
0 - don’t gather packets
1 - attempt to gather back-to-back packets into one message cluster

10 0 RW Receive Runt Packets Enable
0 - discard received runt packets (length < 64 bytes)
1 - receive all runt packets

9 0 RW Receive Interrupt Enable
0 - interrupt output inactive
1 - interrupt output follows results of comparison !(Threshold != FIFO Count)

8:4 0 RW Receive Interrupt Threshold
Value to match against the message cluster FIFO counter. This is used as a water mark
by the hardware. When the values are equal the interrupt output is disabled. When the
values are not equal then the interrupt output is enabled. The software driver can use
this register to set the desired depth for the message cluster FIFO.

3:2 0 RW Transmit Ring Size Mask
00 - 8K byte transmit ring buffer
01 - 16K byte transmit ring buffer
10 - 32K byte transmit ring buffer
11 - 64K byte transmit ring buffer

1 0 RW Transmit DMA Enable
0 - channel inactive, non-fatal transmit interrupts masked
1 - channel active

0 0 RW Transmit Interrupt Enable
0 - interrupt output inactive
1 - interrupt output active if transmit ring buffer is empty (rptr = wptr)

TABLE 41. Interrupt Delay Register

Bits
MAC
Reset Type Description

5:0 0 RW Interrupt Delay Count Down Value (in 30.69 microsecond increments)
This timer delays the interrupt condition generated by Receive Interrupt Threshold.
The rules used by the timer are as follows: when a new packet is received the timer
starts to count down. When it reaches zero, the interrupt for the packets that have been
collected so far is delivered to the interrupt status register. Note that the timer will ter-
minate early if the receive MCL FIFO drops below four entries.
Range: 0 - 2 milliseconds
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4.2.5  Transmit interrupt alias register

The following table shows the individual bits for the transmit interrupt alias register:

4.2.6  Receive interrupt alias register

The following table shows the individual bits for the receive interrupt alias register:

4.2.7  Transmit ring buffer read & write pointer register

The transmit ring buffer read and write pointers point to the head and tail of the ring buffer. The ring buffer is consid-
ered to be empty when the two pointers are equal and the ring buffer is full when the write pointer points to the N - 1
entry in the ring buffer.

The write pointer is the only one of the two that software can write directly. The read pointer can only be reset to zero
and then only by reseting the dma engine using the reset control in the dma control register.

The following table shows the individual bits for the transmit ring buffer read & write pointer register:

TABLE 42. Transmit Interrupt Alias Register

Bits
MAC
Reset Type Description

0 0 WO Transmit Interrupt Enable
0 - interrupt output inactive
1 - interrupt output active if transmit ring buffer is empty (rptr = wptr)

TABLE 43. Receive Interrupt Alias Register

Bits
MAC
Reset Type Description

9 0 WO Receive Interrupt Enable
0 - interrupt output inactive
1 - interrupt output follows results of comparison !(Threshold != FIFO Count)

8:4 0 WO Receive Interrupt Threshold
Value to match against the message cluster FIFO counter. This is used as a water mark
by the hardware. When the values are equal the interrupt output is disabled. When the
values are not equal (i.e. some messages have been removed by the hardware) then the
interrupt output is enabled. The software driver can use this register to set the desired
depth for the message cluster FIFO.

TABLE 44. Transmit Ring Buffer Read Pointer Register

Bits
MAC
Reset Type Description

31:25 0 RO Always zero

24:16 0 RO Current DMA channel ring buffer read pointer

15:9 0 RO Always zero

8:0 0 RW Current DMA channel ring buffer write pointer
This register is written by the software driver to queue new packets to be sent to the
transmit DMA channel. For the ethernet transmit ring buffer, when the read pointer and
write pointer are equal the ring buffer is empty, when the write pointer equals the read
pointer minus one the ring buffer is full.
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4.2.8  Receive DMA message cluster FIFO

A message cluster is a standard IRIX networking data buffer. The ethernet receiver contains a 16 entry register file
that holds the base addresses of 4 kilobyte message clusters. These message clusters are always on 4 kilobyte align-
ments which means we only need to save 20 bits of address in a 32 bit physical address machine. Also, these buffers
can be used directly by the IRIX networking code without any data copying.

The message cluster FIFO is a true first-in first-out memory. The system software would normally push base
addresses into the FIFO and the receive DMA hardware would pop base addresses off of the FIFO. System software
has the ability to read the FIFO, but this should never be done when the receive DMA logic is enabled.

The read index, write index, and element count registers of the FIFO are exposed to system software for use during
device operation or as diagnostic registers. The registers are updated atomically by the hardware so that they are safe
to read even when the receive DMA logic is operating.

Note that the contents of the register file are not initialized by the hardware at reset. Only the read index, write index,
and element count register are reset to zero. Also, hardware does not prevent the system software from overrunning or
underflowing the FIFO from the PIO access port. The receive DMA logic itself will never underflow the FIFO.

When system software writes a 32 bit address into the FIFO the lower 12 bits of the address are discarded. If the same
address was then read back using a PIO read cycle the upper 20 bits would contain the user supplied address data
while the lower 12 bits would contain zeros.

The following tables show the individual bits for the message cluster FIFO diagnostic register:

Note that the message cluster FIFO data port is aliased 32 times in the ethernet address space. All 32 locations per-
form the same function. The extra address locations do not provide any sort of index or direct addressing mechanism.

The following tables show the individual bits for the message cluster FIFO data port:

TABLE 45. Receive Message Cluster FIFO Information Register

Bits
MAC
Reset Type Description

23:21 0 RO Always zero

20 0 RO Generation number

19:16 0 RO FIFO write pointer

15:13 0 RO Always zero

12 0 RO Generation number

11:8 0 RO FIFO read pointer

7:5 0 RO Always zero

4:0 0 RO Count of elements queued in the MCL FIFO

TABLE 46. Receive Message Cluster FIFO Data Port

Bits
MAC
Reset Type Description

31:12 0 RW Message Cluster Base Address

11:0 0 RO Always read as zeros
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4.2.9  PHY configuration bus

The ethernet interface provides the following small set of register for communication over the MDIO serial commu-
nication bus to and from an external PHY device:

4.2.9.1  PHY Read

To read an external PHY register system software should first wait for the “Busy status” to drop to logic “0”, then
write the PHY device address and internal register address desired to the PHY address register, and then write any
value to the PHY read initiate register to start the read request. System software should then poll on the “Busy status”
bit until it drops to a logic “0” value. The PHY data I/O register now holds the value read from the external PHY
device.

4.2.9.2  PHY Write

To write an external PHY register system software should first wait for the “Busy status” to drop to logic “0”, then
write the PHY device address and internal register address desired to the PHY address register, and then write the
value to be written to the given register to the PHY data I/O register. System software should then poll on the “Busy
status” bit until it drops to a logic “0” value to make certain that the write has completed.

4.2.10  MAC110 Backoff Seed

The following register allows software to provide a seed for the transmit backoff calculations in the MAC110:

TABLE 47. PHY Data I/O Register

Bits
MAC
Reset Type Description

16 0 RO Busy status
0 - incoming data below is valid
1 - incoming data is still being assembled and is invalid

15:0 0 RW Data
READ - incoming data values
WRITE - outgoing data values

TABLE 48. PHY Addr ess Register

Bits
MAC
Reset Type Description

9:5 0 RW PHY device address

4:0 0 RW PHY internal register address

TABLE 49. PHY Read Initiate Register

Bits
MAC
Reset Type Description

0 X WO Writing any value to this register initiates an external PHY read using the
above addresses.

TABLE 50. Backoff Random Number Seed Register

Bits
MAC
Reset Type Description

10:0 X WO Writing a value to this register seeds the transmit function LFSR with a new
pseudo-random starting value.
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4.3  Receiver Address Filter Operation
The ethernet receiver filters all incoming packets by the 6 byte destination address at the start of the ethernet packet.
The receive filter is controlled by the Destination Filter Mode field in the MAC control register. The receive filter pro-
vides for two physical station addresses, a 64-bit hashed multicast filter mask, and the broadcast address.

4.3.1  Physical Station Address Filter

The receive filter contains a 48-bit physical address that is the unique node address assigned by the ISO 8802-3 stan-
dard body (IEEE/ANSI 802.3) and used for internal address comparison. The physical address register contents are
compared such that physical station address bit[0] is the first bit coming in from wire. Since the MAC110 core sup-
plies data in byte at a time units, the address is compared PHYSADDR[7:0] with the first byte, PHYSADDR[15:8]
with the second byte, and so on until all six bytes of the physical station address are compared.

4.3.2  Broadcast Address Filter

The receive filter contains a 48-bit broadcast address filter that watches for the ISO 8802-3 standard broadcast address
of all logic 1s for internal address comparison. If the destination address at the start of the packet is all 1s, then the
broadcast address filter will indicate that a broadcast address was detected.

4.3.3  Multicast Logical Address Filter

The receive filter contains a 64-bit hashed multicast mask that is used for multicast filtering. If the least significant bit
of the first byte of the incoming destination address is a logic ‘1’, then the destination address is a multicast address.
Every received multicast destination address is reduced to a 6-bit hash index into the multicast mask. If the bit in the
mask for the selected hash index for the address is true, then the packet passes through the filter. Otherwise the packet
is rejected (note: see Destination Filter Mode multicast filter enable/disable).

The 64-bit hashed multicast filter mask allows the receiver to filter out some portion of the multicast traffic, but the
system software must still do an exact match to reject any unwanted multicast packets that get through the mask since
the hardware mask is not a precise address filter.

4.3.3.1  Hashing Function

The 6-bit hash index into the 64-bit multicast mask register is generated by taking the 48-bit destination address and
computing a 32-bit FCS CRC and then using the six most significant bits as the hash index. A ‘C’ version of this algo-
rithm for a big endian machine is shown below:

static unsigned
lef_hash(unsigned char *Bytes, int BytesLength)
{

unsigned Msb, Index, Bit, Shift, Crc = 0xFFFFFFFF;
unsigned const Poly = 0x04c11db6;
unsigned char CurrentByte;

while (BytesLength-- > 0) {
CurrentByte = *Bytes++;
for (Bit = 0; Bit < 8; Bit++) {

Msb = Crc >> 31;
Crc <<= 1;
if (Msb ^ (CurrentByte & 1)) {

Crc ^= Poly;
Crc |= 1;

}
CurrentByte >>= 1;

}
}

return Crc >> 26;
}
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4.4  Ethernet Transmit DMA

The transmit DMA channel operates off of a 64-512 entry ring buffer stored in system main memory that holds 128
byte messages. Each message contains a transmit command header, up to three 64-bit wide pointers to optional con-
catenation buffers, and/or up to 120 bytes of transmit packet data. The transmit command header contains the packet
length and a few control flags. The concatenation pointers hold the address and length of optional buffers that contain
the rest of the packet should it’s length be greater than 120 bytes (i.e. it won’t fit in the 120 byte ring data area).

4.4.1  Ethernet Transmit Memory Layout

The transmit DMA section reads data from the transmit ring buffer and delivers that data to the transmit back end:

• transmit message headers always start on a 128 byte alignment in the transmit ring buffer.

• the start of each transmit message consists of a 64-bit transmit command header which contains the
packet byte length, any control flags, and valid flags for the concatenation buffer pointers.

• the second/third/fourth 64-bit word(s) in the transmit message are optional pointers to arbitrarily
aligned data in the interior of 4KB aligned buffers that contain the remainder of the message to be
concatenated onto the end of the initial data portion of the packet from the ring buffer data area.

• the initial data section of the packet must be back filled into the ring buffer data area so that the end
is aligned on an 8 byte boundary. this is true even if the packet has no concatenation buffers.

• the first 64-bit word in the transmit message will be over written with the packet status vector
(which is supplied by the MAC and written after packet transmission). note that the vector over-
writes the length and control flags supplied initially and sets bit 63 in the packet header to logic“1” .

The picture below shows five packets that have been placed into the transmit ring buffer with the proper rounding.
The large sixteen wide double high rectangles represent 128 byte bucket memory blocks. The packets show the
spaces that need to be left for the 64-bit transmit header, the 64-bit concatenation buffer pointers, and any padding to
the start offset. Note: the last packet shows that the buffer pointer bytes can be used for packet data if desired.

Transmit Header/Status Vector MCL Pointer

Five Packets

Ignored

64
-b

it
s

Transmit Data

4KB Page 4KB Page
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4.4.2  Transmit Command Header

The format of the transmit command header double word is given below:

4.4.3  Transmit Concatenation Pointer

The format of the transmit concatenation double word pointer is given below:

4.4.4  Transmit Status Vector

The transmit status vectors are supplied by the MAC unit. The vector contains a 16-bit packet length field and 14 bits
worth of status flags. The length field records the true length of the buffer in bytes. System software uses the status
vector length and flags to check the success or failure to transmit a packet. The format is given below:

Bits Description

15:0 Length of valid packet data in bytes minus one

22:16 Starting byte offset of valid data in ring data block
Note: minimum legal starting offset value is 8 bytes. A value of zero will

cause all data in the ring header to be skipped and the first data word
will come from the first concatenation pointer.

23 Terminate transmit DMA on a transmit abort condition

24 Generate user TX interrupt when packet has been sent

27-25 Concatenation pointer valid flags (buffers 3, 2, and 1)

63:28 Should be filled with zeros

Bits Description

2:0 Should be filled with zeros

31:3 Physical starting address of concatenation buffer data

47:32 Length of concatenation buffer data in bytes minus one
Length = Length - 1;

63:48 Should be filled with zeros

Bits Description

15:0 Transmit length in bytes

16:19 Collision retry count

20 Late collision seen on at least one transmission attempt

21 CRC error seen on at least one transmission attempt

22 Packet deferred on at least one transmission attempt

23 Transmit completed successfully

24 Transmit aborted due to excessive length

25 Transmit aborted due to underrun

26 Transmit dropped due to excess collisions

27 Transmit canceled due to excessive deferral

28 Transmit dropped due to late collision

62:29 Always filled with zeros

63 Always filled with a one
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4.5  Ethernet Receive DMA

The receive DMA channel operates off of a 16 entry FIFO stored inside the MACE chip that holds physical addresses
of 4 kilobyte message cluster buffers. The physical addresses are loaded by the system software using programmed I/
O write operations. Once an address is loaded, the DMA hardware can use that address as the physical base address of
a 4KB buffer to store received ethernet packet(s). When DMA to a buffer is completed by the DMA hardware, it is
popped off the bottom of the FIFO and system software will receive an interrupt notification.

The 16 entry message buffer address FIFO accepts physical addresses of 4 kilobyte buffers that are power of two
aligned. The on chip read and write pointers for the FIFO are exposed to the system software for diagnostic purposes.
To control the depth of the FIFO, system software can specify a threshold value from 0 to 16. Whenever the number
of entries in the FIFO does not equal this number, and the receive interrupt is enabled, an interrupt request will be
generated. The programmable threshold allows the software driver to use (or not use) as many entries in the FIFO as
it wants.

4.5.1  Interrupt Delay Counter

The receive DMA channel contains a 6-bit down counter that can be used to delay the delivery of a receive interrupt
request by the specified number of 30.69 microsecond ticks. This is useful when the ethernet interface is operating in
fast ethernet mode and the system software wants to delay interrupt delivery a short period of time to attempt to
gather multiple back to back packets into a single interrupt request.

4.5.2  Data Format

The receive DMA section collects data from the address filter unit and status vectors from the MAC and writes the
merged data stream into the physical data buffer in the following format:

• receive packets always start on a 256 byte alignment in the receive data buffer.

• the start of each packet contains two extra bytes of padding so that the data portion of the received
ethernet packet will start on an 8 byte aligned boundary.

• the first 64-bit word in the first 256 byte bucket of each packet contains it’s status vector (which is
supplied by the MAC).

• a variable number of 64-bit words can be skipped in the first 256-byte block for software headers

The picture below shows two packets that have been placed into the receive data buffer with the proper rounding. The
starting receive DMA offset has been programmed to a value of four. The large thirty two wide double high rectan-
gles represent 256 byte bucket memory blocks. The first packet shows the common case of an ethernet packet placed
at the front of the message cluster buffer. The second packet shows the exception case where enough space was left in
the data buffer to potentially hold another packet. This rare second case only happens when the first packet was very
short (less than 256 bytes) and the interrupt delay counter had not yet expired for the first packet when the second
packet started to arrive.

Receive Status VectorReceive Data

Packet #1 Packet #2

Garbage Fill

64
-b

it
s

Zero Padding
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4.5.3  Internet Checksum

The receive DMA channel calculates a 16-bit wrap around carry sum for each packet that is received. The sum
includes all valid bytes in the ethernet packet excluding the preamble. Any carry that remains after the last byte from
the packet has been added into the sum is always folded back into the sum. The final sum is written out with the
receive status vector. System software is responsible for subtracting unwanted header bytes and the crc from the
checksum and performing any checksum validation.

4.5.4  Sequence number

The receive DMA channel stamps each packet with a sequence number that is stored in the packets status vector. This
sequence number should be used by the system software driver to determine if a message cluster contains more than
one complete packet. This can be done by comparing the starting sequence numbers of two consecutive message
cluster buffers or by comparing the starting sequence number of the last message buffer cluster used by the DMA
hardware with the sequence number provided in the interrupt status register.

4.5.5  Receive Status Vector

The receive status vectors are supplied by the MAC receive function. The vector contains a 16-bit packet length field,
14 bits worth of status flags, and a 16-bit Internet IP checksum. The length field records the true length of the packet
in bytes. System software uses the status vector length field to determine the received packets real length.

The format of the receive status vector is given below:

TABLE 51. Receive Status Vector Format

Bits Description

15:0 Receive length in bytes

16 Receive code violation

17 Dribble nibble

18 CRC error

19 Multicast packet

20 Broadcast packet

21 Invalid preamble content, length or code

22 Long event previously seen

23 Received bad packet

24 Carrier event previously seen

25 Multicast filter match

26 Physical address filter match

31:27 Receive sequence number

47:32 Partial Internet IP checksum

62:48 Always filled with zeros

63 Always filled with a one
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4.6.1  Internal RAM Organization

128 by 64 DP SRAM

0

1

2

3

4

5

6

7

Outgoing Payloads

Incoming Payload #2

Outgoing Msg FIFO

Incoming PIO FIFO

Station Address & Filter

Transmit Headers
Temporary storage of the last two transmit packet
command headers.

Station address, filter, and other misc storage.

The incoming PIO FIFO can hold two messages.

The Outgoing message FIFO holds 8 double word
messages. These messages can be read requests, write
requests with one double word data payloads, write
requests with an indirectly attached outgoing payload
buffer, interrupt updates, and PIO read responses.

Receive ping pong buffer #1, holds one 256 byte msg.

Transmit FIFO, holds 256 bytes of data.

Not Used by CRIME DMA logic

Receive ping pong buffer #2, holds one 256 byte msg.

Incoming Payload #1
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4.6.1.1  Message FIFO descriptions

PIO Write Sub-Block

PIO Write Sub-Block

PIO Write Sub-Block

PIO Read Sub-Block

Data

Data

Data

Unused

Memory Read Block

Unused

Memory Write Block

Memory Write Sub-Block

Data

Unused

PIO Interrupt Update

Unused

PIO Read Sub-Block Response

Data

Incoming message FIFO

Outgoing message FIFO

The incoming message FIFO can hold a maximum of two
messages. Each message takes up two double words even
if the message itself is only one double word in length.

The two examples at left show that for the ethernet inter-
face the only messages that appear in the incoming FIFO
are PIO read and write requests. The CRIME interface can
post at most one read request, or two write requests, or one
read and one write request.

The delivery of an incoming PIO message raises the input
processing state machines request line. The state machine
will then wait for the next arbitration slot. Note that if the
message is a read sub-block request, the message will not
be removed from the incoming FIFO until space exists in
the outgoing FIFO to hold the read response.

64

4

64

16

The outgoing message FIFO can hold a maximum of eight
messages. Each message takes up two double words even
if the message itself is only one double word in length.

The example at left shows one of each of the five message
types in the outgoing FIFO with three free slots remaining.

The top two messages in the FIFO are block read and
write requests. The data portions of those messages are
stored in ping-pong buffers in the ethernet DP-RAM.

If the outgoing message is a memory write block request,
the header comes from the outgoing message FIFO but the
data portion comes from one of the ping-pong buffers. The
ping-pong buffer to use is indicated both in the message
tag field and on an independent tag bus that runs in parallel
with the outgoing message FIFO.

If the outgoing message is a memory read block request,
the data will be returned to the ping-pong buffer indicated
by the message headers tag field. When the read data is
delivered, the read state machine will receive a side-band
notification along with a data ok/error indication.

<empty>

<empty>

<empty>
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4.7  Software DMA Appendix
For transmit packets the DMA design provides a simple gather function. Up to three optional buffers can be attached
to a ring header for limited gather operation, system software must arrange for the data to be copied if the three gather
elements provided are not enough to describe the packet. The software device driver can either use uncached load and
store double instructions, 32-byte block cache operations, or the CRIME MTE BCOPY.

For received packets the DMA design has been done such that data will not normally need to be copied. The receive
message clusters that the hardware fills can be passed directly up to the networking software in the IRIX kernel. The
receive packets are also checksumed by the hardware, though system software is responsible for subtracting out any
unwanted header byte from the sum (including the ethernet header).

4.7.1  Sample device driver source code

The following example source code is available from - rowan:/d1/moosehead/subsystem/io/doc/mace_spec

// ether.h

/*
 * Moosehead internal fast ethernet interface
 */

#ifndef SYS_MACE_ETHER_H
#define SYS_MACE_ETHER_H

#define MACE_ETHER_ADDRESS 0xBF280000

/* Ethernet interface registers */
volatile struct mac110 {

long long mac_control; /* MAC mode setup */
long long interrupt_status; /* Interrupt status */
long long dma_control; /* DMA control */
long long timer; /* Timer */
long long transmit_alias; /* Transmit interrupt (WO) */
long long receive_alias; /* Receive interrupt (WO) */
struct {

unsigned _tpd;
unsigned rptr:16, /* ring buffer read pointer */

wptr:16; /* ring buffer write pointer */
} tx_info;

#define tx_ring_rptr tx_info.rptr
#define tx_ring_wptr tx_info.wptr

long long pad1;
struct {

unsigned _rpd1;
unsigned _rpd2:8,

wptr:8, /* MCL fifo write pointer */
rptr:8, /* MCL fifo read pointer */
depth:8; /* MCL fifo depth */

} rx_info;
#define rx_fifo_rptr rx_info.rptr
#define rx_fifo_wptr rx_info.wptr
#define rx_fifo_depth rx_info.depth

long long pad2;
long long pad3;
union {

long long sintr_request;
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long long last_transmit_vector;
} irltv;
unsigned __ppd1;
unsigned phy_dataio; /* PHY data r/w */
unsigned __ppd2;
unsigned phy_address; /* PHY fadr & radr */
unsigned __ppd3;
unsigned phy_read_start; /* PHY read start */
unsigned __ppd4;
unsigned backoff; /* Backoff LFSR */

/* 64-bit DP-RAM locations in MACE */
long long msgqueue[4]; /* read-only diag */
long long physaddr; /* Physical address */
long long secphysaddr; /* Physical address #2 */
long long mlaf; /* Multicast filter */
long long tx_ring_base; /* Transmit ring base */
long long tx1_cmd_hdr; /* read-only diag */
long long tx1_cat_ptr1; /* read-only diag */
long long tx1_cat_ptr2; /* read-only diag */
long long tx1_cat_ptr3; /* read-only diag */
long long tx2_cmd_hdr; /* read-only diag */
long long tx2_cat_ptr1; /* read-only diag */
long long tx2_cat_ptr2; /* read-only diag */
long long tx2_cat_ptr3; /* read-only diag */

/* 64-bit DP-RAM FIFO locations in MACE */
unsigned _rpd;
unsigned rx_fifo;
long long reserved5[31];

};

/* Multicast Logical Address Filter Macros */
#define LAF_TSTBIT(laf, bit) \

((laf) & (1LL << ((bit) & 0x3F)))
#define LAF_SETBIT(laf, bit) \

((laf) |= (1LL << ((bit) & 0x3F)))
#define LAF_CLRBIT(laf, bit) \

((laf) &= ~(1LL << ((bit) & 0x3F)))

/* MAC Control Register */
#define MAC_RESET 0x0001
#define MAC_FULL_DUPLEX 0x0002
#define MAC_LOOPBACK 0x0004
#define MAC_100MBIT 0x0008
#define MAC_SIA 0x0010
#define MAC_FILTER 0x0060
#define MAC_PHYSICAL 0x0000
#define MAC_NORMAL 0x0020
#define MAC_ALL_MULTICAST 0x0040
#define MAC_PROMISCOUS 0x0060
#define MAC_LINKF 0x0080
#define MAC_IPG 0x1FFFF00
#define MAC_IPGT_SHIFT 8
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#define MAC_IPGR1_SHIFT 15
#define MAC_IPGR2_SHIFT 22
#define MAC_DEFAULT_IPG 0x54A9500 /* 21, 21, 21 */
#define MAC_REV_SHIFT 29

/* Interrupt Status Register */
#define INTR_TX_DMA_REQ 0x01
#define INTR_TX_PKT_REQ 0x02
#define INTR_TX_LINK_FAIL 0x04
#define INTR_TX_MEMORY_ERROR 0x08
#define INTR_TX_ABORTED 0x10
#define ETHER_TX_ERRORS (INTR_TX_LINK_FAIL | \

INTR_TX_MEMORY_ERROR | \
INTR_TX_ABORTED)

#define INTR_RX_DMA_REQ 0x20
#define INTR_RX_MSGS_UNDERFLOW 0x40
#define INTR_RX_FIFO_OVERFLOW 0x80
#define ETHER_RX_ERRORS (INTR_RX_MSGS_UNDERFLOW | \

 INTR_RX_FIFO_OVERFLOW)

/* DMA control register */
#define DMA_TX_INT_EN 0x0001
#define DMA_TX_DMA_EN 0x0002
#define DMA_TX_RINGMSK 0x000c
#define DMA_TX_8K 0x0000
#define DMA_TX_16K 0x0004
#define DMA_TX_32K 0x0008
#define DMA_TX_64K 0x000c
#define DMA_TX_RINGMSK_SHIFT 2
#define DMA_RX_THRSHD 0x01f0
#define DMA_RX_INT_EN 0x0200
#define DMA_RX_RUNTS_EN 0x0400
#define DMA_RX_GATHER_EN 0x0800
#define DMA_RX_OFFSET 0x7000
#define DMA_RX_OFFSET_SHIFT 12
#define DMA_RX_DMA_EN 0x8000

/* Phy MDIO interface busy flag */
#define MDIO_BUSY 0x10000

/* Statistics vector format */
typedef long longstatistics_vector_t;

/* Receive message cluster FIFO control */
#define ETHER_RX_DMA_ENABLE 0x8000
#define ETHER_RX_DMA_OFFSET 0x7000
#define ETHER_RX_OFFSET_SHIFT 12
#define ETHER_RX_MERGE_ENABLE 0x0800
#define ETHER_RX_RUNT_ENABLE 0x0400
#define ETHER_RX_INTR_ENABLE 0x0200
#define ETHER_RX_THRESHOLD 0x01F0
#define ETHER_RX_THRESH_SHIFT 4

/* Transmit message cluster FIFO control */
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#define ETHER_TX_RING_SIZE 0x000C
#define ETHER_TX_DMA_ENABLE 0x0002
#define ETHER_TX_INTR_ENABLE 0x0001

/* Receive status vector */
#define RX_VEC_LENGTH 0x00007FFF
#define RX_VEC_CODE_VIOLATION 0x00010000
#define RX_VEC_DRIBBLE_NIBBLE 0x00020000
#define RX_VEC_CRC_ERROR 0x00040000
#define RX_VEC_MULTICAST 0x00080000
#define RX_VEC_BROADCAST 0x00100000
#define RX_VEC_INVALID_PREAMBLE 0x00200000
#define RX_VEC_LONG_EVENT 0x00400000
#define RX_VEC_BAD_PACKET 0x00800000
#define RX_VEC_CARRIER_EVENT 0x01000000
#define RX_VEC_MULTICAST_MATCH 0x02000000
#define RX_VEC_PHYSICAL_MATCH 0x04000000
#define RX_VEC_RECEIVE_SEQNUM 0xF8000000
#define RX_VEC_RECEIVE_SEQNUM_SHIFT 27
#define RX_VEC_FINISHED 0x8000000000000000ll
#define RX_PROMISCUOUS \

(RX_VEC_BROADCAST|RX_VEC_MULTICAST_MATCH|RX_VEC_PHYSICAL_MATCH)
#define RX_VEC_CKSUM_SHIFT 32

/* Transmit command header */
#define TX_CMD_LENGTH 0x00007FFF
#define TX_CMD_OFFSET 0x007F0000
#define TX_CMD_OFFSET_SHIFT 16
#define TX_CMD_TERM_DMA 0x00800000
#define TX_CMD_SENT_INT_EN 0x01000000
#define TX_CMD_CONCAT_1 0x02000000
#define TX_CMD_CONCAT_2 0x04000000
#define TX_CMD_CONCAT_3 0x08000000
#define TX_CMD_NUM_CATS 3

/* Transmit status vector */
#define TX_VEC_LENGTH 0x00007FFF
#define TX_VEC_COLLISIONS 0x000F0000
#define TX_VEC_COLLISION_SHIFT 16
#define TX_VEC_LATE_COLLISION 0x00100000
#define TX_VEC_CRC_ERROR 0x00200000
#define TX_VEC_DEFERRED 0x00400000
#define TX_VEC_COMPLETED_SUCCESSFULLY 0x00800000
#define TX_VEC_ABORTED_TOO_LONG 0x01000000
#define TX_VEC_ABORTED_UNDERRUN 0x02000000
#define TX_VEC_DROPPED_COLLISIONS 0x04000000
#define TX_VEC_CANCELED_DEFERRAL 0x08000000
#define TX_VEC_DROPPED_LATE_COLLISION 0x10000000
#define TX_VEC_FINISHED 0x8000000000000000ll

/* PHY defines */
#define PHY_QS6612X 0x0181441 /* Quality TX */
#define PHY_ICS1889 0x0015F41 /* ICS FX */
#define PHY_ICS1890 0x0015F42 /* ICS TX */
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#def ine PHY_DP83840 0x20005C0 /* National TX */
#def ine PHY_PCTL_RESET 0x8000 /* RESET */
#def ine PHY_PCTL_LOOPBACK 0x4000 /* Loopback */
#def ine PHY_PCTL_RATE 0x2000 /* 100Mbits */
#def ine PHY_PCTL_AN_ENABLE 0x1000 /* AN enable */
#def ine PHY_PCTL_POWERDOWN 0x0800 /* Powerdown PHY */
#def ine PHY_PCTL_ISOLATE 0x0400 /* MII isolate */
#def ine PHY_PCTL_RESTART_AN 0x0200 /* Restart AN */
#def ine PHY_PCTL_DUPLEX 0x0100 /* Full duplex */
#def ine PHY_PCTL_COLL_TEST 0x0080 /* Full duplex */
#def ine PHY_PMSR_ANC 0x0020 /* PHY (1:5) */
#def ine PHY_PMSR_FAULT 0x0010 /* PHY (1:6) */
#def ine PHY_PMSR_ANA 0x0008 /* PHY (1:3) */
#def ine PHY_PMSR_LINK 0x0004 /* PHY (1:2) */
#def ine PHY_PMSR_JABBER 0x0002 /* PHY (1:1) */
#def ine PHY_PMSR_ECAP 0x0001 /* PHY (1:0) */
#def ine PHY_PLPA_TAF4 0x0200 /* PHY (5:9) */
#def ine PHY_PLPA_TAF3 0x0100 /* PHY (5:8) */
#def ine PHY_PLPA_TAF2 0x0080 /* PHY (5:7) */
#def ine PHY_PLPA_TAF1 0x0040 /* PHY (5:6) */
#def ine PHY_PLPA_TAF0 0x0020 /* PHY (5:5) */

#endif

// ether.c

/*
 * Moosehead MACE 10/100 Mbit/s Fast Ethernet Interface Driver
 *
 * Copyright 1995, Silicon Graphics, Inc. All rights reserved.
 */

#ident “$Revision: 1.14 $”

#include “sys/types.h”
#include “sys/param.h”
#include “sys/systm.h”
#include “sys/sysmacros.h”
#include “sys/cmn_err.h”
#include “sys/debug.h”
#include “sys/edt.h”
#include “sys/errno.h”
#include “sys/immu.h”
#include “sys/invent.h”
#include “sys/kopt.h”
#include “sys/mbuf.h”
#include “sys/sbd.h”
#include “sys/socket.h”
#include “sys/cpu.h”
#include “net/if.h”
#include “net/raw.h”
#include “net/soioctl.h”
#include “misc/ether.h”
#include “sys/kmem.h”
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#include “netinet/in.h”
#include “netinet/in_systm.h”
#include “netinet/if_ether.h”
#include “netinet/ip.h”
#include “string.h”
#include “sys/idbgentry.h”
#include “sys/if_me.h”
#include “sys/atomic_ops.h”

/* conf ig from master.d */
extern int me_hdwrcksum_enable;
extern int me_hdwrgather_enable;
extern int me_rxdelay;
extern int me_fullduplex_ipg[];
extern int me_halfduplex_ipg[];
extern struct phyerrata me_phyerrata[];

/* General MACE ethernet hardware def ines */
#def ine ETHER_RX_BLOCK_SIZE 256
#def ine RCVBUF_SIZE 4096
#def ine TX_RING_SIZE 64
#def ine MSGCL_FIFO_SIZE 16
#def ine ETHER_HDRLEN 14
#def ine CRCLEN 4
#def ine ETHERMAXLEN 1536
#def ine ETHERMINLEN 64
#def ine DMA_PADDING 2

#def ine BLOCKROUND(x, blk) (((x) + (blk) - 1) & ~((blk) - 1))
#def ine FIFOINDEX(x,y) ((x) & ((y) - 1))
#def ine RXRINGINDEX(x) ((x) & (MSGCL_FIFO_SIZE - 1))
#def ine RXFIFOINDEX(x) ((x) & ((MSGCL_FIFO_SIZE * 2) - 1))
#def ine TXFIFOINDEX(x) ((x) & (TX_RING_SIZE - 1))

#def ine ei_ac eif.eif_arpcom /* common arp stuff */
#def ine ei_if ei_ac.ac_if /* network-visible interface */
#def ine ei_rawif eif.eif_rawif /* raw domain interface */

#def ine rx_control receive_alias
#def ine tx_control transmit_alias

/* TX f ifo entry */
typedef union{
 unsigned long long TXCmd;
 unsigned long long TXStatus;
 unsigned long long TXConcatPtr[4];
 unsigned long long TXData[16];
 char buf[128];
} TXf ifo;

/* RX and TX buffers */
typedef union{
 unsigned long long RXStatus;
 char buf[2048];
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} RXbuf;

typedef union{
 unsigned long long TXStatus;
 char buf[2048];
} TXbuf;

#define DMA_RX_PAD2+8 /* RX padding at front of buffer */

#define PHYS_START0x1
#define PHYS_WASUP0x2
#define PHYS_WASDOWN0x4
#define PHYS_UPDATE0x8

static struct maceif {
/* Common Ethernet interface */
struct etherif eif;

/* Multicast control */
u_int lafcoll;
u_int nmulti;
long long mlaf;

/* Hardware structures */
volatile struct mac110*mac;

/* Operations */
u_int mode;
char revision;

/* Phy xcvr info */
signed char phyaddr;
char phyrev;
char phystatus;
int phytype;

/* Transmit ring buffer */
short tx_rptr, tx_wptr;
int tx_free_space;
struct mbuf *tx_mfifo[TX_RING_SIZE];
volatile TXfifo *tx_fifo;

/* Performance */
int tcase[8];

/* Receive message cluster FIFO */
short rx_rptr, rx_rlen;
struct mbuf *rx_mfifo[MSGCL_FIFO_SIZE];
int rx_boffset;

/* Statistics */
int tx_ring_errors;
int rx_fifo_errors;
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/* TX link stats */
int tx_late_collisions;
int tx_crc_error;
int tx_deferred;
int tx_aborted_too_long;
int tx_aborted_underrun;
int tx_dropped_collisions;
int tx_canceled_deferral;
int tx_dropped_late_collision;

/* RX link stats */
int rx_octets_recv;
int rx_code_violation;
int rx_dribble_nibble;
int rx_crc_error;
int rx_multicast;
int rx_broadcast;
int rx_total_recv;
int rx_invalid_preamble;
int rx_long_event;
int rx_carrier_event;

} mace_ether;

static int mace_ether_init(struct etherif *, int);
static void mace_ether_reset(struct etherif *);
static void mace_ether_watchdog(int);
static int mace_ether_output(struct etherif *, struct etheraddr *,

struct etheraddr *, u_short, struct mbuf *);
static int mace_ether_ioctl(struct etherif *, int, void *);

static struct etherifops meops = {
mace_ether_init, mace_ether_reset, mace_ether_watchdog,
mace_ether_output,
(int (*)(struct etherif *, int, void *))mace_ether_ioctl

};

static void mace_ether_intr(int);
static void mace_ether_receive(struct maceif *, int, int);
static void mace_ether_transmit_complete(struct maceif *);
static void mace_ether_dump(int);

/*
 * Read a phy register over the MDIO bus
 */
static int
mace_ether_mdio_rd(register struct maceif *mif, int fireg)
{

volatile struct mac110 *mac = mif->mac;
volatile int rval;

mac->phy_address = (mif->phyaddr << 5) | (fireg & 0x1f);
mac->phy_read_start = fireg;
us_delay(25);
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while ((rval = mac->phy_dataio) & MDIO_BUSY) {
us_delay(25);

}

return rval;
}

/*
 * Write a phy register over the MDIO bus
 */
static int
mace_ether_mdio_wr(register struct maceif *mif, int fireg, int val)
{

volatile struct mac110 *mac = mif->mac;

mac->phy_address = (mif->phyaddr << 5) | (fireg & 0x1f);
mac->phy_dataio = val;
us_delay(25);

return val;
}

/*
 * Modify phy register using given mask and value
 */
static void
mace_ether_mdio_rmw(register struct maceif *mif, int fireg, int mask, int val)
{

register int rval;

rval = mace_ether_mdio_rd(mif, fireg);
rval = (rval & ~mask) | (val & mask);
mace_ether_mdio_wr(mif, fireg, rval);

}

/*
 * Process ERRATA data for the PHY found on the MDIO bus
 */
static void
mace_ether_mdio_errata(register struct maceif *mif)
{

register struct phyerrata *pe;

for (pe = me_phyerrata; pe->type != 0; ++pe) {
if (pe->type != mif->phytype)

continue;
if (pe->rev != mif->phyrev)

continue;
mace_ether_mdio_rmw(mif, pe->reg, pe->mask, pe->val);

}
}

/*
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 * Probe the management interface for PHYs
 */
static int
mace_ether_mdio_probe(register struct maceif *mif)
{

register int i, val, p2, p3;

/* already found the phy? */
if ((mif->phyaddr >= 0) && (mif->phyaddr < 32))

return mif->phytype;

/* probe all 32 slots for a known phy */
for (i = 0; i < 32; ++i) {

mif->phyaddr = (char)i;
p2 = mace_ether_mdio_rd(mif, 2);
p3 = mace_ether_mdio_rd(mif, 3);
val = (p2 << 12) | (p3 >> 4);
switch (val) {
 case PHY_QS6612X:
 case PHY_ICS1889:
 case PHY_ICS1890:
 case PHY_DP83840:

mif->phyrev = p3 & 0xf;
mif->phytype = val;
return val;

}
}
mif->phyaddr = -1;

return -1;
}

/*
 * Update our mode to match external xvcr
 *
 * Note: if the partner doesn’t support fast-link pulse auto-negotiation,
 * we just assume half-duplex mode to be safe.
 */
static void
mace_ether_link_update(register struct maceif *mif, int msr)
{

register int mode, p5, val = 0;

/*
 * If auto-negotiation complete, pick up result and
 * set our operating mode accordingly
 */
if ((msr & PHY_PMSR_ANC) && ((mif->phystatus & PHYS_UPDATE) == 0)) {

/* read ANLPAR register */
p5 = mace_ether_mdio_rd(mif, 5);
if (p5 & PHY_PLPA_TAF4) {

val |= MAC_100MBIT; /* 100Mb-T4 */
} else if (p5 & PHY_PLPA_TAF3) {

val |= MAC_100MBIT | MAC_FULL_DUPLEX; /* 100Mb-TX */
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} else if (p5 & PHY_PLPA_TAF2) {
val |= MAC_100MBIT; /* 100Mb-HD */

} else if (p5 & PHY_PLPA_TAF1) {
val |= MAC_FULL_DUPLEX; /* 10Mb-FD */

}

/* update mac mode */
mode = mif->mode;
mode &= ~(MAC_IPG | MAC_100MBIT | MAC_FULL_DUPLEX);
mode |= val;

/* set ipg based on full or half duplex */
if (val & MAC_FULL_DUPLEX) {
 if (me_fullduplex_ipg[0]) {

mode |= me_fullduplex_ipg[0] << MAC_IPGT_SHIFT;
mode |= me_fullduplex_ipg[1] << MAC_IPGR1_SHIFT;
mode |= me_fullduplex_ipg[2] << MAC_IPGR2_SHIFT;

 } else {
mode |= MAC_DEFAULT_IPG;

 }
} else {
 if (me_halfduplex_ipg[0]) {

mode |= me_halfduplex_ipg[0] << MAC_IPGT_SHIFT;
mode |= me_halfduplex_ipg[1] << MAC_IPGR1_SHIFT;
mode |= me_halfduplex_ipg[2] << MAC_IPGR2_SHIFT;

 } else {
mode |= MAC_DEFAULT_IPG;

 }
}
mif->mode = mode;
mif->mac->mac_control = mode;
mif->mac->dma_control |= ETHER_TX_DMA_ENABLE;

/* done */
mif->phystatus |= PHYS_UPDATE;

}

return;
}

void
if_meedtinit(struct edt *edtp)
{

struct maceif *mif = &mace_ether;
struct etheraddr ea;
register int pfn, unit = 0;
static int mainit;
extern char eaddr[];

/* once only */
if (mainit) {

return;
}
mainit = 1;
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/* should we bother to probe? */
mif->mac = (volatile struct mac110 *)MACE_ETHER_ADDRESS;

/* get ethernet address from system */
bcopy(eaddr, ea.ea_vec, ETHERADDRLEN);

/* print BSD style device present message on console? */
if (showconf ig) {

printf(“ec%d: hardware ethernet address %s\n”,
unit, ether_sprintf(ea.ea_vec));

}

/* init f ilters */
mif->mac->physaddr = 0;
mif->mac->secphysaddr = 0;
mif->mac->mlaf = 0;
mif->mlaf = 0;

/* get MACE ethernet hardware revision */
mif->revision = mif->mac->mac_control >> MAC_REV_SHIFT;

/* don’t know phy address */
mif->phyaddr = -1;

/* register ethernet interface */
mif->eif.eif_private = (caddr_t)mif;
ether_attach(&mif->eif, “ec”, unit, (caddr_t)mif,

&meops, &ea, INV_ETHER_EC, mif->revision);
idbg_addfunc(“me_dump”, (void (*)())mace_ether_dump);

/* attach to IP32 interrupt dispatch core */
if (setcrimevector(MACE_INTR(3), SPL5,

(void(*)())mace_ether_intr, (int)mif, 0))
cmn_err(CE_ALERT, “ec0: could not set interrupt vector”);

/* create transmit f ifo */
pfn = contmemall(2, 2, VM_DIRECT|VM_NOSLEEP);
mif->tx_f ifo = (TXf ifo *)small_pfntova_K1(pfn);

}

static void
mace_hdwrether_init(struct maceif *mif)
{

register struct mbuf *m;
register int boffset, i;

/* reset the ethernet */
mif->mac->mac_control = MAC_RESET;
mif->mac->mac_control = 0;

/* set operating mode */
mif->mac->mac_control = mif->mode;
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/* initialize transmit f ifo */
bzero((void *)mif->tx_f ifo, TX_RING_SIZE * sizeof (TXf ifo));
mif->mac->tx_ring_base = kvtophys((void *)mif->tx_f ifo);
mif->tx_rptr = mif->tx_wptr = 0;
mif->tx_free_space = TX_RING_SIZE;

/* free any previously queued tx buffers (toss-em) */
for (i = 0; i < TX_RING_SIZE; i++) {

m_freem(mif->tx_mf ifo[i]);
mif->tx_mf ifo[i] = NULL;

}

/* set watchdog */
mif->ei_if.if_timer = IFNET_SLOWHZ;

/* calculate proper receive f ill offset */
boffset = (sizeof (struct etherbufhead) -

 sizeof (struct ether_header)) / sizeof (long long);

/* setup receive message cluster list */
mif->rx_rptr = 0;
mif->rx_rlen = MSGCL_FIFO_SIZE;
mif->rx_boffset = boffset * sizeof (long long);
mif->mac->timer = me_rxdelay;
for (i = 0; i < mif->rx_rlen; i++) {

if ((m = m_vget(M_DONTWAIT, RCVBUF_SIZE, MT_DATA)) == NULL)
panic(“m_vget failed”);

dki_dcache_inval(mtod(m, void *), RCVBUF_SIZE);
mif->mac->rx_f ifo = kvtophys(mtod(m, caddr_t));
m_freem(mif->rx_mf ifo[i]);
mif->rx_mf ifo[i] = m;

}

/* set DMA control bits */
mif->mac->dma_control =

ETHER_TX_DMA_ENABLE |
ETHER_RX_DMA_ENABLE |
ETHER_RX_INTR_ENABLE |
(boffset << ETHER_RX_OFFSET_SHIFT) |
(mif->rx_rlen << ETHER_RX_THRESH_SHIFT);

}

static int
mace_ether_init(struct etherif *eif, int f lags)
{

register struct maceif *mif = (struct maceif *)eif->eif_private;
register int mode;
union {
 char eaddr[8];
 long long laddr;
} eau;

/* reset the ethernet */
mif->mac->mac_control = MAC_RESET;
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mif->mac->mac_control = 0;

/* store station address in RAM */
eau.laddr = 0;
bcopy((caddr_t)mif->ei_ac.ac_enaddr,

(caddr_t)&eau.eaddr[2], ETHERADDRLEN);
write_reg64(eau.laddr, (__psunsigned_t)&mif->mac->physaddr);

/* probe for the external transceiver */
mif->phystatus = 0;
if (mace_ether_mdio_probe(mif) < 0) {

mif->phystatus = PHYS_WASDOWN;
cmn_err(CE_ALERT, “ec0: phy device not found, probe failed”);

}

/* Load errata work-arounds into PHY */
mace_ether_mdio_errata(mif);

/* default to 100mbit half duplex (speed really doesn’t matter) */
mode = MAC_NORMAL | MAC_100MBIT;
if (f lags & IFF_PROMISC)

mode |= MAC_PROMISCOUS;
if (me_halfduplex_ipg[0]) {

mode |= me_halfduplex_ipg[0] << MAC_IPGT_SHIFT;
mode |= me_halfduplex_ipg[1] << MAC_IPGR1_SHIFT;
mode |= me_halfduplex_ipg[2] << MAC_IPGR2_SHIFT;

} else {
mode |= MAC_DEFAULT_IPG;

}
mif->mode = mode;

/* hardware init */
mace_hdwrether_init(mif);

return 0;
}

static void
mace_ether_rx_f ifo_error(register struct maceif *mif, int status)
{

if (status & INTR_RX_MSGS_UNDERFLOW)
cmn_err(CE_NOTE, “ec0: RX msg cluster list empty”);

if (status & INTR_RX_FIFO_OVERFLOW) {
cmn_err(CE_ALERT, “ec0: RX error, data FIFO overf low”);
mace_hdwrether_init(mif);

}
mif->rx_f ifo_errors++;

}

static char *
mace_ether_tx_emsg(unsigned status)
{

if (status & TX_VEC_ABORTED_UNDERRUN)
return “f ifo underrun”;
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else if (status & TX_VEC_ABORTED_TOO_LONG)
return “giant pkt”;

else if (status & TX_VEC_DROPPED_COLLISIONS)
return “excess collisions”;

else if (status & TX_VEC_CANCELED_DEFERRAL)
return “excess deferrals”;

else if (status & TX_VEC_DROPPED_LATE_COLLISION)
return “late collision”;

else
return “???”;

}

static void
mace_ether_tx_purge(register struct maceif *mif)
{

register int i;

/* turn off transmit ring dma */
mif->mac->dma_control &= ~ETHER_TX_DMA_ENABLE;

/* free any previously queued buffers (toss-em) */
for (i = 0; i < TX_RING_SIZE; i++) {

m_freem(mif->tx_mf ifo[i]);
mif->tx_mf ifo[i] = NULL;

}
mif->tx_rptr = mif->tx_wptr = mif->mac->tx_ring_rptr;
mif->mac->tx_ring_wptr = mif->tx_wptr;
mif->tx_free_space = TX_RING_SIZE;

}

static void
mace_ether_tx_error(register struct maceif *mif, int status)
{

register unsigned vstatus = mif->mac->irltv.last_transmit_vector;

/* statistics */
if (status & INTR_TX_LINK_FAIL) {

if (mif->phystatus & PHYS_WASUP)
cmn_err(CE_ALERT, “ec0: no carrier: check Ethernet

cable”);
else

mace_ether_tx_purge(mif);
}
if (status & INTR_TX_MEMORY_ERROR) {

cmn_err(CE_ALERT, “ec0: TX memory read error”);
mif->ei_if.if_f lags &= ~IFF_UP;

}
if (status & INTR_TX_ABORTED) {

cmn_err(CE_WARN, “ec0: TX aborted, %s (0x%08X)”,
mace_ether_tx_emsg(vstatus), vstatus);

mif->mac->dma_control |= ETHER_TX_DMA_ENABLE;
}
mif->tx_ring_errors++;

}



100 July 16, 1996

SGI ConfidentialDSS

static void
mace_ether_reset(struct etherif *eif)
{

register struct maceif *mif = (struct maceif *)eif->eif_private;
register int i;

/* put mac through global reset state */
mif->mac->mac_control = MAC_RESET;
mif->mac->mac_control = 0;

/* turn off watchdog */
mif->ei_if.if_timer = 0;

/* reset both DMA channels */
mace_ether_rx_fifo_error(mif, 0);
mif->rx_rptr = 0;

/* free any receive buffers */
for (i = 0; i < MSGCL_FIFO_SIZE; i++) {

m_freem(mif->rx_mfifo[i]);
mif->rx_mfifo[i] = NULL;

}

/* cleanup old TX buffers */
mace_ether_tx_purge(mif);

}

static void
mace_ether_watchdog(int unit)
{

register struct maceif *mif = &mace_ether;
register int rval;

/* Pick up status and free fifo space */
mace_ether_transmit_complete(mif);

/* Watch link status in the xcvr, broken for MACE rev 0 */
if (mif->phystatus & PHYS_START) {

if (((rval = mif->mac->phy_dataio) & MDIO_BUSY) == 0) {
mif->phystatus &= ~(PHYS_WASUP|PHYS_WASDOWN);
if (rval & PHY_PMSR_LINK) {

mace_ether_link_update(mif, rval);
mif->ei_if.if_flags |= IFF_UP;
mif->phystatus |= PHYS_WASUP;

} else {
mace_ether_tx_error(mif, INTR_TX_LINK_FAIL);
mif->ei_if.if_flags &= ~IFF_UP;
mif->phystatus |= PHYS_WASDOWN;
mif->phystatus &= ~PHYS_UPDATE;

}
}

}
if (mif->revision) {
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mif->mac->phy_address = (mif->phyaddr << 5) | 0x1;
mif->mac->phy_read_start = 1;
mif->phystatus |= PHYS_START;

}

/* keep watchdog running */
mif->ei_if.if_timer = IFNET_SLOWHZ;

}

static void
mace_ether_intr(int unit)
{

register struct maceif *mif = &mace_ether;
union {

__uint32_t all;
struct {

__uint32_t :2,
rxseqnum:5,
txrptr:9,
rxrptr:8,
isf:8;

} comp;
} status;

/* Read interrupt status from dispatch register in MACE */
while (((status.all = mif->mac->interrupt_status) & 0xff) != 0) {

 /*
 * Need to reclaim tx packets first until the NFS client
 * clntkudp_callit() routine is fixed to not be brain dead
 * in serializing all requests into the same private buffer.
 */
 if (mif->tx_rptr != status.comp.txrptr) {

mace_ether_transmit_complete(mif);
 }

 /* Process received packets */
 if (status.comp.isf & INTR_RX_DMA_REQ) {

mace_ether_receive(mif, status.comp.rxrptr,
status.comp.rxseqnum);

 }

 /* Check for receive errors */
 if (status.comp.isf & ETHER_RX_ERRORS) {

mace_ether_rx_fifo_error(mif, status.comp.isf);
mif->mac->interrupt_status = ETHER_RX_ERRORS;

 }

 /* Check for transmit errors */
 if (status.comp.isf & ETHER_TX_ERRORS) {

mace_ether_tx_error(mif, status.comp.isf);
mif->mac->interrupt_status = ETHER_TX_ERRORS;

 }
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 /* Check transmit complete status */
 if (status.comp.isf & INTR_TX_PKT_REQ) {

mif->mac->interrupt_status = INTR_TX_PKT_REQ;
 }

 /* Check transmit fifo empty status */
 if (status.comp.isf & INTR_TX_DMA_REQ) {

/* should be nothing left?, turn off drain interrupt */
mif->mac->tx_control = 0;

 }

}

return;
}

/*
 * Hardware internet checksum support
 */
static void
mace_ether_hdwrcksum(

struct maceif *mif,
struct mbuf *m0,
statistics_vector_t statistics)

{
struct etherbufhead *ebh;
struct ether_header *eh;
__uint32_t cksum;
__uint32_t x;
struct ip *ip;
char *crc;
int hlen, rlen;

/*
 * Finish TCP or UDP checksum on non-fragments.
 */
cksum = (statistics >> RX_VEC_CKSUM_SHIFT) & 0xffff;
rlen = statistics & RX_VEC_LENGTH;
ebh = mtod(m0, struct etherbufhead *);
eh = &ebh->ebh_ether;
ip = (struct ip *)(ebh + 1);
hlen = ip->ip_hl << 2;
if ((ntohs(eh->ether_type) == ETHERTYPE_IP) &&
 ((ip->ip_off & (IP_OFFMASK|IP_MF)) == 0) &&
 ((ip->ip_p == IPPROTO_TCP) || (ip->ip_p == IPPROTO_UDP))) {

/*
 * compute checksum of the pseudo-header
 */
cksum += (ip->ip_len - hlen) +

 htons((ushort)ip->ip_p) +
 (ip->ip_src.s_addr >> 16) +
 (ip->ip_src.s_addr & 0xffff) +
 (ip->ip_dst.s_addr >> 16) +
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 (ip->ip_dst.s_addr & 0xffff);

/*
 * Subtract the ether header from the checksum.
 * The IP header will sum to logical zero if it’s correct
 * so we don’t need to include it here. This is safe since,
 * if it’s incorrect, ip input code will toss it anyway.
 */
x = ((u_short*)eh)[0] + ((u_short*)eh)[1] +
 ((u_short*)eh)[2] + ((u_short*)eh)[3] +
 ((u_short*)eh)[4] + ((u_short*)eh)[5] +
 ((u_short*)eh)[6];
x = (x & 0xffff) + (x >> 16);
x = 0xffff & (x + (x >> 16));
cksum += 0xffff ^ x;

/*
 * subtract CRC portion that is not part of checksum
 */
crc = &(((char *)ip)[rlen - (ETHER_HDRLEN + CRCLEN)]);
if (rlen & 1) { /* odd */

cksum += 0xffff ^ (u_short) ((crc[1] << 8) | crc[0]);
cksum += 0xffff ^ (u_short) ((crc[3] << 8) | crc[2]);

} else { /* even */
cksum += 0xffff ^ (u_short) ((crc[0] << 8) | crc[1]);
cksum += 0xffff ^ (u_short) ((crc[2] << 8) | crc[3]);

}

/*
 * fold in carries
 */
cksum = (cksum & 0xffff) + (cksum >> 16);
cksum = 0xffff & (cksum + (cksum >> 16));

/*
 * valid iff all 1’s
 */
if (cksum == 0xffff) {

m0->m_f lags |= M_CKSUMMED;
}

}
}

/*
 * Record statistics and send up to protocol level
 */
static void
mace_ether_input(

struct maceif *mif,
struct mbuf *m0,
statistics_vector_t statistics)

{
register int length, error = 0, snoopf lags = 0;
register unsigned stats = (unsigned)statistics;
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register void *rbp;

/* save statistics info */
mif->ei_if.if_ipackets++;
length = stats & RX_VEC_LENGTH;
mif->ei_if.if_ibytes += length;
if (stats & (RX_VEC_MULTICAST | RX_VEC_BROADCAST |

 RX_VEC_CODE_VIOLATION | RX_VEC_LONG_EVENT |
 RX_VEC_CRC_ERROR | RX_VEC_INVALID_PREAMBLE |
 RX_VEC_DRIBBLE_NIBBLE | RX_VEC_CARRIER_EVENT |
 RX_VEC_BAD_PACKET)) {
if (stats & RX_VEC_MULTICAST)

mif->rx_multicast++;
if (stats & RX_VEC_BROADCAST)

mif->rx_broadcast++;
if (stats & RX_VEC_CODE_VIOLATION) {

snoopflags |= SNERR_FRAME;
mif->rx_code_violation++;

}
if (stats & RX_VEC_LONG_EVENT) {

snoopflags |= SNERR_FRAME;
mif->rx_long_event++;

}
if (stats & RX_VEC_CRC_ERROR) {

snoopflags |= SNERR_CHECKSUM;
mif->rx_crc_error++;

}
if (stats & RX_VEC_INVALID_PREAMBLE)

mif->rx_invalid_preamble++;
if (stats & RX_VEC_DRIBBLE_NIBBLE)

mif->rx_dribble_nibble++;
if (stats & RX_VEC_CARRIER_EVENT)

mif->rx_carrier_event++;

/* set master snoop error flags
 if any error conditions set */
if (stats & RX_VEC_BAD_PACKET) {

mif->ei_if.if_ierrors++;
snoopflags |= SN_ERROR;
error = 1;

}
}

/* ifheader at the front of the received buffer */
rbp = mtod(m0, void *);
IF_INITHEADER(rbp, &mif->ei_if, sizeof(struct etherbufhead));

/* test for promiscuous packets */
if ((stats & RX_PROMISCUOUS) == 0) {

snoopflags |= SN_PROMISC;
}

/* hardware internet checksum checker */
if (!error && (length > ETHERMINLEN) && me_hdwrcksum_enable) {
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mace_ether_hdwrcksum(mif, m0, statistics);
}

/* call input function to deliver the packet */
(void) ether_input(&mif->eif, snoopf lags, m0);

}

/*
 * Takes a received message buffer cluster and breaks it up into the
 * individual packets contained within it.
 */
static void
mace_ether_receive_unwind(register struct maceif *mif, struct mbuf *m0)
{

register statistics_vector_t statistics, *ps;
register int length = 0;

/* ??? - do we really need to do this - it is VERY expensive ??? */
/* Invalidate cache contents over entire buffer length */
dki_dcache_inval(mtod(m0, void *), RCVBUF_SIZE);

/* Get length */
ps = mtod(m0, statistics_vector_t *);
statistics = *ps;
ASSERT(statistics & RX_VEC_FINISHED);
length = statistics & RX_VEC_LENGTH;
if (length > ETHERMAXLEN)

length = ETHERMAXLEN;
length -= ETHER_HDRLEN + CRCLEN;
length += sizeof (struct etherbufhead);

/* Set mbuf length and pass upstream */
m0->m_len = length;
mace_ether_input(mif, m0, statistics);

}

/*
 * Basic procedure that checks to see how many message cluster buffers the
 * hardware has used and replaces them. Note that if we can’t replace a
 * buffer we must resubmit the old one and drop the received data.
 *
 * Note: this could be done at a lower software interrupt priority.
 */
static void
mace_ether_receive(register struct maceif *mif, int nptr, int seqnum)
{

register int optr, rlen = mif->rx_rlen;
register struct mbuf *m, *m0;

/* RX msgs packet collection, also gather statistics */
ASSERT(nptr < (MSGCL_FIFO_SIZE * 2));
optr = mif->rx_rptr;
while (optr != nptr) {

/* Message cluster being processed */
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m = mif->rx_mfifo[RXRINGINDEX(optr)];

/* Must have replacement cluster buffer */
if ((m0 = m_vget(M_DONTWAIT, RCVBUF_SIZE, MT_DATA)) != NULL) {

mace_ether_receive_unwind(mif, m);
} else {

m0 = m;
}
mif->mac->rx_fifo = kvtophys(mtod(m0, caddr_t));

/* New message cluster is at end of queue */
mif->rx_mfifo[RXRINGINDEX(optr + rlen)] = m0;

/* Update pointer */
optr = RXFIFOINDEX(optr + 1);

ASSERT(mif->mac->rx_fifo_depth <= MSGCL_FIFO_SIZE);
}
mif->rx_rptr = optr;

return;
}

/*
 * Transmit vector statistics
 */
static void
mace_ether_transmit_stats(struct maceif *mif, unsigned stats)
{

register int collisions = (stats & TX_VEC_COLLISIONS) >>
 TX_VEC_COLLISION_SHIFT;

mif->ei_if.if_obytes += stats & TX_VEC_LENGTH;
mif->ei_if.if_collisions += collisions;
if (stats & TX_VEC_DEFERRED) {

mif->ei_if.if_collisions++;
mif->tx_deferred++;

}
if ((stats & TX_VEC_COMPLETED_SUCCESSFULLY) == 0) {

if (stats & TX_VEC_LATE_COLLISION)
mif->tx_late_collisions++;

if (stats & TX_VEC_CRC_ERROR)
mif->tx_crc_error++;

if (stats & TX_VEC_ABORTED_TOO_LONG)
mif->tx_aborted_too_long++;

if (stats & TX_VEC_ABORTED_UNDERRUN)
mif->tx_aborted_underrun++;

if (stats & TX_VEC_DROPPED_COLLISIONS)
mif->tx_dropped_collisions++;

if (stats & TX_VEC_CANCELED_DEFERRAL)
mif->tx_canceled_deferral++;

if (stats & TX_VEC_DROPPED_LATE_COLLISION)
mif->tx_dropped_late_collision++;

if (stats & (TX_VEC_CRC_ERROR |
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 TX_VEC_ABORTED_TOO_LONG |
 TX_VEC_ABORTED_UNDERRUN |
 TX_VEC_CANCELED_DEFERRAL)) {
mif->ei_if.if_oerrors++;

}
}

}

/*
 * pick up status vectors and rack up free space, can be called either from
 * interrupt time or output time.
 */
void
mace_ether_transmit_complete(register struct maceif *mif)
{

register int tx_rptr = mif->tx_rptr, tx_wptr = mif->tx_wptr, cnt = 0;
register volatile TXfifo *f = &mif->tx_fifo[tx_rptr];
register long long status;

/* Empty? */
if (tx_rptr == tx_wptr)

return;

/* TX FIFO garbage collection, also gather statistics */
while ((status = f->TXStatus) & TX_VEC_FINISHED) {

/* Gather info and record done */
mace_ether_transmit_stats(mif, (unsigned)status);
m_freem(mif->tx_mfifo[tx_rptr]);
mif->tx_mfifo[tx_rptr] = 0;
cnt++;
tx_rptr = TXFIFOINDEX(tx_rptr + 1);
if (tx_rptr == tx_wptr)

break;
f = &mif->tx_fifo[tx_rptr];

}

/* Record new ring complete position */
mif->tx_rptr = tx_rptr;
(void) atomicAddInt(&mif->tx_free_space, cnt);

}

#ifdef ENETDEBUG
/*
 * DEBUG ONLY
 */
static void
mace_valid_txcmd(volatile TXfifo *f)
{

register u_int ec, i, ccnt, clen, len;

#define MACE_ECODE(num){ ec = (num); goto bad; }

/* Header */
if ((len = (f->TXCmd & 0xFFFF)) > 1513)
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MACE_ECODE(0);
if (((f->TXCmd >> 16) & 0xFF) > 0x7F)

MACE_ECODE(1);
if ((f->TXCmd >> 32) != 0)

MACE_ECODE(2);
for (ccnt = 0, i = 25; i < 32; ++i) {

if ((f->TXCmd >> i) & 1)
++ccnt;

}
if (ccnt > TX_CMD_NUM_CATS)

MACE_ECODE(3);

/* Concatenation buffers */
for (i = 1; i <= ccnt; ++i) {

if (f->TXConcatPtr[i] & 7)
MACE_ECODE(4);

if ((f->TXConcatPtr[i] >> 44) != 0LL)
MACE_ECODE(5);

if ((clen = ((f->TXConcatPtr[i] >> 32) & 0x3FF)) > 1513)
MACE_ECODE(6);

}

return;

bad:
printf(“mace_valid_txcmd: bad cmd blk detected (%d)\n”, ec);
printf(“\tTXCmd = 0x%016llX\n”, f->TXCmd);
printf(“\tTXConcatPtr[0] = 0x%016llX\n”, f->TXConcatPtr[0]);
printf(“\tTXConcatPtr[1] = 0x%016llX\n”, f->TXConcatPtr[1]);
printf(“\tTXConcatPtr[2] = 0x%016llX\n”, f->TXConcatPtr[2]);
for (i = 4; i < 16; i++) {

printf(“\tTXData[%d] = 0x%016llX\n”, i, f->TXData[i]);
}

}
#endif

/*
 * Try to build a concatenation list for the supplied mbuf chain. We
 * don’t try to optimize the failure case.
 */
static int
mace_tx_catlist(

struct maceif *mif,
volatile TXf ifo *f,
struct mbuf *m,
int *plen)

{
register int rev = mif->revision, ccnt = 1, remain, hlen, f len, len;
register paddr_t vaddr;

#def ine IO_PGSIZE 4096
#def ine IO_PGOFFSET (IO_PGSIZE - 1)
#def ine IO_PGMASK ~(IO_PGSIZE - 1)
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/* Count protocol header bytes, usually one mbuf */
for (hlen = 0; m != NULL; m = m->m_next) {

if (m->m_type != MT_HEADER) {
break;

}
if ((hlen + m->m_len) > 96) {

break;
}
hlen += m->m_len;

}

/* Process all remaining mbufs */
for (ccnt = 1; m != NULL; m = m->m_next) {

/* Get data length, skip empty buffers */
if ((len = m->m_len) == 0)

continue;

/* Valid aligned starting address */
if ((vaddr = mtod(m, paddr_t)) & 7) {

/* Pullup bytes in first buffer to align? */
if (ccnt == 1) {

flen = 8 - (int)(vaddr & 7);
if (flen >= len) {

/* short buf, pullup */
flen = len;
hlen += flen;
continue;

} else {
/* clip bytes off front */
hlen += flen;
vaddr += flen;
len -= flen;

}
} else {

++mif->tcase[4];
return -1;

}
}

/* Force dword length (for MACE ethernet rev 0 only) */
if (!rev && m->m_next && ((len & 7) != 0)) {

++mif->tcase[5];
return -1;

}

/* Writeback cache contents over virtual length */
dki_dcache_wb((void *)vaddr, len);

/* Create gather elements (check for page crossing) */
if ((vaddr & IO_PGMASK) != ((vaddr + len - 1) & IO_PGMASK)) {

remain = IO_PGSIZE - (int)(vaddr & IO_PGOFFSET);

/* Set concatenation pointer address & length */
f->TXConcatPtr[ccnt++] =
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((long long)(remain - 1) << 32) |
kvtophys((void *)vaddr);

/* Whats left on the following virtual page? */
vaddr += remain;
len -= remain;

}

/* Set concatenation pointer address & length */
f->TXConcatPtr[ccnt] = ((long long)(len - 1) << 32) |

kvtophys((void *)vaddr);

/* Advance and fail if at concatenation list limit */
if (ccnt++ > TX_CMD_NUM_CATS) {

++mif->tcase[6];
return -1;

}
}

/* tell caller how much we want to copy */
*plen = hlen;
hlen += ETHER_HDRLEN;

/* will the copied data and concatenation list overlap? */
if (hlen > (sizeof(TXfifo) - ccnt * sizeof(long long))) {

++mif->tcase[7];
return -1;

}

return ccnt - 1;
}

/*
 * Match the cnt words of packet headers pointed at by hp against sf.
 *
 * Note: hp is not aligned, must use LWL/LWR instructions here!!!!!
 */
static int
sfmatch(struct snoopfilter *sf, char *hp, int cnt)
{

__uint32_t *mask, *match;

hp -= 3; /* hack to force lwl/lwr */
mask = sf->sf_mask;
match = sf->sf_match;
while (--cnt >= 0) {

if (((*(__uint32_t *)&hp[3]) & *mask) != *match)
return 0;

hp += sizeof (__uint32_t), mask++, match++;
}
return 1;

}

/*



July 16, 1996 111

SGI Confidential DSS

 * Slightly customized version of snoop_match() which expects
 * a word-aligned address *after* the ether_header so we don’t
 * have to copy and align headers to make snoop_match() happy.
 *
 * XXX - should optimize this, need our own ether_selfsnoop.
 */
static void
mace_selfsnoop(struct maceif *mif, caddr_t eh, struct mbuf *m0, int plen)
{

register struct rawif *rif = &mif->ei_rawif;
register char *hp = mtod(m0, char *);
register int i, len = m0->m_len;
struct ether_header ehdr;
struct snoopf ilter *sf;

len >>= RAW_ALIGNSHIFT;
if (len > SNOOP_FILTERLEN)

len = SNOOP_FILTERLEN;

i = rif->rif_sfveclen;
for (sf = rif->rif_sfvec; --i >= 0; sf++) {

if (!sf->sf_active)
continue;

if (sfmatch(sf, hp, len)) {
rif->rif_matched = sf;
bcopy((void *)eh, (void *)&ehdr, sizeof ehdr);
ether_selfsnoop(&mif->eif, &ehdr, m0, 0, plen);
return;

}
}

return;
}

/*
 * High level ethernet output entry point, called by upper level protocol
 * stack to place a new message buffer chain into the output queue.
 *
 * Each 128byte MACE tx descriptor describes a single packet that contains
 * up to 120 bytes of data locally, plus up to three pointers to noncontiguous
 * data to be concatenated onto the end of the packet by the hardware.
 *
 * The MACE tx pointers have the following restrictions:
 * - addresses must start on dword aligned boundaries
 * - iff MACE1.0 is used, block lengths must be dword multiples
 */
static int
mace_ether_output(

struct etherif *eif, /* on this interface */
struct etheraddr *edst, /* with these addresses */
struct etheraddr *esrc,
u_short type, /* of this type */
struct mbuf *m0) /* send this chain */

{



112 July 16, 1996

SGI ConfidentialDSS

register struct maceif *mif = (struct maceif *)eif->eif_private;
register volatile TXf ifo *f = &mif->tx_f ifo[mif->tx_wptr];
register int m0save = 0, ccnt, tlen, len, txcmd, nwptr;
register struct mbuf *m;
struct mehdr {

struct etheraddr dst, src;
char htype, ltype;

} *eh;
int plen;
static int cmdmap[] = {

0,
TX_CMD_CONCAT_1,
TX_CMD_CONCAT_1 | TX_CMD_CONCAT_2,
TX_CMD_CONCAT_1 | TX_CMD_CONCAT_2 | TX_CMD_CONCAT_3,

};

/*
 * Space in TX ring? (note: don’t use last entry, f ix this)
 */
if (mif->tx_free_space <= 1) {

IF_DROP(&mif->ei_if.if_snd);
m_freem(m0);
return ENOBUFS;

}

/*
 * Link is down, don’t queue new packets
 */
if (mif->phystatus & PHYS_WASDOWN) {

mif->ei_if.if_odrops++;
m_freem(m0);
return EIO;

}

/*
 * Calculate length of packet
 */
len = m_length(m0);
tlen = len + ETHER_HDRLEN;

++mif->tcase[0];

/*
 * Init TX cmd header, interrupt every 1/4 ring
 */
txcmd = TX_CMD_TERM_DMA;
nwptr = TXFIFOINDEX(mif->tx_wptr + 1);
if ((nwptr & ((TX_RING_SIZE / 4) - 1)) == 0) {

txcmd |= TX_CMD_SENT_INT_EN;
}

/*
 * CASE #1
 * If it’s a short packet, just put directly in the TX ring.
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 */
if (tlen < (sizeof(TXfifo) - sizeof(long long))) {

/* Set up the fifo block cmd header */
f->TXCmd = txcmd |

((sizeof(TXfifo) - tlen) <<
 TX_CMD_OFFSET_SHIFT) | (tlen - 1);

/* Ethernet header insertion point */
eh = (struct mehdr *)&f->buf[sizeof(TXfifo) - tlen];

/* Copy the packet into the TX ring */
m_datacopy(m0, 0, len,

(void *)&f->buf[sizeof(TXfifo) - len]);

++mif->tcase[1];

/*
 * CASE #2
 * Pull up all the protocol headers, then check if we can DMA
 * directly out of the remaining mbufs using the concatenation
 * buffers. If not, copy the rest of the data into a cluster
 * and dma directly out of that instead. Turns out that this
 * works out ok 99.9% of the time (very few bcopys).
 */
} else if ((ccnt = mace_tx_catlist(mif, f, m0, &plen)) > 0) {

/* Data insertion point */
eh = (struct mehdr *)&f->buf[sizeof(TXfifo) - plen];

/* Pullup plen data bytes of mbuf chain? */
m_datacopy(m0, 0, plen, (void *)eh);

/* Backup for ethernet header insertion point */
plen += ETHER_HDRLEN;
eh--;

/* Set up the fifo block cmd header */
ASSERT(ccnt <= TX_CMD_NUM_CATS);
f->TXCmd = txcmd | cmdmap[ccnt] |

((sizeof(TXfifo) - plen) << TX_CMD_OFFSET_SHIFT) |
 (tlen - 1);

/* Need to save packet until dma is complete */
mif->tx_mfifo[mif->tx_wptr] = m0;
m0save = 1;

++mif->tcase[2];
/*
 * CASE #3
 * Just copy the packet into a single cluster and DMA out of it.
 */
} else {

/* Need a message buffer cluster to hold the entire packet */
if ((m = m_vget(M_DONTWAIT, len, MT_DATA)) == NULL) {

mif->ei_if.if_odrops++;
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m_freem(m0);
return ENOBUFS;

}
mif->tx_mfifo[mif->tx_wptr] = m;

/* Set up the fifo block cmd header */
f->TXCmd = txcmd | TX_CMD_CONCAT_1 |

((sizeof(TXfifo) - ETHER_HDRLEN)
<< TX_CMD_OFFSET_SHIFT) |

(tlen - 1);

/* Ethernet header insertion point */
eh = (struct mehdr *)&f->buf[sizeof(TXfifo) - ETHER_HDRLEN];

/* Copy the packet into a contiguous buffer */
m_datacopy(m0, 0, m->m_len, mtod(m, caddr_t));

/* Writeback cache contents over needed length */
dki_dcache_wb(mtod(m, void *), m->m_len);

/* Set concatenation pointer #1 physical address & length */
f->TXConcatPtr[1] = ((long long)(m->m_len - 1) << 32) |

kvtophys(mtod(m, caddr_t));

++mif->tcase[3];
}

/* Create ether header at front of the packet (unaligned) */
eh->dst = *edst;
eh->src = *esrc;
eh->htype = type >> 8;
eh->ltype = type;

/* Check whether snoopers want to copy this packet */
if (RAWIF_SNOOPING(&mif->ei_rawif)) {

/* Call snoop routine to filter and deliver pkt */
mace_selfsnoop(mif, (caddr_t)eh, m0, len);

}

/* Free the original mbuf list, no longer needed */
if (!m0save) {

m_freem(m0);
}

#ifdef ENETDEBUG
/* Check if transmit command is valid (DEBUG ONLY) */
mace_valid_txcmd(f);

#endif

/* Place the packet into the TX hardware output queue */
(void) atomicAddInt(&mif->tx_free_space, -1);
mif->tx_wptr = nwptr;
mif->mac->tx_ring_wptr = nwptr;
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return 0;
}

/*
 * DEC Poly routine
 */
static unsigned
CrcGen(unsigned char *Bytes, int BytesLength)
{

unsigned Crc = 0xFFFFFFFF;
unsigned const Poly = 0x04c11db7;
unsigned Msb;
unsigned char CurrentByte;
int Bit;

while (BytesLength-- > 0) {
CurrentByte = *Bytes++;
for (Bit = 0; Bit < 8; Bit++) {

Msb = Crc >> 31;
Crc <<= 1;
if (Msb ^ (CurrentByte & 1)) {

Crc ^= Poly;
Crc |= 1;

}
CurrentByte >>= 1;

}
}

return Crc;
}

/*
 * Given a multicast ethernet address, this routine calculates the
 * address’s bit index in the logical address f ilter mask
 */
static int
mace_laf_hash(u_char *addr, int len)
{

return CrcGen(addr, len) >> 26;
}

static int
mace_ether_ioctl(

struct etherif *eif,
int cmd,
void *data)

{
register struct maceif *mif = (struct maceif *)eif->eif_private;
struct mfreq *mfr;
union mkey *key;

mfr = (struct mfreq *)data;
key = mfr->mfr_key;



116 July 16, 1996

SGI ConfidentialDSS

switch (cmd) {
 /* Enable one of the multicast filter flags */
 case SIOCADDMULTI:

mfr->mfr_value =
mace_laf_hash(key->mk_dhost, sizeof (key->mk_dhost));

if (LAF_TSTBIT(mif->mlaf, mfr->mfr_value)) {
ASSERT(mfhasvalue(&eif->eif_mfilter, mfr->mfr_value));
mif->lafcoll++;
break;

}
ASSERT(!mfhasvalue(&eif->eif_mfilter, mfr->mfr_value));
LAF_SETBIT(mif->mlaf, mfr->mfr_value);
write_reg64(mif->mlaf, (__psunsigned_t)&mif->mac->mlaf);
if (mif->nmulti == 0)

eiftoifp(eif)->if_flags |= IFF_FILTMULTI;
mif->nmulti++;
break;

 /* Disable one of the multicast filter flags */
 case SIOCDELMULTI:

if (mfr->mfr_value !=
mace_laf_hash(key->mk_dhost, sizeof(key->mk_dhost)))
return EINVAL;

if (mfhasvalue(&eif->eif_mfilter, mfr->mfr_value)) {
/* Forget about this collision. */
--mif->lafcoll;
break;

}

/*
 * If this multicast address is the last one to map
 * the bit numbered by mfr->mfr_value in the filter,
 * clear that bit and update the chip.
 */
LAF_CLRBIT(mif->mlaf, mfr->mfr_value);
write_reg64(mif->mlaf, (__psunsigned_t)&mif->mac->mlaf);
--mif->nmulti;
if (mif->nmulti == 0)

eiftoifp(eif)->if_flags &= ~IFF_FILTMULTI;
break;

 default:
return EINVAL;

}

return (0);
}

static void
mace_hexdump(char *msg, char *cp, int len)
{

register int idx;
register int qqq;
char qstr[512];
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int maxi = 128;
static char digits[] = “0123456789abcdef”;

if (len < maxi)
maxi = len;

for (idx = 0, qqq = 0; qqq<maxi; qqq++) {
if (((qqq%16) == 0) && (qqq != 0))

qstr[idx++] = ‘\n’;
qstr[idx++] = digits[cp[qqq] >> 4];
qstr[idx++] = digits[cp[qqq] & 0xf];
qstr[idx++] = ‘ ‘;

}
qstr[idx] = 0;
qprintf(“%s: %s\n”, msg, qstr);

}

static void
mace_dumpif(struct ifnet *ifp)
{

qprintf(“if_name \”%s\” if_unit %d if_mtu %d if_f lags 0x%x if_timer
%d\n”,

ifp->if_name, ifp->if_unit, ifp->if_mtu, ifp->if_f lags,
ifp->if_timer);

qprintf(“ifq_len %d ifq_maxlen %d ifq_drops %d\n”,
ifp->if_snd.ifq_len, ifp->if_snd.ifq_maxlen,
ifp->if_snd.ifq_drops);

qprintf(“if_ipackets %d if_ierrors %d if_opackets %d if_oerrors %d\n”,
ifp->if_ipackets, ifp->if_ierrors,
ifp->if_opackets, ifp->if_oerrors);

qprintf(“if_collisions %d if_ibytes %d if_obytes %d if_odrops %d\n”,
ifp->if_collisions, ifp->if_ibytes,
ifp->if_obytes, ifp->if_odrops);

}

static char *
mace_phystr(int phytype)
{

register char *pname = ““;

switch(phytype) {
 case PHY_QS6612X:

pname = “QS6612”;
break;

 case PHY_ICS1889:
pname = “ICS1889”;
break;

 case PHY_ICS1890:
pname = “ICS1890”;
break;

 case PHY_DP83840:
pname = “DP83840”;
break;

}
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return pname;
}

static void
mace_dumpei(struct maceif *mif)
{

qprintf(“ac_enaddr %s\n”, ether_sprintf(mif->ei_ac.ac_enaddr));
qprintf(“eif_rawif 0x%x\n”, &mif->ei_rawif);
qprintf(“nmulti %d lafcoll %d “, mif->nmulti, mif->lafcoll);
mace_hexdump(“laf”, (char *)&mif->mlaf, sizeof (long long));
qprintf(“phyaddr %d phyrev %d phystatus %x phytype %x %s\n”,

mif->phyaddr, mif->phyrev, mif->phystatus,
mif->phytype, mace_phystr(mif->phytype));

qprintf(“tx_f ifo 0x%08X mode 0x%08X\n”, mif->tx_f ifo, mif->mode);
qprintf(“tx_ring_errors %d rx_f ifo_errors %d\n”,

mif->tx_ring_errors, mif->rx_f ifo_errors);
qprintf(“tx_rptr %d tx_wptr %d tx_free_space %d\n”,

mif->tx_rptr, mif->tx_wptr, mif->tx_free_space);
qprintf(“tx_late_collisions %d tx_crc_error %d tx_deferred %d\n”,

mif->tx_late_collisions, mif->tx_crc_error, mif->tx_deferred);
qprintf(“tx_aborted_too_long %d tx_aborted_underrun %d\n”,

mif->tx_aborted_too_long, mif->tx_aborted_underrun);
qprintf(“tx_dropped_collisions %d tx_canceled_deferral %d\n”,

mif->tx_dropped_collisions, mif->tx_canceled_deferral);
qprintf(“tx_dropped_late_collision %d\n”,

mif->tx_dropped_late_collision);
qprintf(“txcases: %d %d %d %d / %d %d %d %d\n”,

mif->tcase[0], mif->tcase[1], mif->tcase[2], mif->tcase[3],
mif->tcase[4], mif->tcase[5], mif->tcase[6], mif->tcase[7]);

qprintf(“rx_rptr %d rx_rlen %d rx_boffset %d\n”,
mif->rx_rptr, mif->rx_rlen, mif->rx_boffset);

qprintf(“rx_code_violation %d rx_dribble_nibble %d\n”,
mif->rx_code_violation, mif->rx_dribble_nibble);

qprintf(“rx_crc_error %d rx_invalid_preamble %d rx_long_event %d\n”,
mif->rx_crc_error, mif->rx_invalid_preamble,
mif->rx_long_event);

qprintf(“rx_carrier_event %d rx_multicast %d rx_broadcast %d\n”,
mif->rx_carrier_event, mif->rx_multicast, mif->rx_broadcast);

}

static void
mace_dumpregs(struct maceif *mif)
{

register long long *regs = (long long *)mif->mac;
register int i;

qprintf(“intf regs: 0x%08X\n”, regs);
for (i = 0; i < 32; i += 4, regs += 4) {

qprintf(“%02x 0x%016llX 0x%016llX 0x%016llX 0x%016llX\n”,
i, regs[0], regs[1], regs[2], regs[3]);

}
}

static void
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mace_ether_dump(int unit)
{

struct maceif *mif = &mace_ether;

mace_dumpif(&mif->ei_if);
qprintf(“\n”);
mace_dumpei(mif);
qprintf(“\n”);
mace_dumpregs(mif);
qprintf(“\n”);

/*
mace_dumpphy(mif);

*/
}
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5 ISA Bus Interface

TheMoosehead system I/O asic contains an interface to an external PC style ISA bus that is used to connect up the
standard PC peripherals such as serial, parallel, game port, calendar clock, Flash-ROM, and NIC. The interface
includes five DMA channels for the serial and parallel interfaces. The interface also provides all of the support for
PIO bus cycles and interrupts from the external parts. A block diagram of the ISA interface is shown below:

ISA features:

• Provides interface to external serial, parallel, and game port devices

• Provides five DMA channels for connection to serial and parallel interfaces

• Provides interface to external Flash-ROM (up to 2 Megabytes maximum)

• Provides interface to external Dallas DS1687 Calendar Clock

• Provides simple interface to Number-In-a-Can serial PROM

Super I/O feature summary:

• Two high speed 16C550C serial ports with hardware RTS/CTS and per port HP IR link support

• Both serial ports have clock prescalers to support MIDI and normal bauds rates up to 460.8Kb

• EPP/ECP-1284 high speed parallel port with all downward compatible modes

Calendar Clock feature summary:

• Standard Dallas 12887 RTC core with century calendar extension

• Alarm feature extended from 24 hours to one month and connected to external power on circuit

• Unique 56-bit silicon serial # embedded in module (system serial # and ethernet address)

• Battery backed up NVRAM from 242 bytes to 4K bytes depending on model used

ECP1284NIC Serial A & B

RTCFlash-ROM

PowerOn

ISA Interface
DMA/PIO/INTR

TO CPU

internal external

Power Switch

Number
16C550

Parallel
Dual

in-a-can
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5.1  Register Programming Interface

The following table shows all of the ISA interface registers. All bits not explicitly defined are read as zeros. All regis-
ters are defined on 64-bit aligned boundaries and can be read or written using 64-bit programmed i/o operations. Each
functional block of registers starts on a 16Kbyte aligned address. Gaps or unused space within each functional blocks
16Kbyte address range are aliased to existing registers. The register list is shown below:

Note: The ISA control register space consists of 4 pages of 16Kbytes each.

TABLE 52. ISA Interface Registers

Page Offset Register Name Type Bits Function
0 0x00 Ring Base & Reset RW 31:0 Peripheral Controller Ring Base & Reset

0x08 Misc. Control RW 8:0 Flash-Rom/Dp-Ram/Led/NIC control register

0x10 PC Interrupt Status RW 31:0 Peripheral Controller Interrupt Status Register

0x18 PC Interrupt Mask RW 31:0 Peripheral Controller Interrupt Mask Register

0x2000
-

0x3FFF

DP-RAM RW 63:0 DP-RAM Programmed IO access

1 0x00 Parallel Context A RW 63:0 Parallel DMA buffer context A register

0x08 Parallel Context B RW 63:0 Parallel DMA buffer context B register

0x10 Parallel Cntl/Status RW 4:0 Parallel DMA control and status register

0x18 Parallel Diagnostic RO 13:0 Parallel DMA diagnostic register

2 0x00 S1 TX Control RW 10:5 Serial #1 TX DMA channel ring buffer control

0x08 S1 TX Read Pointer RW 11:0 Serial #1 TX DMA channel ring read pointer

0x10 S1 TX Write Pointer RW 11:5 Serial #1 TX DMA channel ring write pointer

0x18 S1 TX Ring Depth RO 11:5 Serial #1 TX DMA channel ring buffer depth

0x20 S1 RX Control RW 10:5 Serial #1 RX DMA channel ring buffer con-
trol

0x28 S1 RX Read Pointer RW 11:5 Serial #1 RX DMA channel ring read pointer

0x30 S1 RX Write Pointer RW 11:0 Serial #1 RX DMA channel ring write pointer

0x38 S1 RX Ring Depth RO 11:5 Serial #1 RX DMA channel ring buffer depth

3 0x00 S2 TX Control RW 10:5 Serial #2 TX DMA channel ring buffer control

0x08 S2 TX Read Pointer RW 11:0 Serial #2 TX DMA channel ring read pointer

0x10 S2 TX Write Pointer RW 11:5 Serial #2 TX DMA channel ring write pointer

0x18 S2 TX Ring Depth RO 11:5 Serial #2 TX DMA channel ring buffer depth

0x20 S2 RX Control RW 10:5 Serial #2 RX DMA channel ring buffer con-
trol

0x28 S2 RX Read Pointer RW 11:5 Serial #2 RX DMA channel ring read pointer

0x30 S2 RX Write Pointer RW 11:0 Serial #2 RX DMA channel ring write pointer

0x38 S2 RX Ring Depth RO 11:5 Serial #2 RX DMA channel ring buffer depth
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5.1.1  Peripheral controller ring base address and ISA external RESET

The following tables show the individual bits for the ring base and reset register:

The base address field in this control register forms the 32KB aligned base address of all eight ring buffers in the
peripheral controller. Each of the eight ring buffers within the specified block is 4KB in length and alignment.

TABLE 53. Peripheral ring base and reset register

Bits
Reset
Value Type Description

0 1 RW RESET (to external super i/o or other discrete serial/parallel interface chips)
0 - nop, reset inactive
1 - reset external controller

14:1 0 RO <reserved, read as zeros>

31:15 0 RW Base address of peripheral controller ring buffers

BaseAddress[31:15]

Audio Input Ring

Audio Output #1 Ring

Audio Output #2 Ring

Scratch Area

Serial #1 Transmit Ring

Serial #1 Receive Ring

Serial #2 Transmit Ring

Serial #2 Receive Ring

4KB offsets

32KB aligned
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5.1.2  Flash-ROM/LED/DP-RAM/NIC control register
The following tables show the individual bits for the Flash-ROM/LED/DP-RAM/NIC control register:

TABLE 54. Flash-ROM/NIC control register

Bits
Reset
Value Type Description

0 0 RW Write enable
0 - writes disabled (write operations go into bit bucket)
1 - writes to Flash-ROM enabled

1 0 RO External password clear enable
0 - password clear disabled
1 - password clear enabled

2 0 RW NIC interface deassert
0 - Hold NIC bidirectional interface low
1 - no operation

3 0 RO Current value on NIC interface signal
0 - signal is low
1 - signal is high

4 0 RW Red LED Enable
0 - enabled, red LED color active
1 - disabled

5 1 RW Green LED Enable
0 - enabled, green LED color active
1 - disabled

6 0 RW Dp-RAM Write Enable
0 - disabled
1 - PIO write access to the Dp-RAM is enabled

7 0 RW Test UST Timer
0 - disabled
1 - Test mode enabled

8 0 RW SA20 Enable
0 - sa20 functions as an address bit
1 - Game port chip select on sa20
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5.1.3  Peripheral Controller Interrupt Status and Mask registers
The following table shows the individual bits for interrupt status and mask registers:

CRIME
Bit

 Slot Index Bit Type Interrupt Source
6 0 0 RO Audio Control Channel Status Word Interrupt Request

0 - no interrupt pending
1 - at least one of the selected bits in the status word is logic ‘1’ true

1 1 RO Audio Volume Control Status Change Interrupt Request
0 - no interrupt pending
1 - one or both of the volume control inputs is logic ‘1’ true

2 2 RO Audio Stereo Input #1 DMA Threshold Interrupt Request
0 - no interrupt pending
1 - the selected ring buffer threshold interrupt condition has been reached

3 3 RO Audio Stereo Input #1 DMA FIFO Overflow Error Interrupt Request
0 - no interrupt pending
1 - the internal DMA FIFO overflowed, DMA has stopped, fatal error

4 4 RO Audio Stereo Output #2 DMA Threshold Interrupt Request
0 - no interrupt pending
1 - the selected ring buffer threshold interrupt condition has been reached

5 5 RO Audio Stereo Output #2 DMA Memory Error Interrupt Request
0 - no interrupt pending
1 - a crime memory error occurred during a DMA transaction, DMA has stopped, fatal error

6 6 RO Audio Stereo Output #3 DMA Threshold Interrupt Request
0 - no interrupt pending
1 - the selected ring buffer threshold interrupt condition has been reached

7 7 RO Audio Stereo Output #3 DMA Memory Error Interrupt Request
0 - no interrupt pending
1 - a crime memory error occurred during a DMA transaction, DMA has stopped, fatal error

5 0 8 RO RTC Interrupt Request

1 9 RO PS/2 Keyboard Interrupt Request

2 10 RO PS/2 Keyboard Poll Flag, Unmasked non-interrupt version of above signal

3 11 RO PS/2 Mouse Interrupt Request

4 12 RO PS/2 Mouse Poll Flag, Unmasked non-interrupt version of above signal

5 13 RO Count/Compare Timer #0

6 14 RO Count/Compare Timer #1

7 15 RO Count/Compare Timer #2

4 0 16 RW ISA ECP1284 Parallel Device Interrupt Request
0 - no interrupt pending
1 - the ECP1284 core in the external Super I/O chip has requested an interrupt (edge triggered pulse)

1 17 RO ISA ECP1284 Parallel DMA Context A Exhausted Interrupt Request
0 - no interrupt pending
1 - parallel dma context A has been completely processed and is requesting service

2 18 RO ISA ECP1284 Parallel DMA Context B Exhausted Interrupt Request
0 - no interrupt pending
1 - parallel dma context B has been completely processed and is requesting service

3 19 RO ISA ECP1284 Parallel Memory Error Interrupt Request
0 - no interrupt pending
1 - a memory error occurred during a DMA transaction, DMA has stopped, fatal error

4 20 RO ISA Serial Port #1 Device Interrupt Request
0 - no interrupt pending
1 - the primary 16550 core in the external Super I/O chip is requesting an interrupt

5 21 RO ISA Serial Port #1 Transmit DMA Threshold Interrupt Request
0 - no interrupt pending
1 - the selected ring buffer threshold interrupt condition has been reached

6 22 RW ISA Serial Port #1 Transmit DMA Pair Request Interrupt Request
0 - no interrupt pending
1 - a transmit DMA pair requested that an interrupt be posted

7 23 RO ISA Serial Port #1 Transmit DMA Memory Error Interrupt Request
0 - no interrupt pending
1 - a memory error occurred during a DMA transaction, DMA has stopped, fatal error

8 24 RO ISA Serial Port #1 Receive DMA Threshold Interrupt Request
0 - no interrupt pending
1 - the selected ring buffer threshold interrupt condition has been reached

9 25 RO ISA Serial Port #1 Receive DMA Over-run Interrupt Request
0 - no interrupt pending
1 - an overrun error was indicated during a DMA transaction, DMA has stopped, fatal error

10 26 RO ISA Serial Port #2 Device Interrupt Request
0 - no interrupt pending
1 - the secondary 16550 core in the external Super I/O chip is requesting an interrupt

11 27 RO ISA Serial Port #2 Transmit DMA Threshold Interrupt Request
0 - no interrupt pending
1 - the selected ring buffer threshold interrupt condition has been reached

12 28 RW ISA Serial Port #2 Transmit DMA Pair Request Interrupt Request
0 - no interrupt pending
1 - a transmit DMA pair requested that an interrupt be posted

13 29 RO ISA Serial Port #2 Transmit DMA Memory Error Interrupt Request
0 - no interrupt pending
1 - a memory error occurred during a DMA transaction, DMA has stopped, fatal error

14 30 RO ISA Serial Port #2 Receive DMA Threshold Interrupt Request
0 - no interrupt pending
1 - the selected ring buffer threshold interrupt condition has been reached

15 31 RO ISA Serial Port #2 Receive DMA Over-run Error Interrupt Request
0 - no interrupt pending
1 - an overrun error was indicated during a DMA transaction, DMA has stopped, fatal error
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5.1.4  Super I/O

The external ISA bus on MACE connects to a Super I/O device manufactured by Texas Instruments. This device con-
tains two enhanced 16C550 serial ports and one IEEE1284 parallel port. A block diagram of the chip is shown below:

The two enhanced 16C550 serial interfaces inside this device have an extra register that controls the IR encoder/
decoders and the clock prescalers. This register is mapped to the same address as the uart internal scratch register but
can only be accessed when the DLAB bit in the Line Control Register is set to a logic one. The format of this new
register is shown below:

TABLE 55. 16C550 IR/CLOCK configuration register

Bits
Reset
Value Type Description

7 X RO IR Encoder/Decoder select
0 - normal uart operation selected
1 - IR serial input and output paths selected

6 X RO Reserved

5:0 X RO Clock prescaler value
The clock prescaler takes a 6-bit value which allows the input
clock to be divided by value from 0 to 31.5 in 0.5 increments. With
an input clock of 22mhz the divisor should be set to 3 to generate
the 7.33mhz baud rate clock or set to 5.5 to generate the 4.00mhz
MIDI baud rate clock.

IR Encoder

IR Decoder

IR Encoder

IR Decoder

22Mhz

Clock Prescaler

Clock Prescaler

Uart #1

Uart #2

1284 Port

Line
Drivers
and
Receivers

IR1

IR2

Address, Data, & Control Parallel Interface

Sout

Sout

Sin

Sin

T.I. Super I/O
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5.1.5  Serial DMA Ring Buffer Registers
The following tables show the individual bits for a serial DMA channel:

TABLE 56. Channel Read Pointer Register

Bits
Reset
Value Type Description

15:12 0 RO <reserved, read as zeros>

11:5 0 RW Ring buffer read pointer

4:0 0 RO <reserved, read as zero>

TABLE 57. Channel Write Pointer Register

Bits
Reset
Value Type Description

15:12 0 RO <reserved, read as zeros>

11:5 0 RW Ring buffer write pointer

4:0 0 RO <reserved, read as zeros>

TABLE 58. Channel Control Register

Bits
Reset
Value Type Description

10 1 RW RESET
0 - channel active
1 - reset channel (inactive), all registers reset, interrupt output inactive, fifos flushed

9 0 RW DMA enable
0 - channel disabled, but state not modified, just frozen
1 - channel enable and active (pointers must be setup)

8 0 RO <reserved, read as zero>

7:5 0 RW Interrupt threshold
000 - interrupt disabled, interrupt output at inactive level
001 - interrupt on input channel ring buffer >= 25% full (< 25% for output channels)
010 - interrupt on input channel ring buffer >= 50% full (< 50% for output channels)
011 - interrupt on input channel ring buffer >= 75% full (< 75% for output channels)
100 - interrupt on ring buffer empty
101 - interrupt on ring buffer not empty
110 - interrupt on ring buffer full
111 - interrupt on ring buffer not full

4:0 0 RO <reserved, read as zeros>

TABLE 59. Channel Current Ring Depth Register

Bits
Reset
Value Type Description

15:12 0 RO <reserved, read as zeros>

11:5 0 RO Number of 32-byte blocks in the ring buffer
Computed using a subtracter: WritePointer - Readpointer.
All zeros is the empty condition, all ones is the full condition.

4:0 0 RO <reserved, read as zeros>
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5.1.6  Serial DMA Ring Buffers

Each serial channel has a DMA ring buffer that is controlled by a set of channel registers. The size of all the ring buff-
ers is fixed at 4Kbytes. The three ring buffers are all stored together in system main memory using a 32KB aligned
base address supplied by the peripheral controller. Each 4KB ring buffer occupies one of eight 4KB pages within the
32KB range supplied. The four serial ring buffers occupy the last four 4KB pages in the 32KB block. Whenever the
DMA engine reads or writes data from the ring it takes the value of the read or write pointer logic ORs it with the ring
base address and ring ID to compute the memory address to use.

The address calculation is shown below:

The DMA ring buffers for the serial controller are all uni-directional. For each channel one of the two ring pointers is
controlled by the hardware and one by system software. If the channel is an input channel, the DMA engine controls
the ring write pointer and it is read-only. If the channel is an output channel, the DMA engine controls the ring read
pointer and it is read-only. In both cases, the other pointer is controlled by system software and it is used to tell the
DMA engine how full the ring buffer is with data.

When the read and write pointers become equal the DMA engine assumes that the ring buffer is full (input channel)
or empty (output channel) and hardware DMA will stop. Note that DMA operation will resume as soon as system
software changes it’s pointer so that the ring is no longer full/empty. The DMA engine keeps track of how many 64-
bit words are in the ring buffer. This value is readable and is used by the interrupt threshold logic.

5.2  Serial Port Operation

The external serial controller supported by the I/O asic is assumed to be a National 16550 serial core or compatible
device. Two serial ports are supported by the asic along with an optional set of DMA channels for each port. The
optional DMA channels provide hardware assistance for advance features such as hardware and software transmit
flow control. These added hardware features can be enabled or disabled on a per serial port basis.

The ring buffer DMA for the serial controller operates on 64-bit chunks that are read from or written to the ring buff-
ers in system main memory. Since the serial ports operate on 8-bit character streams that can be any byte length, the
DMA to and from the serial ports has been packetized. The packet formats provide for automatic padding and strip-
ping to simulate a true 8-bit character stream.

When a serial port is operated in 16650 mode, the uart can optionally perform both hardware CTS flow control of the
transmit data stream and hardware RTS flow control of the receive data stream. If CTS flow control is enabled, the
transmit data stream is automatically stopped and restarted, within one character time, without software intervention.
If RTS flow control is enabled, the RTS output goes active whenever the internal uart FIFO is almost full.

All of the serial controllers internal registers are decoded and available in the ISA address space. This should make it
fairly easy to port over a standard PC serial device driver for theMoosehead system (at least to start).

TABLE 60. Ring ID

RingID Ring Buffer

011 Scratch Area, Can be used by software

100 Serial port #1, transmit ring buffer

101 Serial port #1, receive ring buffer

110 Serial port #2, transmit ring buffer

111 Serial port #2, receive ring buffer

Address[31:0] = BaseAddress[31:15] | RingID[2:0] | PointerOffset[11:5] | “00000”

Figure: Ring Buffer Address Calculation
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5.2.1  Serial Port Mode

The DMA engine for the serial ports is an optional feature that can be enabled or disabled. If the DMA engine is dis-
abled, then the serial port behaves exactly like a standard National 16550. System software should never try to service
the uart transmit and receive data interrupts itself or read the IIR, RBR, or LSR registers when the DMA engine is
active. This will confuse the DMA logic and result in unexpected behavior and lost data. For proper operation, only
the modem status change interrupt should be enabled when the uart is in DMA mode.

Note that when DMA is enabled on the serial ports it is recommended that the receive fifo threshold in the uarts be set
to delay fifo ready requests by at least four character times. That way the receive DMA channel will have more than a
single receive character to pack into a 64-bit word. For high data rates, setting the uart receive fifo character delay
time to even larger values, 8 or 14 characters times, is recommended.

5.2.2  Serial DMA Format

The serial DMA engines transfer 64-bit blocks of four control bytes and four data bytes. Every time one of the DMA
engines queues data to or from a ring buffer it reads or writes one or more of these pairs to or from memory. Since the
ring buffers operate on 64-bit multiples, when an input DMA engine has less than four pairs to write to memory, it
pads the write with pairs that are marked as invalid which software should ignore.

Similarly, when the system software queues pairs of control and data bytes to a transmit ring buffer it writes multiples
of four pairs into the buffer for every 64-bit word. Since the system software may not always want to send multiples
of four characters, individual transmit DMA data pairs can be marked as invalid. This tells the DMA engine to skip
over (i.e. ignore) those pairs and operate on the rest.

The pairs are packed into 64-bit wide memory words in big endian format with all four control bytes in the high 32-
bit position and all four data bytes in the low 32-bit position. The following picture shows the packing format:

5.2.3  Serial DMA hints

When reading data out of the serial DMA input rings, it isn’t necessary to read the ring buffer write pointer register to
see how far the DMA engine has written. Since the DMA engine never writes a 64-bit word into the ring that is zero,
if software clears the ring entries it has read and looks for a zero word as it collects pairs, the first all zero 64-bit word
marks the location after the current ring buffer write pointer. The only PIO needed by the hardware is the one to tell
the DMA engine how far the system software has read in the ring buffer (one PIO write operation).

5.2.4  Serial Transmit Delay

When the hardware reads and processes the pairs for the serial transmit DMA channels, one of the possible pair types
is a delay value. The hardware DMA channel will idle for the number of milliseconds indicated before going on to
process any pair that follows the delay pair. This allows the system software to insert idle timing spaces in the serial
output DMA data stream that are required by some terminals and are also used for MIDI note spacing.

5.2.5  Modem Control Signals

The DMA hardware needs to keep the data stream synchronized with changes to the external serial modem control
signals. Since changes in these signals are rare, the easiest way to do this is to have the DMA state machine monitor
the device interrupt line, and when it goes active, halt DMA and force system software to handle the transition.

063 3132

Figure: Pair Packing Format
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5.2.6  Packet Formats

TABLE 61. DMA Input Control Byte Format

Bits Src Description

7 I/O Pair is valid
0 - skip this pair (8-bit character is 0xFF)
1 - valid 8-bit character read from 16C550

6:4 None Reserved, set to zero

3 LSR

bit 4

Break Condition
0 - no break
1 - this is a break character

2 LSR

bit 3

Framing Error
0 - no error
1 - this character had a framing error

1 LSR

bit 2

Parity Error
0 - no error
1 - this character had a parity error

0 LSR

bit 1

Overrun Error
0 - no error
1 - this character had an overrun error, DMA has stopped

and a receive overflow interrupt has been posted.

TABLE 62. DMA Input Data Byte Format

Bits Src Description

7:0 RBR 8-bit binary character
RBR contents when pair is valid
0xFF when pair is invalid

TABLE 63. DMA Output Control Byte Format

Bits Dst Description

7:6 I/O Valid Command Code
00 - This pair is invalid
01 - Write data byte to THR
10 - Write data byte to MCR
11 - Time delay, 8-bit binary character is an N ms delay,

DMA engine counts to zero before processing next
pair in the transmit ring.

5 I/O Post TX Interrupt
0 - no op
1 - set TX interrupt after processing this pair

4:0 None Reserved, must be zero

TABLE 64. DMA Output Data Byte Format

Bits Dst Description

7:0 THR

or

MCR

Data byte (use based on Valid Command Code)
00 - This pair is invalid and ignored
01 - Data[7:0] written to THR
10 - Data[7:0] written to MCR
11 - Time delay initial count down value
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5.2.7  Serial State Machine Example
The following is a diagram of a typical software interrupt driven state machine:

IDLE

READ IIR

Transmit Holding
Register Empty

IIR, Bit 0, logic “0”, no interrupt
pending, goto IDLE state, flushwait for interrupt

READ LSR READ MSR

Receiver
Line Status
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DMA FIFO
kick
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Data Ready?

POP ITEM, WRITE
THR &| MCR

DMA FIFO
Empty?

TOGGLE ETHREI READ RBR
new item for DMA out

DMA FIFO
Full?

OVERFLOW Error

No
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TOGGLE ETHREI

Is CTS
deassrted?

TX FIFO fill Burst
Received

TRANSMIT
DMA Engine

set interrupt condition
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read-modify-write IER

RBR or MSR changes to memory
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5.3  Parallel DMA Registers
The following tables show the individual bits for the parallel DMA channel:

5.3.1  Parallel Port Interface Operation

The parallel port uses the ECP port on an external parallel/serial combo chip. This port is capable of all the standard
modes supported by ECP including Centronix, PS/2, Parallel-Out with FIFO, and ECP modes. The MACE asic DMA
engine supports the ECP-1284 and EPP data phase modes. All other modes must be supported by using PIO ops.

TABLE 65. Parallel Context Registers A and B

Bits
Reset
Value Type Description

63 X RW Last Flag
0 - do nothing
1 - pulse Terminal Count to the parallel device after buffer is filled/drained

62:44 X RO <reserved, read as zeros>

43:32 X RW Byte Length of data (N - 1)
Must not cross a 4K byte page boundary (i.e. base + length)

31:0 X RW Base Address
Can be arbitrarily aligned on any byte boundary on output, 64 byte aligned on input

TABLE 66. Parallel DMA Control and Status Register

Bits
Reset
Value Type Description

4 0 RO Context A is Valid
0 - context is invalid
1 - context is valid (written by software) and not yet consumed by hardware

3 0 RO Context B is Valid
0 - context is invalid
1 - context is valid (written by software) and not yet consumed by hardware

2 1 RW RESET
0 - channel active
1 - reset channel (inactive), all registers reset, interrupt output inactive, fifos flushed

1 0 RW DMA enable
0 - channel disabled, but state not modified, just frozen
1 - channel enabled and active

0 0 RW DMA direction
0 - parallel output, from memory to external device
1 - parallel input, from external device to memory

TABLE 67. Parallel DMA Diagnostic Register

Bits
Reset
Value Type Description

13:2 0 RO Counter
Number of bytes left in the context currently being processed

1 0 RO Context processing active
0 - dma engine is idle
1 - the dma engine is currently processing the context given below

0 0 RO Context in use
0 - Context A is currently being processed
1 - Context B is currently being processed
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The DMA operation consists of setting up the ECP/EPP port for the proper mode and direction, then writing the
address and byte count into the MACE parallel port DMA registers. Two sets of these register are provided; these are
known asContext A andContext B. Each context is capable of interrupting the host independently so that the next
buffer can be staged while the current one is being transferred. The LAST bit for each context is used to identify the
final buffer in a chain; if LAST was set for the context being transferred, the MACE asic will signal TC (Terminal
Count) to the ECP/EPP port at the end of the transfer, which causes the ECP/EPP to assert a service interrupt.

Buffers in host memory may be up to 4K bytes in size and me be arbitrarily aligned for output, but must be 64 byte
aligned for input transfers. A buffer must not ever cross a 4K byte page boundary in the middle of a transfer. If a
transfer needs to cross a page boundary, it should be broken up into two contexts by the software driver. Any number
of contexts may be chained together by software to form a single transfer.

All of the parallel interface internal registers are decoded and available in the ISA address space. This should make it
fairly easy to port over a standard PC parallel device driver for theMoosehead system.

Note that the parallel device can not overflow or underflow. Should the MACE internal ping-pong buffers fill up, the
hardware will not respond to data transfer requests from the external ECP/EPP port (the same is true in the empty
case for dma output). The hardware will automatically start transferring data again when the internal buffers drain (or
are filled in the case of output). The same rules hold true if the dma engine runs out of valid contexts in the middle of
a transfer, it will idle waiting until the software driver supplies another context and continue.

5.4  Calendar Clock Interface Operation

The ISA bus interface on the I/O asic supports the connection of an external Dallas Semiconductor Calendar Clock
chip. The device has a decoded 256-byte address range in the ISA address space (see below). The clock chip has no
DMA or other external support requirements other than the connection of it’s alarm interrupt output.

5.5  Flash-ROM Interface Operation

The ISA bus interface supports an external Flash-ROM of up to 2 Megabytes. Devices from 512 Kilobytes to 2
Megabytes may be connected to the external interface. If a smaller device is connected to the external pins, the con-
tents of the device will be aliased to fill the entire 4 Megabyte address space.

A simple write protect register is provided so that system crashes will be less likely to erase or overwrite sections of
the Flash. Before writing to the Flash-ROM, system software must enable write activity through the control register.
Because of the danger of accidental erasure, it is a good idea to leave the write protect enabled at all other times.

Note that the Flash-ROM interface only supports individual byte writes. System software may only write one byte at
a time to the external flash device. Reads on the other hand can be any size between one and eight bytes.

5.6  External ISA Address Map

The following table shows the address map for the external ISA bus interface:

Note: in the internal view as seen from the CRIME asic the peripherals are distributed across the 512K byte address
space allocated to the external ISA bus. Each 8-bit register spans 256 bytes in the internal view.

TABLE 68. External ISA Address Map

Base Address Offset Description

0x00000 0x0000 Centronics/EPP Parallel Port Interface

0x8000 ECP1284 Parallel Port Registers

0x10000 0x0000 Serial Port COM #1

0x8000 Serial Port COM #2

0x20000 - Dallas Calendar Clock chip

0x30000 - Future Expansion
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5.7  Software DMA Appendix

The following is a list of examples showing how to setup operations for the various ISA bus peripherals.

5.7.1  Interrupt Handler

The following example shows some of the special interrupt handling for the peripheral controller. The audio, game
port, keyboard, and mouse interrupts for Moosehead will usually be serviced by the primary clock interrupt handler to
save on the context switch overhead. For this reason, polled versions of the keyboard and mouse interrupts have been
added to the peripheral controller interrupt status register.

/*
** MOOSEHEAD: Hard Clock Interrupt Handler
*/
ClockInterrupt()
{

register unsigned PeripheralStatus;

/* Read peripheral status register */
PeripheralStatus = *(unsigned *)PERIPHERAL_STATUS_REGISTER;

/* ...standard clock processing goes here... */

/* Check for audio service condition */
if (PeripheralStatus & AUDIO_NEEDS_SERVICE) {

AudioInterruptHandler();
]

/* Check for keyboard service condition */
if (PeripheralStatus & KEYBOARD_POLL_STATUS) {

KeyboardInterruptHandler();
}

/* Check for mouse service condition */
if (PeripheralStatus & MOUSE_POLL_STATUS) {

MouseInterruptHandler();
}

}

5.7.2  Parallel Port

The following example shows the register setup for a parallel DMA read operation:

/*
 * Parallel DMA setup example
 *
 * The following example shows how to use the MACE DMA hardware to
 * perform a simple parallel output DMA transfer.
 */
struct parallel_dma {

unsigned long long contextA, contextB;
unsigned long long dma_control;

#define DMA_CONTEXTA_VALID 0x10 /* read-only */
#define DMA_CONTEXTB_VALID 0x08 /* read-only */
#define DMA_RESET 0x04
#define DMA_ENABLE 0x02
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#def ine DMA_DIRECTION 0x01
unsigned long long diagnostic;

};

parallel_dma_output(struct buf *)
{

register struct parallel_dma *pdp = MACE_PLP_ADDRESS;
register unsigned long long contextA, contextB;
register int overf low, remainder;

/*
 * Reset parallel DMA
 */
pdp->dma_control = DMA_RESET;
pdp->dma_control = 0;

/*
 * Check for page crossing (DMA page size is 4K bytes)
 */
remainder = IO_PAGE_SIZE - pageoffset(bp->b_dmaaddr);
overf low = (bp->b_bcount - bp->b_resed) - remainder;
if (overf low > 0) {

contextA = bp->b_dmaaddr;
contextA |= remainder << 32;
contextB = bp->b_dmaaddr + remainder;
contextB |= overf low << 32;
contextB |= 1 << 63; /* LAST f lag */

} else {
contextA = bp->b_dmaaddr; /* Address */
contextA |= bp->b_bcount << 32; /* Length */
contextA |= 1 << 63; /* LAST f lag */
contextB = 0LL;

}
pdp->contextA = contextA;
pdp->contextB = contextB;

/*
 * Start DMA
 */
pdp->dma_control = DMA_ENABLE;

return (0);
}

5.7.3  Serial Port

The following example shows the register setup for a serial port in DMA mode:

/*
 * Serial port DMA setup example
 */

#include “ring.h”
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/* 16550 defines */
#define UART_IER_ERDAI 0x01
#define UART_IER_ETHREI 0x02
#define UART_IER_ERLSI 0x04
#define UART_IER_EMSI 0x08
#define UART_FCR_FIFO_ENABLE 0x01
#define UART_FCR_RCVFIFO_RST 0x02
#define UART_FCR_XMTFIFO_RST 0x04
#define UART_FCR_DMA_MODE 0x08
#define UART_FCR_RCV_TRIG_LSB 0x40
#define UART_FCR_RCV_TRIG_MSB 0x80
#define UART_LCR_WLS0 0x01
#define UART_LCR_WLS1 0x02
#define UART_LCR_STB 0x04
#define UART_LCR_PEN 0x08
#define UART_LCR_EPS 0x10
#define UART_LCR_STP 0x20
#define UART_LCR_BRK 0x40
#define UART_LCR_DLAB 0x80

/* One serial channels worth of registers */
volatile struct serial {

long long tx_control;
long long tx_read_ptr;
long long tx_write_ptr;
long long tx_depth;
long long rx_control;
long long rx_read_ptr;
long long rx_write_ptr;
long long rx_depth;

}:
#define SPP_MODE_DMA_ENABLE 0x200

/* Setup serial port */
serial_setup(port)
{

register caddr_t ddl, dlm, lcr, fcr, ier, pre;
register struct serial *spp;
register paddr_t pp;

/*
 * select port
 */
if (!port) {

ier = (caddr_t)SERIAL_PORT_0_IER;
fcr = (caddr_t)SERIAL_PORT_0_FCR;
lcr = (caddr_t)SERIAL_PORT_0_LCR;
pre = (caddr_t)SERIAL_PORT_0_SCR;
spp = (struct serial *)SERIAL_PORT_0_DMA;

} else {
ier = (caddr_t)SERIAL_PORT_1_IER;
fcr = (caddr_t)SERIAL_PORT_1_FCR;
lcr = (caddr_t)SERIAL_PORT_1_LCR;
pre = (caddr_t)SERIAL_PORT_1_SCR;
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}

/*
 * DMA setup.
 */
spp->rx_config = RING_DMA_ENABLE | RING_INTERRUPT_NEMPTY;
spp->tx_config = RING_DMA_ENABLE | RING_INTERRUPT_OFF;

/*
 * load operating mode into 16550
 * baud rate set (9600 baud), 7.33Mhz / 48
 * set prescaler to 3 for normal baud rates
 * character format set (8 bits, no parity, 1 stop)
 * FIFOs enabled, receive trigger at 8 bytes threshold
 * all interrupts enabled
 */
*lcr = UART_LCR_DLAB;
*ddl = 48;
*dlm = 0;
*pre = 3; /* Prescale is 3, IR off */
*lcr = UART_LCR_WLS0 | UART_LCR_WLS1;
*fcr = UART_FCR_FIFO_ENABLE | UART_FCR_RCV_TRIG_MSB;
*ier = UART_IER_ERDAI | UART_IER_ETHREI |

UART_IER_ERLSI | UART_IER_EMSI;

return (0);
}
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6 PS/2 Keyboard & Mouse Interface

TheMoosehead system I/O asic contains a simple PS/2 interface that supports both PS/2 style PC keyboards and
mice. The interface supports two connections that are intended to be used, one for the keyboard and one for the
mouse, but each interface could be either device. Note that the interface only supports PS/2 devices. No attempt has
been made to support AT style keyboards. A block diagram of one the of the PS/2 interfaces is shown below:

Overview:

• Serial port that conforms to IBM PS/2 Keyboard and Auxiliary (type 1) Serial Port Protocol

• Supports PS/2 keyboard, mouse, touch-pad, and track-ball type devices

• Supports input clock rates as defined by the IBM PS/2 interface specification

• External open-collector buffer used for isolation from the PS/2 +5.0V interface

6.1  PS/2 Interface
The IBM PS/2 interface standard supports data transmission to and from the external device using an 11-bit data
stream sent serially over the data line. The table below shows the function of each bit:

note that the PS/2 ports use odd parity (the eight data bits plus the parity bit always have an odd number of ones).

TABLE 69. PS/2 Serial Port Bits

Bits Function

1 Start bit (always 0)

2 Data bit 0 (LSB)

3-8 Data bits 1 - 6

9 Data bit 7 (MSB)

10 Parity bit (odd parity)

11 Stop bit (always 1)

Clkin

Clken

Dout

Din8-bit receive buffer

8-bit transmit buffer

Control Logic

Control Register

Status Register

To CPU
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6.2  Register Programming Interface
The following table shows all of the PS/2 interface registers. All bits not explicitly defined are read as zeros. All reg-
isters are defined on 64-bit aligned boundaries and can be read or written using 64-bit programmed i/o operations.

Note: see the I/O chip appendix for the addresses of these registers.

6.2.1  PS/2 Transmit Buffer

The PS/2 serial port transmit buffer is an eight-bit parallel load shift register. The transmit buffer transmits a serial
data stream to the PS/2 interface via the Dout pin. The following register is write only:

6.2.2  PS/2 Receive Buffer

The PS/2 serial port receive buffer is an eight-bit serial in parallel out shift register. The receive buffer receives a
serial data stream from the PS/2 interface via the Din pin. The following register is read only:

TABLE 70. PS/2 Interface Registers

Offset Register Name Type Bits Function

0x00 Transmit Buffer WO 7:0 Transmit 8-bit parallel shift out data buffer

0x08 Receive Buffer RO 15:0 Receive 8-bit parallel shift in data buffer

0x10 Control RW 5:0 Command and control register

0x18 Status RO 7:0 Transmit & receive status and error register

TABLE 71. Transmit Buffer Register

Bits
Reset
Value Type Description

7:0 0 WO This 8-bit field contains the bits currently being transmitted out of Dout

TABLE 72. Receive Buffer Register

Bits
Reset
Value Type Description

15:8 0 RO Alias of transmit & receive status and error register bits

7:0 0 RO This 8-bit field contains the bits currently being received from Din. The con-
trol logic ensures that an auxiliary device does not send another serial stream
until this buffer has been cleared and there is no data to transmit via Dout.
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6.2.3  PS/2 Control Register

The control register controls the PS/2 serial port operation:

6.2.3.1  Clock Inhibit
The PS/2 serial port interface uses a 1X serial data clock that is always supplied by the auxiliary device. The data
clock travels on an open-collector signal that the command & control register can pull high at any time using the
Clken output signal. When the data clock is de-asserted both the PS/2 serial port and the external auxiliary device
stop sending and receiving data (depending on which was active at the time). The external auxiliary device is required
to poll the serial data clock signal at 100us intervals. This implies that system software should always allow for some
settling time when changing the Clken output signal.

TABLE 73. Command and Control Register

Bits
Reset
Value Type Description

0 0 RW Inhibit Clock after Transmission
0 - Keep Clken asserted
1 - De-assert Clken after transmitting the next serial data stream

1 0 RW Transmit Enable
0 - Disable timeout.
1 - Enable shifting the data from the transmit buffer out the Dout pin and the negative

edge of Clkin.

2 0 RW Transmit Interrupt Enable
0 - Interrupt disabled
1 - Transmit interrupt will be asserted when the transmit buffer is empty

3 0 RW Receive Interrupt Enable
0 - Interrupt disabled
1 - Receive interrupt will be asserted when the receive buffer is full

4 1 RW Clock Inhibit
0 - De-assert Clken (i.e. pause current transmit of receive operation)
1 - The serial port will assert Clken

5 0 RW Reset
0 - reset inactive
1 - internal state machines in reset state
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6.2.4  PS/2 Status Register

The control register allows the software to monitor the operation of the PS/2 serial port. This register is read only:

6.3  Receiving Serial Data on the PS/2 interface
<xxx>.

6.4  Transmitting Serial Data on the PS/2 interface
<xxx>.

6.5  Verilog source code
The following example source code is available from - rowan:/d1/moosehead/subsystem/io/doc/mace_spec

/* ps2 ports */

include lcb007;

const ctransmit_buf : 0b00;
const creceive_buf : 0b01;
const cstatus_reg : 0b10;
const ccommand_reg : 0b11;

TABLE 74. Status Register

Bits
Reset
Value Type Description

0 X RO Clock signal
0 - external clock signal is de-asserted
1 - external clock signal is asserted

1 1 RO Clock Inhibit
0 - Clken output signal is de-asserted
1 - Clken output signal is asserted

2 0 RO Transmission in Progress
0 - transmitter idle
1 - data is in the process of being transmitted out the Dout pin

3 0 RO Transmit Buffer Empty
0 - transmit buffer holds byte waiting to be sent
1 - transmit buffer empty

4 0 RO Receive buffer full
0 - receive buffer empty
1 - receive buffer holds byte waiting to be read

5 0 RO Reception in progress
0 - receiver idle
1 - serial port is in the process of receiving data

6 0 RO Parity error
0 - no parity error
1 - indicates a parity error occurred on the last received byte

7 0 RO Framing error
0 - no framing error
1 - indicates a framing error occurred on the last received byte
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extern module bcount3;
input cp0, sd, cd;
output q[3];
end;

const start_bit : 0;
const stop_bit : 1;

module ps;
input ps2_wr, ps2_rd, regadr[2],

aux_clkin_i0/re, aux_datain_i1/re,
rst/reset, pclkp/clock;

output ps2_int, aux_dataout_o1, aux_clken_o0, ps2_rcvint, ps2_txint;

bidirect cdatap[8];

register status[8]/default=0b00001000, command[8]/default=0b00010000,
/* parityerr, rcvin, rcvbf, clkinhb, txmitn, txbmt,

clk, /* status bits */
clkinh, rcvint, txint, txen, inhtx, /* command bits */ */
aux_clkin1, aux_clkin2, parity, txclk, rcvclk, aux_dataout, aux_clken;

signal fedge, txenable, txcomp, set_bitcount, tx_clk,
zero_bitcount, bit_count[3],
rcvbuf[8], txbuf[8] , framerr <=> status[7],
parityerr <=> status[6], rcvin <=> status[5], rcvbf <=> status[4],
txbmt <=> status[3],
txmitn <=> status[2], clkinhb <=> status[1], clk <=> status[0],
clkinh <=> command[4], rcvint <=> command[3], txint <=> command[2],
txen <=> command[1], inhtx <=> command[0],
shft_out[8], shft_in[8], wrtxbf, cdata_op[8], io_mode;

var i;

default
/* command[7] : false; /* io_mode */

command[6] : false; /* unsused */
command[5] : false; /* unsused */
command[4] : true; /* clkinh : false */
command[3] : false; /* rcvint : false */
command[2] : false; /* txint : false; */
command[1] : false; /* txen : false; */
command[0] : false; /* inhtx : false; */
status[5] : false; /* rcvin : false; */
status[4] : false; /* rcvbf : false; */
status[3] : true; /* txbmt : false; */
status[2] : false; /* txmitn : false; */ */
aux_dataout : true;
txcomp : false;
set_bitcount : false;
wrtxbf : false;

relations
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{
io_mode = command[7];
aux_clkin1 = aux_clkin_i0;
aux_clkin2 = aux_clkin1;
clk = aux_clkin1;
fedge = !aux_clkin_i0 && !aux_clkin1 && aux_clkin2;

aux_clken = !(clkinh || rcvbf && !txmitn && (!aux_datain_i1 || aux_clken)
|| !txmitn && inhtx);

aux_clken_o0 = aux_clken && !io_mode || command[0] && io_mode;
clkinhb = !aux_clken && !io_mode || aux_datain_i1 && io_mode;
txenable = !txbmt && txen;
ps2_int = (txint && txbmt || rcvint && rcvbf) && !io_mode;
ps2_txint = txint && txbmt && !io_mode;
ps2_rcvint = rcvint && rcvbf && !io_mode;

zero_bitcount = (bit_count==0);

shft_out = txbuf[0] // txbuf[7:1];
shft_in = aux_datain_i1 // rcvbuf[7:1];

tx_clk = wrtxbf || txclk;

aux_dataout_o1 = aux_dataout && !io_mode || command[1] && io_mode;
}

always
{

if (ps2_rd)
switch (regadr) {
case ccommand_reg :

cdata_op = command;
case cstatus_reg :

cdata_op = status;
case creceive_buf : {

rcvbf = false;
cdata_op = rcvbuf;
}

}
if (ps2_wr)
switch (regadr) {
case ctransmit_buf : {

txbmt = false;
wrtxbf = true;
}

case ccommand_reg :
command = cdatap;

}
}

structure
{

bcount(bit_count) = bcount3((rcvclk || txclk), !set_bitcount, !rst);
drvmdata(cdatap) = 8 * bts4a(cdata_op, ps2_rd);
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#for (i := 0; i < 8; i := i+1)
tbuf#i(txbuf[i]=q) = fd1sa(cdatap[i], tx_clk, shft_out[i], txmitn);

#for (i := 0; i < 8; i := i+1)
rbuf#i(rcvbuf[i]=q) = fd1sa(cdatap[i], rcvclk, shft_in[i], rcvin);

}

state idle/start;
{

set_bitcount = true;
if ( io_mode )

goto idle;
if ( txenable) {

txmitn = true;
goto txtdata;

}
 if (aux_clken_o0 && fedge && !aux_datain_i1 && aux_dataout) {

rcvin = true;
goto rcvdata;

}
rcvclk = false;
txclk = false;
aux_dataout = 1;
rcvin = false;
txmitn = false;
goto idle;

}

state txtdata;
{

aux_dataout = start_bit;
parity = 1;
while (!fedge && !(clkinh & !txen))

state txstart;
while (!zero_bitcount && !clkinh) {

state dataop;
aux_dataout = txbuf[0];
parity = parity ^ txbuf[0];
txclk = false;
while (!fedge && !zero_bitcount && !clkinh) {

state txdata_edge;
}
txclk = fedge;

}
do {

state txpar_edge;
txclk = false;

} while (!fedge && !clkinh);
aux_dataout = parity;
do {

 state txstop_edge;
} while (!fedge && !clkinh);
aux_dataout = stop_bit;
do {
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state lcntrl;
} while (!(fedge && !aux_datain_i1 && !clkinh));
txcomp = true;
txbmt= true;
goto idle;

}

state rcvdata;
{

parityerr = 1;
while (!zero_bitcount && !clkinh) {

state datain;
rcvclk = false;
while (!fedge && !clkinh) {

state rcvdata_edge;
}
parityerr = aux_datain_i1 ^ parityerr;
rcvclk = fedge;

}
do {

state rcvpar_edge;
rcvclk = false;

} while (!fedge && !clkinh);
parityerr = aux_datain_i1 ^ parityerr;
do {

state rcvstop_edge;
} while (!fedge && !clkinh);
framerr = !aux_datain_i1;
rcvbf = true;
goto idle;

}

end;
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7 Counter & Timers

TheMoosehead system I/O asic contains a set of counter timers for timer base and interrupt event generation. The
subsystem contains a single 32-bit read-only counter that increments once every 960 nanoseconds. It also contains an
array of three 32-bit event registers that generate interrupts when the lower 32-bits of the read-only counter equals the
value in the register. A block diagram of the counter/timer subsystem is shown below:

Features:

• A 32-bit 960ns resolution read-only incrementing counter as the common time base

• Three 32-bit 960ns resolution read/write compare registers with individual interrupt outputs

• Interrupt output flop is set to logic true when register value equals lower 32-bits of time base

• Interrupt output flop is reset when the corresponding register value is written

• Interrupt flops reset to logic zero at power up reset time

• Twelve 32-bit registers for Audio and Video MSC/UST count & timestamp storage

7.1  Count Compare Timers
When the system powers up and resets, the 32-bit time base and interrupt flops are reset to logic zero. The time base
will start to count immediately at 960ns intervals. The three counter compare registers operate independently and can
be set by the system software to generate interrupts at particular time base values. The 32 bit range of the time base
limits interrupt events to 68.718 minutes maximum.

To setup one of the compare registers to generate an event the system software should read the time base and then add
the desired time delta to it and truncate the result to 32-bits. The result can then be written into the selected compare
register which will latch it’s level sensitive interrupt when that time value is reached. Note that the system software
also needs to mask and unmask the interrupt in the master interrupt mask register (see Interrupt Specification). The
interrupt latch for a compare register can be cleared by writing a new value to the compare register.

32-bit latch/incrementer

32-bit memory

=

array

Interrupt 1

Interrupt 2

Interrupt 3

PIO bus

Clear

Set

Audio MSC Increment Req/Ack

Video MSC Increment Req/Ack
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7.2  Register Programming Interface
The following table shows all of the timer interface registers. All bits not explicitly defined are read as zeros. All reg-
isters are defined on 64-bit aligned boundaries and can be read or written using 64-bit programmed i/o operations.

7.2.1  Paired MSC/UST atomic reads

The register programming interface for the Timer block supports a 64-bit atomic read of a MSC and UST pair. This is
done by simply supplying the UST in the high 32 bits for any “mod8 = 0” 64-bit register read. When CRIME sends a
read command down to the Timer block and it asks for offset 0x20, the 64-bit value returned will contain both the
MSC at that offset and the corresponding UST at offset 0x24 (UST bits 63-32, MSC bits 31-0).

7.2.2  Theory of Operation

The Timer block operates off of the 33.333Mhz PCI bus clock. The PCI clock is divided down by 32 and used as the
base of a 32 entry cycle. System software can think of the state machine cycle as having 32 assigned time slots. Each
time slot is reserved for a specific action and the order of the slots preserves the atomic nature of the interface.

The list of actions and the number of cycles reserved for each (32 cycles total):

......................................................................................................PIO (2)

....................................................................................UST increment (2)

.......................................................Interrupt compare register checks (4)

............................................................Audio Input MSC/UST update (4)

....................................................Audio Output #1 MSC/UST update (4)

....................................................Audio Output #2 MSC/UST update (4)

.......................................................Video Input #1 MSC/UST update (4)

.......................................................Video Input #2 MSC/UST update (4)

.........................................................Video Output MSC/UST update (4)

Note that the above action list shows that a PIO read or write can never happen in the middle of the update action list.

TABLE 75. Timer Interface Registers

Offset Register Name Type Bits Function

0x00 Universal System Time RW 31:0 UST master uptime counter (960ns period)

0x08 Compare Timer #1 RW 31:0 Value of interrupt generation compare register #1

0x10 Compare Timer #2 RW 31:0 Value of interrupt generation compare register #2

0x18 Compare Timer #3 RW 31:0 Value of interrupt generation compare register #3

0x20 Audio Input UST RW 31:0 Audio Input last snapped UST value

0x24 Audio Input MSC RW 31:0 Audio Input last MSC value

0x28 Audio Output #1 UST RW 31:0 Audio Output #1 last snapped UST value

0x2C Audio Output #1 MSC RW 31:0 Audio Output #1 last MSC value

0x30 Audio Output #2 UST RW 31:0 Audio Output #2 last snapped UST value

0x34 Audio Output #2 MSC RW 31:0 Audio Output #2 last MSC value

0x38 Video Input #1 UST RW 31:0 Video Input #1 last snapped UST value

0x3C Video Input #1 MSC RW 31:0 Video Input #1 last MSC value

0x40 Video Input #2 UST RW 31:0 Video Input #2 last snapped UST value

0x44 Video Input #2 MSC RW 31:0 Video Input #2 last MSC value

0x48 Video Output UST RW 31:0 Video Output last snapped UST value

0x4C Video Output MSC RW 31:0 Video Output last MSC value
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8 I2C Bus Interface

TheMoosehead system I/O asic contains two I2C interfaces for the control of external codecs. The I2C interface is a
multimaster open-collector party-line serial bus. The arbitration protocol to take control of the bus to transmit data is
implemented both by hardware and a software backoff retry mechanism. All messages sent on the bus are acknowl-
edged so that the sender knows if a message was corrupted.

The I2C interface in theMoosehead system I/O asic is functioanly identical to implementation in theINDY VINO
asic. The software interface consists of two 8-bit registers, a control and status register and a data register. This imple-
mentation only supports the fast mode 400khz and standard mode 100Khz data rates defined in the original I2C spec-
ification published by Philips Semiconductor Incorporated.

Highlights:
• Minimal design (approximately 500 gates)

• Collision detect implemented in hardware

• Ability to send multiple bytes as atomic message

• New feature control to support 400khz data rates

8.1  Registers
The two I2C interface registers are described below. Note that the interface provided here is a minimal one. None of
the higher level I2C interface functions such as address recognition, transmit backoff retry, or remote reset are imple-
mented in hardware by this design.

8.1.1  Control and Status
The control and status register contains the state and status signals needed by the software to control the I2C party line
serial bus. It allows selection of the data rate, whether to send or receive, and various bits used to arbitrate the bus.
The most important function of the register is transmit arbitration. To transmit a message the following sequence
should be followed:

• (1) Check to see if the bus is idle by reading Force Idle State Control

• (2) If it is begin transmittion, goto state six

• (3) Write a zero to Force Idle State Control to request the bus

• (4) Wait for the bus to go idle (reading as in step one), but timeout if > 400us passes and not idle

• (5) Write a sero to Bus Direction Control to enter write mode

• (6) Set Last Byte Control (0 is last byte to send, 1 otherwise) and then write data to data register

• (7) Repeat step six until all data sent and Last Byte Control set to zero

• (8) Read status bits to check for failure

SD

SC

Control & Data RegistersTo CPU

State Machine

<-serial data shift->
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The following table shows the registers that make up the I2C interface:

The following table shows the bit fields for the control and status register:

Note that bits three and six of the control and status register are reserved to be compatible with VINO.

The data register is used to read and write byte values that are received and sent on the external serial data bus.

TABLE 76. I2C Interface Registers

Offset Register Name Type Bits Function

0x00 Config & Reset RW 5:0 Bus configuration and reset

0x08 <reserved> RW 5:0 <alias of register above>

0x10 Control & Status RW 7:0 Control & Status Flags (same as VINO)

0x18 Data RW 7:0 Data Transfer Register (same as VINO)

TABLE 77. Control & Status Register Format

Bits
Reset
Value Type Description

0 0 RW Force idle state control
1 - register write operation - no effect
0 - register write operation - force idle state
1 - register read operation - not idle
0 - register read operation - idle

1 0 RW Bus direction control
1 - read data
0 - write data

2 0 RW Last byte control
1 - more bytes hold onto bus
0 - last byte release bus

3 0 RO <reserved>

4 0 RO Transfer status
1 - transfer busy
0 - transfer done

5 0 RO Acknowledge status
1 - acknowledge not received
0 - acknowledge received

6 0 RO <reserved>

7 0 RO Bus error status
1 - bus error
0 - no bus error

TABLE 78. Data Register Format

Bits
Reset
Value Type Description

7:0 0 RW Bus data
write to this address initiates a write cycle if bit 1
of the I2C Control register is 1, a read of this
address initiates a new read cycle.
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The following tables shows the bit fields of the new configuration and status register:

8.2  VHDL source code
The following example source code is available from - rowan:/d1/moosehead/subsystem/io/doc/mace_spec/iic.vhdl

library sgi;
use sgi.sgi_logic.all;

entity iic is port(
-- clock, read & write strobes, force to idle, read enable,
-- more bytes to transfer, speed, reset
Clk, iic_rd, iic_wr, force_idle_n, rd_ena, more,

Reset_n, Scan_en : in mvl5w;
-- busy signal, transfer done, ack received, arbitration failure,
-- bus error
not_idle, xfer_done, ack_rcv_n, bus_err : out mvl5w;
-- host input data
iic_wbyte : in mvl5w_vector(7 downto 0);
-- host output data
iic2hdata : out mvl5w_vector(7 downto 0);
-- serial inputs
scl_i, sda_i : in mvl5w;
-- serial outputs
scl_o, sda_o : out mvl5w;
-- sunrise
atpg_i2d_o : out mvl5w );

end iic;

architecture BEHAVIOR of iic is
-- use work.utils.all;

component FD1S

TABLE 79. Configuration & Reset Register Format

Bit
Reset
Value Type Description

0 0 RW RESET (new extension)
0 - reset inactive
1 - reset active (internal state machines reset)

1 0 RW Fast mode enable (new extension)
1 - enable 400khz data rate
0 - use standard 100khz data rate (default)

2 0 RW Data pin override (new extension)
1 - pull external data signal low
0 - no effect

3 0 RW Clock pin override (new extension)
1 - pull external clock signal low
0 - no effect

4 X RO Data input current value

5 X RO Clock input current value
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port ( D : in mvl5w;
 T : in mvl5w;
 Q : out mvl5w;
 QC: out mvl5w
 );

end component;

component K1NQ
port(

A : in mvl5w;
Y : out mvl5w

 );
end component;

type BR_TYPE is (RDY2XFER, XFERING, ACKING, BYTE_RDY);
type II_TYPE is (IDLE, START1, START2, B_CNFLK, BT1, BT2, BT3, BT4,

ACK1, ACK2, ACK3, ACK4, STOP1, STOP2, STOP3, STOP4);
signal i_clk0, iic_h_rd, iic_h_wr, force_idle : BOOLEAN;
signal i_clk, i_clk_buf, ack_rcv0, bit_da : mvl5w;
signal rd_byte : mvl5w_vector(7 downto 0);
signal br_sm : BR_TYPE;
signal ii_sm : II_TYPE;
signal bit_cnt : INTEGER range 0 to 7;
-- sunrise
signal nc: mvl5w;

begin

-- synopsys dc_script_begin
-- dont_touch K1NQ
-- synopsys dc_script_end

buff1: K1NQ
port map ( A => i_clk,

 Y => i_clk_buf
 );

-- synopsys dc_script_begin
-- dont_touch FD1S
-- synopsys dc_script_end

--
-- sunrise latch
--
atpgi2d: FD1S

port map (
 D => ack_rcv0,
 T => i_clk_buf,
 Q => atpg_i2d_o,
 QC => nc);

VREG: process(Reset_n, Clk)
variable v_cnt : INTEGER range 0 to 127;
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begin

if Reset_n = ‘0’ then
v_cnt := 0;
i_clk0 <= false;

elsif Clk’event and Clk = ‘1’ then
-- make clock no more than 400 KHz, divide by 128
-- changed to GIO clk
v_cnt := (v_cnt + 1) mod 128;
i_clk0 <= v_cnt / 64 = 1;

end if;
end process VREG;
i_clk <= Clk when Scan_en = ‘1’ else ‘1’ when i_clk0 else ‘0’;
IREG: process(Reset_n, i_clk_buf)

variable bc0 : INTEGER range 0 to 7;
begin

if Reset_n = ‘0’ then
br_sm <= RDY2XFER;
ii_sm <= IDLE;
bit_cnt <= 0;
ack_rcv0 <= ‘0’;
rd_byte <= “00000000”;
scl_o <= ‘1’;
sda_o <= ‘1’;

elsif i_clk_buf’event and i_clk_buf = ‘1’ then

-- byte ready state machine
if force_idle then

br_sm <= RDY2XFER;
else

br_sm <= br_sm; -- default
case br_sm is
when RDY2XFER => -- ready to transfer byte on iic bus

if (rd_ena = ‘1’) or (iic_h_wr) then
br_sm <= XFERING;

end if;
when XFERING => -- transfer in progress

if ii_sm = ACK1 thenbr_sm <= ACKING;
end if;

when ACKING => -- in acknowledge phase
if (ii_sm = ACK4) or (ii_sm = STOP1) then

if rd_ena = ‘1’ then
br_sm <= BYTE_RDY;

else br_sm <= RDY2XFER;
end if;

end if;
when BYTE_RDY => -- byte is ready to read back

if iic_h_rd thenbr_sm <= RDY2XFER;
end if;

end case;
end if;



154 July 16, 1996

SGI ConfidentialDSS

-- The big machine
scl_o <= ‘1’;
sda_o <= ‘1’;
if force_idle then

ii_sm <= IDLE;
ack_rcv0 <= ‘1’;

else
ack_rcv0 <= ack_rcv0;
case ii_sm is
when IDLE =>

if (scl_i = ‘1’) and (sda_i = ‘1’) and
(br_sm = XFERING) then

ii_sm <= START1; sda_o <= ‘0’;
end if;

-- issue the start sequence
when START1 =>scl_o <= ‘0’; sda_o <= ‘0’;

ii_sm <= START2;
when START2 =>scl_o <= ‘0’;

sda_o <= rd_ena or iic_wbyte(7);
bit_cnt <= 7; ii_sm <= BT1;

-- transfer one bit at a time
when BT1 =>

if (rd_ena = ‘0’) and (sda_i /= bit_da) then
ii_sm <= B_CNFLK;

else sda_o <= bit_da; ii_sm <= BT2;
end if;

when BT2 =>
if (rd_ena = ‘0’) and (sda_i /= bit_da) then

ii_sm <= B_CNFLK;
else sda_o <= bit_da; ii_sm <= BT3;
end if;

when BT3 =>
if (rd_ena = ‘0’) and (sda_i /= bit_da) then

ii_sm <= B_CNFLK;
elsif scl_i = ‘1’ then

scl_o <= ‘0’; sda_o <= bit_da;
ii_sm <= BT4; rd_byte(bit_cnt) <= sda_i;

else sda_o <= bit_da;
end if;

when BT4 =>
scl_o <= ‘0’;
if bit_cnt = 0 then

ii_sm <= ACK1;
else bc0 := bit_cnt - 1;

sda_o <= rd_ena or iic_wbyte(bc0);
bit_cnt <= bc0;
ii_sm <= BT1;

end if;
-- read and check the acknowledge
when ACK1 =>ii_sm <= ACK2;
when ACK2 =>ii_sm <= ACK3;
when ACK3 =>

if scl_i = ‘1’ then
if (sda_i = ‘0’) and (more = ‘1’) then
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scl_o <= ‘0’; ii_sm <= ACK4;
elsif (sda_i = ‘1’) or (more = ‘0’) then

scl_o <= ‘0’; ii_sm <= STOP1;
end if;
ack_rcv0 <= sda_i;

end if;
when ACK4 =>

scl_o <= ‘0’;
if br_sm = XFERING then

sda_o <= rd_ena or iic_wbyte(7);
bit_cnt <= 7; ii_sm <= BT1;

end if;
-- issue the stop sequence
when STOP1 =>scl_o <= ‘0’; sda_o <= ‘0’;

ii_sm <= STOP2;
when STOP2 =>sda_o <= ‘0’; ii_sm <= STOP3;
when STOP3 =>

if scl_i = ‘1’ then ii_sm <= STOP4;
else sda_o <= ‘0’;
end if;

when STOP4 =>
if scl_i = ‘0’ then

sda_o <= ‘0’; ii_sm <= STOP3;
elsif (scl_i = ‘1’) and (sda_i = ‘1’) then

ii_sm <= IDLE;
end if;

-- hang here for a bus error
when B_CNFLK =>null;
end case;

end if;

end if;
end process IREG;
-- latch of iic read pulse
IHR: process (iic_rd, i_clk_buf, br_sm, Scan_en, Reset_n)
begin

if Reset_n = ‘0’ then
iic_h_rd <= false;

elsif (iic_rd = ‘1’) and (Scan_en = ‘0’) then
iic_h_rd <= true;

elsif i_clk_buf’event and i_clk_buf = ‘1’ then
if br_sm /= BYTE_RDY theniic_h_rd <= false;
end if;

end if;
end process IHR;
-- latch of iic write pulse
IHW: process (iic_wr, i_clk_buf, br_sm, Scan_en, Reset_n)
begin

if Reset_n = ‘0’ then
iic_h_wr <= false;

elsif iic_wr = ‘1’ and (Scan_en = ‘0’) then
iic_h_wr <= true;

elsif i_clk_buf’event and i_clk_buf = ‘1’ then
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if br_sm /= RDY2XFER theniic_h_wr <= false;
end if;

end if;
end process IHW;
-- latch of reset
IFI: process (Reset_n, force_idle_n, i_clk_buf, br_sm, ii_sm, Scan_en)
begin

if ((Reset_n = ‘0’) or (force_idle_n = ‘0’)) and (Scan_en = ‘0’)
then force_idle <= true;

elsif i_clk_buf’event and i_clk_buf = ‘1’ then
if (br_sm = RDY2XFER) and (ii_sm = IDLE) then

force_idle <= false;
end if;

end if;
end process IFI;
iic2hdata <= rd_byte;
bit_da <= ‘1’ when rd_ena = ‘1’ else iic_wbyte(bit_cnt);
not_idle <= ‘0’ when ii_sm = IDLE else ‘1’;
xfer_done <= ‘0’ when

((rd_ena = ‘1’) and (br_sm = BYTE_RDY) and not iic_h_rd) or
((rd_ena = ‘0’) and (br_sm = RDY2XFER) and not iic_h_wr)
else ‘1’;

bus_err <= ‘1’ when ii_sm = B_CNFLK else ‘0’;
ack_rcv_n <= ack_rcv0;

end BEHAVIOR;

-- synopsys translate_off
configuration iic_con of iic is

for behavior
for all: K1NQ use configuration work.K1NQ_config;
end for;
for all: FD1S use configuration work.FD1S_config;
end for;

end for;
end iic_con;
-- synopsys translate_on
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9 PCI Expansion Bus

The MACE ASIC contains a Peripheral Component Interconnect (PCI) host bridge for interfacing to PCI devices as
defined by the PCI 2.1 specification. The interface supports both 32-bit and 64-bit, 33.33MHz bus masters and up to
five external master devices can be controlled directly from the built in arbiter. The interface also contains read-ahead
buffers for high performance DMA operation. A block diagram of the PCI interface is shown below:

9.1  PCI Host Bridge
The PCI host bridge is based on the rev 2.1 specification with the 64-bit optional extensions. The Intel specific special
cycles and Dual address cycle are currently not supported. The optional cache coherency signals are not supported
sinceMoosehead systems do not provide for hardware cache coherent I/O. The interface has been designed to support
three 64-bit expansion slots and two on board SCSI devices at a minimum.

As a PCI master the host bridge can initiated single data phase 32-bit configuration, memory and I/O transactions. As
a PCI slave the host bridge will respond to 32-bit or 64-bit, single or multiple data phase memory transactions tar-
geted to the lower two gigabytes of PCI memory space. Memory transactions to the upper two gigabytes of PCI mem-
ory space and all PCI I/O transactions are ignore by the host and assumed to be targeted to PCI devices other than the
host bridge.

PCI 64 Slots

SCSI

PCI 64 Bus

PCI
Bridge

PCI
Read-Ahead

Buffers

PCI-32

(Internal) (External)

SCSI

PCI-32
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9.2  PCI Command Usage
The above table lists the PCI commands that are supported by the host bridge. Commands in the table marked as N.A.
(not applicable) have different meaning whether the host bridge is a master or slave. As a PCI master the host bridge
is not capable of issuing these commands and as a PCI slave the host bridge will ignore transactions issued with these
commands regardless of the accompanying address.

The preferred use of the read commands is:

Memory Read (MR) & Memory Read Line (MRL): These two commands are considered to be the same and
should be use to indicate that the master will not read across a 128 byte address boundary.

Memory Read Multiple (MRM): This command should be used indicates that the master will read across a 128 byte
address boundary and that the bridge should read-ahead (or prefetch) the next 128 bytes if prefetching is
enabled. If prefetching is disabled then no read-ahead is performed and the MRM command is treated the
same as MR & MRL.

To get the best read performance, prefetching should be enabled (bit #11 of the PCI Control register set) and a PCI
master should use the MRM command whenever it will read across a 128 byte address boundary. This will help
reduce the high read latency to memory by the host bridge reading ahead. This means that if a PCI master needs to
read 256 bytes starting on a 128 byte address boundary then the MRM command should be used to read the first 128
bytes in a single burst. The host bridge will disconnect the master when the end of the 128 byte cache line has been
reached. The master should then read the last 128 bytes using the MRL command because it will not read across
another 128 byte boundary.

TABLE 80. PCI Commands Supported by Host Bridge

C/BE[3:0] Host Bridge as a PCI Master Host Bridge as a PCI Slave

0000 N.A.(Interrupt Acknowledge) N.A.(Interrupt Acknowledge)

0001 N.A. (Special Cycle) N.A. (Special Cycle)

0010 I/O Read N.A.(I/O Read)

0011 I/O Write N.A.(I/O Write)

0100 N.A. (Reserved) N.A. (Reserved)

0101 N.A. (Reserved) N.A. (Reserved)

0110 Memory Read Memory Read

0111 Memory Write Memory Write

1000 N.A. (Reserved) N.A. (Reserved)

1001 N.A. (Reserved) N.A. (Reserved)

1010 Configuration Read (can initiate) N.A.(Configuration Read)

1011 Configuration Write (can initiate) N.A.(Configuration Write)

1100 N.A.(Memory Read Multiple) Memory Read Multiple

1101 N.A. (Dual Address Cycle) N.A. (Dual Address Cycle)

1110 N.A.(Memory Read Line) Memory Read Line

1111 N.A. Memory Write & Invalidate (same as Mem. Write)
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If a master is not intelligent enough to be able to issue MRM and MRL as described above then the master must be
programmed not to use the MRM command or prefetching will have to be disabled. The draw back to disabling
prefetching is that it will disable prefetching for all PCI devices.

The cache line size used by PCI masters for the MRL and MRM commands is variable and must be programmed into
each external masters’ PCI configuration spaces. A device can be programmed with a cache line size smaller than the
maximum given here. Note that these cache lines are virtual since the system does not support hardware cache coher-
ency. In this case, the cache line size is really only an indication of the prefetch size. The bridge can only supports a
virtual cache line size of 128 bytes.

Note: Any data read and buffered in the bridge is invalidate in hardware by memory write traffic to the same 128 byte
address region. This ensures that PCI masters that are intelligent will never read stale data from system main memory
if they do READ->WRITE->READ to the same memory address using MRL.

9.3  Address Spaces
Figure, “PCI Address Mapping/Translation,” on page160, shows how PCI memory and I/O spaces are mapped into
the CPU address space and how the one gigabyte host memory is mapped into the PCI memory space in both native
and byte swapped views. The first 32 megabytes of PCI memory and I/O space is also double mapped to be visible
within the CPU’s KSEG1 address region.

9.3.1  PCI Memory Space
The PCI interface supports the full four gigabyte PCI memory space. The lower two gigabytes map to the host’s main
memory while the upper two gigabytes are left for PCI to PCI memory references. The host’s main memory map is
split into two halves, the upper gigabyte is a straight map or “native view” of the host’s memory, while the lower
gigabyte is a byte swapped view of the host’s memory. Devices that need to byte swap DMA should be steered to the
byte swapped view.

PCI devices must be able to be located above the lower 2 gigabyte area of PCI memory space. Devices that have bits
2 and 1 of their Memory Base Address registers encoded to indicate that they must be located below 1 megabyte can
not be supported.

TABLE 81. Memory Base Address Register Bits 2/1 Encoding

Bits 2/1 Meaning

00 Locate anywhere in 32 bit address space

01 Locate below 1 Meg <NOT SUPPORTED>

10 Locate anywhere in 64 bit address space

11 Reserved
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PCI Address Mapping/Translation

CPU Address Space

0x0 0000 0000

0x0 1800 0000
PCI Low I/O

PCI Low Memory

PCI Host Bridge Regs

Memory

PCI I/O

PCI Memory

Reserved
(2GB)

(2GB)

0x0 1A00 0000

0x0 1C00 0000

0x0 1F08 0000

0x0 1F10 0000

0x0 4000 0000

0x0 8000 0000

0x1 0000 0000

0x2 0000 0000

0x2 8000 0000

0x3 0000 0000

0x8200 0000

0x8000 0000

0x4000 0000

0x0000 0000

Byte Swapped

Native View
Host Memory

Host Memory

Non Host Memory

0x0000 0000

0xFFFF FFFF

0xFFFF FFFF

(2GB)

PCI Memory Address Space

PCI I/O Address Space

(32MB)

(32MB)

(1GB)

(4GB)

(1GB)

(1GB)
View

(Lower 32MB)

0x0200 0000

(Lower 32MB)

(4GB)
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9.3.2  PCI I/O Space
The PCI interface supports the full four gigabyte I/O space defined in the PCI specification. All I/O space cycles are
assumed to be targeted to devices on the PCI bus. Also, none of theMoosehead ASICs’ registers are visible in the
PCI I/O space or are accessible from the PCI bus.

9.3.3  PCI Configuration Space
The host bridge allows the processor to have access to configuration space in all devices on all PCI buses in the sys-
tem through two 32-bit word registers, CONFIG_ADDRESS and CONFIG_DATA. These two registers are located in
the PCI Host Bridge Internal Register space of the CPU address map: physical addresses 0x1F080CF8 and
0x1F080CFC, respectively.

The PCI bus that the host bridge is physically connected to has been hard wired as bus number zero and supports up
to 255 subsidiary busses below it. Please see the PCI specification for more information on how configuration mech-
anism #1 operates.

9.4  PCI Host Bridge Internal Registers

The PCI host bridge internal registers are located in the MACE internal register address space of the CPU address
map. The 524KB region reserved for PCI starts at physical address 0x1F080000 and ends at 0x1F0FFFFF. Only six
32-bit registers are defined within this region and are listed in the following table. These registers are not aliased (e.g.
repeated) to fill the entire 524KB region. Reads to addresses that are within this region and not listed in the table will
return 0xFF in all byte lanes, and writes will be ignored with the data being discarded. If illegal transaction sizes are
used to access any of the six registers, unexpected results may occur and the Illegal Transaction flag (bit # 27) will be
set in the Error Flags Register.

Figure: Bridge Translation for Type 0 Configuration Cycles

Only One “1”

CONFIG ADDRESS

PCI AD[31:0] BUS

Reserved Device Func Register 0 0

0 0

31

11

10111516

31 10

8 7

2 0

2 1 0

1

2324

Bus # 0

1817

All Zeroes Func Register
8 7



162 July 16, 1996

SGI ConfidentialDSS

Please note that SGI defines aword as a 32-bit quantity and adouble word as a 64-bit quantity. The PCI specification
defines aword as a 16-bit quantity and adouble word as a 32-bit quantity. The SGI definition is used throughout this
document.

9.4.1   PCI Error Address Register
The PCI host bridge provides a register for reporting the PCI bus address when an error condition is detected during a
PIO transaction.The content of this register is only valid if one of the four Error Address Type flags (bits #16 thru
#19 of the PCI Error Flags Register) is set.

9.4.2  PCI Error Flags Register
The PCI Error Flags register reports the type of error(s) that have been detected. Bits #23 thru #31, and bit #4, can be
individually cleared by writing a logic 0, or left as is by writing a logic 1 to each bit. Clearing bits #28 thru #31 causes
the corresponding Error Address Type flags (bits #19 thru #16) to be cleared. For example, if the first error condition
detected is a master abort during a configuration cycle, bits #31, #19 and #20 will get set. The PCI address of the con-
figuration cycle will be captured in the PCI Error Address register. Clearing bit #31 will also cause bit #19 to be
cleared to zero. Bits #20, #21 and the content of the Error Address register will remain unchanged and will now be
considered invalid until the next error condition is detected.

The host can initiate an interrupt test by setting bit #25 to a logic 1. This will cause a single interrupt packet to be sent
to CRIME indicating that an internal interrupt has been generated. In rev 0 of the host bridge the hardware automati-
cally resets this bit back to a logic 0 one clock after being set. Thus, bit #25 will always be read as a logic 0. In rev 1,
the bit is not automatically cleared by the hardware. Software needs to clear this bit after detecting the interrupt by
writing a logic 0 to it. The interrupt test is intended for testing and debugging purposes only.

TABLE 82. PCI Host Bridge Internal Registers

Physical Address Bits Reset Type Register Name Legal Transaction Sizes

0x1F080000 31:0 0x0 R/O Error Address Register word accesses only

0x1F080004 31:0 0x0 R/W Error Flags Register word accesses only

0x1F080008 31:0 0x0 R/W Control Register word accesses only

0x1F08000C 31:0 0x0 R/W (Write) Invalidate Read Buffers

(Read) Revision Info

word accesses only

0x1F080CF8 31:0 0x0 W/O CONFIG_ADDRESS word accesses only

0x1F080CFC 31:0 0x0 R/W CONFIG_DATA byte, halfword, triplebyte
& word accesses only

TABLE 83. PCI Error Address Register

Bits Reset Type Description

31:0 0 R/O PCI Address when Error Occurred
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TABLE 84. PCI Error Flags Register

Bits Reset Type Description

0 0 R/O 66 MHz Capable

1 1 R/O Fast Back-to-Back Capable

3:2 1 R/O DEVSEL timing

00 - fast

01 - medium

10 - slow

4 0 R/W Signaled Target Abort

15:5 0 R/O <Reserved>

16 0 R/O Error Address for Retry Error

17 0 R/O Error Address for Data Parity Error Detected

18 0 R/O Error Address for Target Abort

19 0 R/O Error Address for Master Abort

20 0 R/O Error Address to Config Space

21 0 R/O Error Address to Memory Space

22 0 R/O Signaled System Error

23 0 R/W Read Buffer Overrun

24 0 R/W Detected Parity Error

25 0 R/W Interrupt Test

26 0 R/W Detected System Error

27 0 R/W Illegal Host Transaction

28 0 R/W Retry Error

29 0 R/W Data Parity Error Detected

30 0 R/W Received Target Abort

31 0 R/W Received Master Abort
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9.4.3  PCI Host Bridge Control Register
The PCI host bridge Control register controls the enabling and disabling of bridge functionality.

TABLE 85. PCI Host Bridge Control Register

Bits Reset Type Description

0 0 R/W PCI Interrupt #0 Enable (SCSI Controller 0)
0 - Disable Interrupt
1 - Enable Interrupt

1 0 R/W PCI Interrupt #1 Enable (SCSI Controller 1)

2 0 R/W PCI Interrupt #2 Enable (Slot zero INTA#)

3 0 R/W PCI Interrupt #3 Enable (Slot one INTA#)

4 0 R/W PCI Interrupt #4 Enable (Slot two INTA#)

5 0 R/W PCI Interrupt #5 Enable (Slot zero INTB#, Slot one INTC#, Slot two INTD#)

6 0 R/W PCI Interrupt #6 Enable (Slot zero INTC#, Slot one INTD#, Slot two INTB#)

7 0 R/W PCI Interrupt #7 Enable (Slot zero INTD#, Slot one INTB#, Slot two INTC#)

8 0 R/W SERR_N Enable
0 - Disable
1 - Enable

9 0 R/O

R/W

<rev 0> Reserved

<rev 1> PCI Arbiter Control - Arbitration Level for REQ_N[6]

0 - Round Robin
1 - 1st Priority of Fixed Level

10 0 R/W Parity Error Response
0 - Disable
1 - Enable

11 0 R/W Memory Read Multiple Read Ahead
0 - Disable
1 - Enable

12 0 R/W PCI Arbiter Control - Arbitration Level for REQ_N[3]
0 - Round Robin
1 - 4th Priority of Fixed Level

13 0 R/W PCI Arbiter Control - Arbitration Level for REQ_N[4]
0 - Round Robin
1 - 3rd Priority of Fixed Level

14 0 R/W PCI Arbiter Control - Arbitration Level for REQ_N[5]
0 - Round Robin
1 - 2nd Priority of Fixed Level

15 0 R/W PCI Arbiter Control - Enable Parking on Last in Use
0 - Park on Host
1 - Park on Last in Use

16 0 R/W Invalidate Prefetch Buffers on PCI Interrupt #0
0 - Disable
1 - Enable

17 0 R/W Invalidate all Read Buffers on PCI Interrupt #1

18 0 R/W Invalidate all Read Buffers on PCI Interrupt #2

19 0 R/W Invalidate all Read Buffers on PCI Interrupt #3

20 0 R/W Invalidate all Read Buffers on PCI Interrupt #4
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9.4.4  PCI Read Buffer Flush/Revision Info Register
This 32-bit register provides two different functions depending on whether its being written or read. A write to this
register causes the read buffers to be flushed (or invalidated) regardless of the value written. The write data is dis-
carded. A read to this register will return the revision number of the host bridge.The first version of MACE (rev 1.0)
has a host bridge revision number of 0 and MACE 2.0 has a host bridge revision number of 1.

9.5  External Master Arbitration
There are two arbitration levels for external masters. The default is for all devices to be included in the lower priority
round robin ring. Bits #9, and #12 thru #14 of the PCI Control register allow devices #3 thru #6 to be removed from
the round robin ring and included in the higher priority fixed arbitration level. Each device’s priority level within the
fixed arbitration scheme is determined by which PCI slot the device is plugged into. Slot #3 has highest priority and
slot #1 has lowest priority.

21 0 R/W Invalidate all Read Buffers on PCI Interrupt #5

22 0 R/W Invalidate all Read Buffers on PCI Interrupt #6

23 0 R/W Invalidate all Read Buffers on PCI Interrupt #7

24 0 R/W Overrun Condition Interrupt Enable
0 - Disable
1 - Enable

25 0 R/W Detected Parity Error Interrupt Enable

26 0 R/W System Error Interrupt Enable

27 0 R/W Illegal Transaction Interrupt Enable

28 0 R/W Retry Error Interrupt Enable

29 0 R/W Data Parity Error Detected Interrupt Enable

30 0 R/W Target Abort Received Interrupt Enable

31 0 R/W Master Abort Received Interrupt Enable

TABLE 86. Buffer Flush/Revision Info Register

Bits Reset Type Description

31:0 Rev.
Info

R/W (write) Invalidate Read Buffers

(read) Revision Info

TABLE 85. PCI Host Bridge Control Register

Bits Reset Type Description
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9.6  External Interrupts
The PCI interface provides eight external interrupt inputs. Five of these interrupts are dedicated to the INTA signals
from devices #1 thru #5. The other three signals are connected to the PCI expansion slots INTB through INTD signals
in a spiral pattern. The spiral pattern distributes the extra three interrupt inputs such that the possibility of overlapped
use is minimized. The following table shows the connections:

TABLE 87. External interrupt connections

Interrupt
Input Description of external destination

0 SCSI Controller INTA#

1 SCSI Controller INTB#

2 PCI Slot 0, INTA#

3 PCI Slot 1, INTA#

4 PCI Slot 2, INTA#

5 PCI Slot 0, INTB# - PCI Slot 1, INTC# - PCI Slot 2, INTD#

6 PCI Slot 0, INTC# - PCI Slot 1, INTD# - PCI Slot 2, INTB#

7 PCI Slot 0, INTD# - PCI Slot 1, INTB# - PCI Slot 2, INTC#
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9.7  Bug List for Host Bridge Rev 0

• There are two mechanisms provided for invalidating the read buffers. Invalidation can be triggered by an interrupt
or by software writing the Read Buffer Flush register. This functionality should be considered broken and not
used. If either of these two mechanisms are used while a memory read is in progress on the PCI bus the host
bridge might return bad data if several conditions happen to line up just right.

• The host bridge provides a 4-byte aligned address instead of a full byte address for PCI I/O transactions. This
means that halfword and byte accesses to PCI I/O space may not work if the target device expects a full byte
address.

• PIOs to the upper 2GB of PCI I/O space get aliased to the lower 2GB of PCI I/O space.

• When either a Memory Read or Memory Read Line command directly follows a Memory Read Multiple com-
mand, the host bridge treats the Memory Read/Memory Read Line as a Memory Read Multiple. Causing the next
128 bytes to be prefetched if prefetching is enabled.

• There is a bug in the PCI arbiter that can cause two PCI devices to be granted the bus at the same time if more than
one PCI device is programmed to be in the fixed priority arbitration level. This will not be a problem for Moose-
head but could be a problem for Road Runner.

• There is a bug that causes bad data to be written to host memory when a 64-bit PCI master writes to thenative
view of host memory with one or more disabled byte lanes. This bug does not affect 32-bit PCI devices.

NOTE: Petty Crime does not alias theupper 16MB of PCI I/O space (0x19000000 - 0x19FFFFFF) and PCI
low memory (0x1B000000 - 0x1BFFFFFF) as shown in Figure, “PCI Address Mapping/Translation,” on
page160. Accesses to these two regions will cause the system to hang. This problem will be resolved in the
final version of CRIME. Please note that the lower 16MB of PCI I/O space (0x18000000 - 0x18FFFFFF)
and PCI low memory (0x1A000000 - 0x1AFFFFFF) are aliased correctly.
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10 CRIME Link

TheMoosehead system I/O asic contains a high speed link to the CRIME asic. The interface is a high speed queued
message passing interface that uses 64-bit wide data and control words. The CRIME Link interface controls all com-
munication between MACE and CRIME. A high level message path picture is shown below:
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10.1  General Description
The System Interface consists of the host bus interface, bus selector and FIFOs. Together they provide the communi-
cation path for DMA and PIO packets to be sent between CRIME and subsytemswithin the MACE ASIC. Packets
received from the host are routed directly to the appropriate FIFOs. Packets sent from the subsystems are qued in
their individual FIFOs and sent to the host based on a fixed arbitration scheme. The figure at the start of this chapter
shows the basic block diagram of the System Interface and the data paths to/from the subsystems.

Key characteriests of the System Interface:

Half-duplex, Synchronous Host Interface

DMA Transaction Flow Control

FIFO and Host Bus Error Notification

10.1.1  CRIME Interface
The CRIME Interface implements a half-duplex, 32-bit, double-speed, synchronous bus. The data bus runs at twice
the internal clock rate to achieve the effective 64-bit per cycle transfer rate. Bus mastership is negotiated via the
TOKEN_IN and TOKEN_OUT signals. Upon reset and power up, bus mastership defaults to CRIME. MACE nego-
tiates for bus ownership by asserting its TOKEN_OUT signal and waiting for TOKEN_IN to be . To flow control
write transactions there are write acknowledge signals back to each ASIC that indicate when an outstanding write
transaction has completed.

10.1.1.1  Data Format and Endianness
All data passed through the CMI is expected to be byte ordered in big-endian format. No support is available for
switching endianness within the CMI. The 64-bit doublewords passed between CRIME and MACE will be sent
across the 32-bit bus as two 32-bit word tranfers.The following figure illustrates the byte/word ordering.

FIGURE 12. Byte Ordering of Bus Transfers

0 1 2 3 4 5 6 7

063

Byte #

Bit #

4 5 6 7

0 1 2 3 1st Word Transferred

2nd Word Transferred

Big Endian Format
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Bit #

Byte #
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0

0

31
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10.1.2  Transaction Ordering
Transactions from CRIME to MACE are loaded into the subsystem FIFOs in the order issued. Similarly, transactions
issued from a subsystem are passed onto CRIME in the order issued. However, the ordering of transactions from dif-
ferent subsystems to CRIME is dependent upon the arbitration scheme. There is no ordering between transactions ini-
tiated by CRIME and transactions initiated by MACE’s subsystems. These two types of transaction are flowing in
opposite and independent directions.

10.1.3  Transaction Flow Control
Transaction flow control is maintained by the initiator assuring that the number of outstanding transactions it gener-
ates doesn’t exceed the maximum allowed. This requires the host to keep track of the number of outstanding PIO
transactions, and MACE to keep track of the number of outstanding Memory transactions.

The MACE bus arbiter keeps track of outstanding transactions to assure that the maximum number of memory trans-
actions that CRIME’s FIFO can handle is not exceeded. Within MACE, each subsystem’s FIFO controller will be
responsible for limiting the number of read request packets issued so that its return FIFO won’t overflow.

DMA read transactions will be acknowledged after the Read Data Response packet has returned and loaded into the
appropriate subsystem FIFO. This will cause the MACE bus arbiter to decrement the outstanding transaction counter,
thus allowing another transaction to be sent to CRIME.

MACE expects CRIME to assert its Memory Write Acknowledge (MWA) signal for one clock period once a memory
write transacion has completed.

10.1.3.1  PIO Transactions
PIO packets from CRIME to MACE will be routed to each subsystem within MACE based on the decoding of the
MSBs of the header’s ADR field. Each subsystem will be capable of storing 2 PIO write packets (total of four 64-bit
words), or one write and one read. The following is a list of possible outstanding PIO combinations:

a) 1 or 2 PIO writes

b) 1 PIO write followed by a PIO read

c) 1 PIO read only

CRIME will assure that no more than 2 outstanding PIO writes will be issued and no more than 1 outstanding read. If
there is an outstand PIO read then no other PIO transaction (read or write) will be issued until the current PIO read
has completed. This will be determined by CRIME identifying the Read Data Response packet returned by MACE.
The TAG and ADR fields of the Read Block packet will be returned in the corresponding Read Data Response pack-
et’s header.

Each completed PIO write will be acknowledged by PWA (PIO Write Acknowledge signal from MACE to CRIME)
being asserted for 1 clock period of the 66Mhz system clock. MACE will NOT guarantee that 2 outstanding PIO
writes to seperate subsystems will complete in the order issued. However 2 outstanding PIO transactions to the same
subsystem will be completed in the order issued.

10.1.3.2  PIO Write Acknowledge
Each subsystem will supply a PIO write acknowledge signal to the CMI. Once a PIO write has completed, the sub-
system will assert its PIO write acknowledge signal for one period of the system clock. The individual subsystems
will be responsible for synchronizing their write acknowledge signal with the system clock. A simple state machine
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within the CMI will monitor the write acknowledge signals and assert the PWA signal to CRIME for one system
clock period for each write acknowledge signal that is asserted. If two simultaneous write acknowledges from differ-
ent subsystems occure, PWA will be asserted for two consecutive system clocks.

10.1.4  Interrupt Packet Flow Control
The CMI will assure that only one outstanding interrupt packet will be sent to CRIME at any one time. Interrupt
packets will be treated as out of band messages, in that they bypass pending memory writes in the CRIME asic. This
means that system software provide the synchronization to ensure that pending memory writes are flushed if needed
to signal the completion of a DMA transaction. This can usually be done by doing a single PIO read.

10.1.4.1  PCI Clock
The PCI clock will be generated externally by an oscillator located on the motherboard. The clock frequency will be
33.33MHz (30.00ns period). This clock will NOT be synchronized to the 66MHz system clock. Any signals passing
to/from the 33MHz domain from/to the 66MHz domain will be re-synchronized to the appropriate clock.



July 16, 1996 173

SGI Confidential DSS

10.1.5  Tag Codes
The CRIME messages contain a single six bit field that identifies the functional block involved in the message that
should receive the message and it’s type. The following table shows the current tag field decode:

TABLE 88. Tag Codes

Tag[5:0] Subsystem Tag[5:0] Subsystem

0x00 Video In 1 - PIO 0x20 PCI - Prefetch Buffer #0

0x01 Video In 1 - Memory Read 0x21 PCI - Prefetch Buffer #1

0x02 Video In 2 - PIO 0x22 PCI - Prefetch Buffer #2

0x03 Video In 2 - Memory Read 0x23 PCI - Prefetch Buffer #3

0x04 Video Out - PIO 0x24 PCI - Prefetch Buffer #4

0x05 Video Out - Memory Read 0x25 PCI - Prefetch Buffer #5

0x06 Video Out - Memory Write 0x26 PCI - Prefetch Buffer #6

0x07 Video Out - (not used) 0x27 PCI - Prefetch Buffer #7

0x08 Ethernet - PIO from CRIME 0x28 PCI - Prefetch Buffer #8

0x09 Ethernet - Transmit DMA Cat Buf 0x29 PCI - Prefetch Buffer #9

0x0A Ethernet - Status Vector Writes 0x2A PCI - Prefetch Buffer #10

0x0B Ethernet - PIO Read Response 0x2B PCI - Prefetch Buffer #11

0x0C Ethernet - Interrupt Update 0x2C PCI - Prefetch Buffer #12

0x0D Ethernet - Receive DMA Data Blks 0x2D PCI - Prefetch Buffer #13

0x0E Ethernet - Transmit DMA Ring Even 0x2E PCI - Prefetch Buffer #14

0x0F Ethernet - Transmit DMA Ring Odd 0x2F PCI - Prefetch Buffer #15

0x10 ISA - PIO to Devices 0x30 PCI - (not used)

0x11 ISA - PIO to Flash-ROM 0x31 PCI - (not used)

0x12 ISA - Audio output DMA channel #1 0x32 PCI - (not used)

0x13 ISA - Audio output DMA channel #2 0x33 PCI - (not used)

0x14 ISA - Serial output DMA channel #1 0x34 PCI - (not used)

0x15 ISA - Serial output DMA channel #2 0x35 PCI - (not used)

0x16 ISA - Parallel DMA channel 0x36 PCI - (not used)

0x17 ISA - Audio input DMA channel 0x37 PCI - (not used)

0x18 ISA - Serial input DMA channel #1 0x38 PCI - (not used)

0x19 ISA - Serial input DMA channel #2 0x39 PCI - (not used)

0x1A FUTURE - PIO 0x3A PCI - (not used)

0x1B FUTURE - <reserved> 0x3B PCI - (not used)

0x1C PCI - PIO to config & low io/mem 0x3C PCI - (not used)

0x1D PCI - PIO to PCI I/O 0x3D PCI - (not used)

0x1E PCI - PIO to PCI Memory 0x3E PCI - (not used)

0x1F PCI - (not used) 0x3F PCI - (not used)
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10.1.6  Transaction Types
The following transaction types are supported:

TABLE 89. Supported Transaction Types

Type CMD bits # of Dwords Description

NULL 0000 1 Null Transaction

INT 0001 1 Interrupt Update

WB 0010 2-33 Write Block

WSB 0011 2 Write Sub-Block

RB 0100 1 Read Block Request

RSB 0101 1 Read Sub-Block Request

RD 0110 2-33 Read Data Response

Null Packet

The Null (NULL) packet is one doubleword transfer of the following format:

The fields are:

0

ADR

32

63

TAGCMD CNT MASK

64 5 8 21

E
R
R

3

R
S

V
D

3

RSVDRSVD

Bits Width Name Description
63..60 4

3
CMD
RSVD

Null command code (0000)
Reserved

55..53 3
5

RSVD
CNT

Reserved
(Not Applicable) Doubleword Count52..48

47..40

37..32

8

6

MASK

SRC

(Not Applicable) Byte Mask

(Not Applicable) Tag
(Not Applicable) Byte AddressADR3231..0

39..38 2 RSVD Reserved

56 1 ERR (Not Applicable) Error

NOTE: 1. All bits of fields listed asnot applicable or reserved must be set to zeroes.

59..57

Therefore, all 64 bits must be set to zero (deasserted).
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Interrupt Packet

The Interrupt (INT) packet is a doubleword transfer of the following format:

The fields are:

63 0

TAGCMD CNT MASK

64 5 8 1621

INT

16

E
R
R

3

R
S

V
D

3

INT WRITE ENABLESRSVDRSVD

Bits Width Name Description
4
3

CMD
RSVD

Interrupt command code (0001)
Reserved

3
5

RSVD
CNT

Reserved
(Not Applicable) Doubleword Count

8

6

MASK

SRC

(Not Applicable) Byte Mask

Tag
Interrupt Bit Write EnablesINT MASK16

2 RSVD Reserved

1 ERR (Not Applicable) Error

NOTE: 1. All bits of fields listed asnot applicable or reserved must be set to zeroes.

Interrupt BitsINT16

63..60

55..53
52..48
47..40

37..32
31..16

39..38

56
59..57

15..0

Write Block Packet

The Write Block (WB) packet is a doubleword header followed by 1 to 32 doubleword data transfers
of the following format:

63 0

DATA

64

0

ADR

32

63

TAGCMD CNT MASK

64 5 8 21

E
R
R

3

R
S

V
D

3

RSVDRSVD

The fields are:

Bits Width Name Description
4
3

CMD
RSVD

Write Block command code (0010)
Reserved

3
5

RSVD
CNT

Reserved
Doubleword Count (00000 to 11111)

8

6

MASK

SRC

(Not Applicable) Byte Mask

Tag
Byte AddressADR32

2 RSVD Reserved

1 ERR (Not Applicable) Error

NOTE: 1. All bits of fields listed asnot applicable or reserved must be set to zeroes.

2. CNT field specifies the numberminus one of data doublewords contained in the packet.
(e.g. If CNT equals zero, then there is one data doubleword that follows the header.)

63..60

55..53
52..48
47..40

37..32
31..0

39..38

56
59..57
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Write Sub-Block Packet

The Write Sub-Block (WSB) packet is a doubleword header followed by one doubleword data transfer
of the following format:

The fields are:

63 0

DATA

64

0

ADR

32

63

TAGCMD CNT MASK

64 5 8 21

E
R
R

3

R
S

V
D

3

RSVDRSVD

Bits Width Name Description
4
3

CMD
RSVD

Write Sub-Block command code (0011)
Reserved

3
5

RSVD
CNT

Reserved
Doubleword Count (00000)

8

6

MASK

SRC

Byte Mask

Tag
Byte AddressADR32

2 RSVD Reserved

1 ERR (Not Applicable) Error

NOTE: 1. All bits of fields listed asnot applicable or reserved must be set to zeroes.

2. CNT field specifies the numberminus one of data doublewords contained in the packet.
Only one data doubleword is allowed in a WSB packet, so the CNT field must be set to zero.

3. The MASK field specifies which bytes to be masked in the data doubleword.

63..60

55..53
52..48
47..40

37..32
31..0

39..38

56
59..57

e.g. To mask byte #7 (big endian ordering - bits 7 down to 0) then the least significant bit of
the MASK field should be asserted (bit #40 of the header).
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Read Block Request Packet

The Read Block Request (RB) packet is a doubleword transfer of the following format:

The RB packet is routed to the destination and at some later time a read data response packet (RD) will be
sent back to the source that issued the RB packet.

0

ADR

32

63

TAGCMD CNT MASK

64 5 8 21

E
R
R

3

R
S

V
D

3

RSVDRSVD

Bits Width Name Description
4
3

CMD
RSVD

Read Block Request command code (0100)
Reserved

3
5

RSVD
CNT

Reserved
Doubleword Count (00000 to 11111)

8

6

MASK

SRC

(Not Applicable) Byte Mask

Tag
Byte AddressADR32

2 RSVD Reserved

1 ERR (Not Applicable) Error

NOTE: 1. All bits of fields listed asnot applicable or reserved must be set to zeroes.

2. CNT field specifies the numberminus one of data doublewords requested.
(e.g. If CNT equals zero, then only one data doubleword is being requested.)

The fields are:

63..60

55..53
52..48
47..40

37..32
31..0

39..38

56
59..57

Read Sub-Block Request Packet

The Read Sub-Block Request (RSB) packet is a doubleword transfer of the following format:

The RSB packet is routed to the destination and at some later time a read data response packet (RD)

0

ADR

32

63

TAGCMD CNT MASK

64 5 8 21

E
R
R

3

R
S

V
D

3

RSVDRSVD

Bits Width Name Description
4
3

CMD
RSVD

Read Block Request command code (0101)
Reserved

3
5

RSVD
CNT

Reserved
Doubleword Count (00000)

8

6

MASK

SRC

Byte Mask

Tag
Byte AddressADR32

2 RSVD Reserved

1 ERR (Not Applicable) Error

NOTE: 1. All bits of fields listed asnot applicable or reserved must be set to zeroes.

The fields are:

63..60

55..53
52..48
47..40

37..32
31..0

39..38

56
59..57

2. CNT field specifies the numberminus one of data doublewords contained in the packet.
Only one data doubleword is allowed to be requested in a RSB packet, so the CNT field must

3. The MASK field specifies which bytes to be masked.

will be sent back to the source that issued the RSB packet.

be set to zero.

e.g. To mask byte #7 (big endian ordering - bits 7 down to 0) then the least significant bit of
the MASK field should be asserted (bit #40 of the header).
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Read Data Response Packet

The Read Data Response packet is a doubleword header followed by 1 to 32 doubleword data transfers
of the following format:

The RD packet is routed back to the source that issued the corresponding RB or RSB packet.
The ERR field indicates the status of the read data as follows:

ERR

OK
INVLD

Encoding

0
1

Description
Data valid
Read request invalid

The INVLD status may occur because of a reference to an invalid address.

The fields are:

Bits Width Name Description

63 0

DATA

64

0

ADR

32

4
3

CMD
RSVD

Read Data Response command code (0110)
Reserved

3
5

RSVD
CNT

Reserved
Doubleword Count (00000 to 11111)

8

6

MASK

SRC

(Not Applicable) Byte Mask

Tag
Byte AddressADR32

2 RSVD Reserved

1 ERR Error

NOTE: 1. All bits of fields listed asnot applicable or reserved must be set to zeroes.

63

TAGCMD CNT MASK

64 5 8 21

E
R
R

3

R
S

V
D

3

RSVDRSVD

2. CNT field specifies the numberminus one of data doublewords contained in the packet.
(e.g. If CNT equals zero, then there is one data doubleword that follows the header.)

63..60

55..53
52..48
47..40

37..32
31..0

39..38

56
59..57
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11 Interrupt Map

The MACE chip contains a number of level sensitive interrupt signals that are mapped from all of the I/O asics inter-
nal functional blocks onto the sixteen CRIME interrupt bit slots allocated to the I/O asic. Each group of interrupt
sources is effectively OR’d together, and the resulting logic ‘0’ or ‘1’ value is transmitted to the CRIME asic and
stored in its master interrupt register. Whenever the logic value of a group changes from ‘1’ to ‘0’ or from ‘0’ to ‘1’,
the new value is automatically sent to the CRIME asic.

The interrupt unit in the I/O asic needs to take into account the possible race condition between DMA write opera-
tions that have been posted to CRIME but not yet completed, and the interrupt signaling the processor that the DMA
write operation has been completed. To protect against this race condition, all interrupt messages to the CRIME asic
need to be strongly ordered with any DMA write traffic from the same source. No out-of-band signaling is allowed.

11.1  Mapping
The following table shows the assignment of all the interrupts in the I/O asic. The left hand column shows to which
CRIME master interrupt bit slot each block of interrupts maps. The right most column gives a description of each
interrupt source. The entire 16 entry table is shown below:

TABLE 90. Interrupt Assignments

CRIME
Bit
Slot Interrupt Source

15 PCI Interrupt Input #7 (Slot zero INTD#, Slot one INTB#, Slot two INTC#)

14 PCI Interrupt Input #6 (Slot zero INTC#, Slot one INTD#, Slot two INTB#)

13 PCI Interrupt Input #5 (Slot zero INTB#, Slot one INTC#, Slot two INTD#)

12 PCI Interrupt Input #4 (Slot two INTA#)

11 PCI Interrupt Input #3 (Slot one INTA#)

10 PCI Interrupt Input #2 (Slot zero INTA#)

9 PCI Interrupt Input #1 (SCSI controller 1)

8 PCI Interrupt Input #0 (SCSI controller 0)

7 PCI Error Conditions

6 Peripheral Controller, Audio Interrupts

5 Peripheral Controller, Misc keyboard/mouse/timer Interrupts

4 Peripheral Controller, Serial/Parallel Interrupts

3 Fast-Ethernet Interface

2 Video Output Channel

1 Video Input Channel #2

0 Video Input Channel #1
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12 Address Maps

TheMoosehead system I/O asic internal register address map is shown below. The I/O asic has a total of 4 Mega-
bytes of address space for internal registers which has been broken down into eight blocks for the internal sub-
systems. Note that the size of each block is so large that the subsystems do not use all of the space available. Those
registers that exist are aliased, i.e. repeated, to fill the entire block. The main address map table is shown below:

12.1  Peripheral Controller

The peripheral controller within the MACE I/O asic contains several subsystems. The table below shows the address
map within that the peripheral controller:

12.1.1  Keyboard & Mouse

The keyboard and mouse in the MACE I/O asic share an address slice within the peripheral controller. The table
below shows the address decode for the keyboard and mouse section:

TABLE 91. MACE Primary Address Map

Physical
Address

Major
Offset

PIO
A[21:19]

CRIME PIO
Tag Block Description

0x1F000000 0x000000 000 0x1A Future Subsystem Interface

0x080000 001 0x1C PCI Interface

0x100000 010 0x00 Video Input #1

0x180000 011 0x02 Video Input #2

0x200000 100 0x04 Video Output

0x280000 101 0x08 Fast-Ethernet Interface

0x300000 110 0x10 Peripheral controller

0x380000 111 0x10 ISA bus external I/O space

TABLE 92. Peripheral Controller Sub-Address Map

Physical
Address

Major
Offset

PIO
A[18:16] Block Description

0x1F300000 0x00000 000 Audio Interface Registers

0x10000 001 ISA DMA internal Registers

0x20000 010 Keyboard & Mouse Registers

0x30000 011 I2C Interface Registers

0x40000 100 Count/Compare (UST/MSC) Timer Registers

0x50000 101 <alias of Compare register #1>

0x60000 110 <alias of Compare register #2>

0x70000 111 <alias of Compare register #3>

TABLE 93. Keyboard & Mouse Sub-Address Map

Physical
Address

Major
Offset

PIO
A[5] Block Description

0x1F320000 0x00 0 Keyboard registers

0x20 1 Mouse registers
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13 Physical

This chapter contains all the physical chip information on theMoosehead system I/O asic called MACE.
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13.1  Pin List

slot
number

pin
number signal name side io type 5v/3v

I/O Cell
type Jtag group

10 C7 MIITxEn bottom out 5v bt4rf 1 Ethernet

15 B5 MIITxD[3] bottom out 5v bt4rf 1 Ethernet

20 D7 MIITxD[2] bottom out 5v bt4rf 1 Ethernet

25 E7 MIITxD[1] bottom out 5v bt4rf 1 Ethernet

30 C6 MIITxD[0] bottom out 5v bt4rf 1 Ethernet

35 A4 MIITxEr bottom out 5v bt4rf 1 Ethernet

45 VDD bottom pwr VDD 0 Ethernet

40 A3 MIITxClk bottom in 5v ibuff 1 Ethernet

105 D4 MIICrs bottom in 5v ibuff 1 Ethernet

110 B3 MIICol bottom in 5v ibuff 1 Ethernet

75 C5 MIIRxDV bottom in 5v ibuff 1 Ethernet

85 D5 MIIRxD[3] bottom in 5v ibuff 1 Ethernet

90 A2 MIIRxD[2] bottom in 5v ibuff 1 Ethernet

95 C4 MIIRxD[1] bottom in 5v ibuff 1 Ethernet

100 E5 MIIRxD[0] bottom in 5v ibuff 1 Ethernet

5 VSS bottom pwr VSS 0 Ethernet

80 B4 MIIRxEr bottom in 5v ibuff 1 Ethernet

70 E6 MIIRxClk bottom in 5v ibuff 1 Ethernet

115 B2 MIID_IO bottom bidi 5v bd4crpf 1 Ethernet

120 E4 MIIDclk bottom out 5v bt4rf 1 Ethernet

125 AudSclk bottom in 5v ibuff 1 Audio

150 VSS bottom pwr VSS 0 ISA

260 VDD bottom pwr VDD 0 ISA

305 VSS bottom pwr VSS 0 ISA

360 CoreVDD bottom pwr VDD2 0 CorePwr

365 CoreVSS bottom pwr VSS2 0 CorePwr

475 VDD bottom pwr VDD 0 ISA

130 AudSdin bottom in 5v ibuff 1 Audio

135 AudSdout bottom out 5v bt4rf 1 Audio

140 AudSsync bottom in 5v ibuff 1 Audio

145 AudRst bottom out 5v bt4rf 1 Audio

265 SD[7] bottom bidi 5v bd4crpf 1 ISA

270 SD[6] bottom bidi 5v bd4crpf 1 ISA

275 SD[5] bottom bidi 5v bd4crpf 1 ISA

280 SD[4] bottom bidi 5v bd4crpf 1 ISA

285 SD[3] bottom bidi 5v bd4crpf 1 ISA

290 SD[2] bottom bidi 5v bd4crpf 1 ISA
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295 SD[1] bottom bidi 5v bd4crpf 1 ISA

300 SD[0] bottom bidi 5v bd4crpf 1 ISA

155 SA[20] bottom out 5v bt4rf 1 ISA

160 SA[19] bottom out 5v bt4rf 1 ISA

165 SA[18] bottom out 5v bt4rf 1 ISA

170 SA[17] bottom out 5v bt4rf 1 ISA

175 SA[16] bottom out 5v bt4rf 1 ISA

180 SA[15] bottom out 5v bt4rf 1 ISA

185 SA[14] bottom out 5v bt4rf 1 ISA

190 SA[13] bottom out 5v bt4rf 1 ISA

195 SA[12] bottom out 5v bt4rf 1 ISA

200 SA[11] bottom out 5v bt4rf 1 ISA

205 SA[10] bottom out 5v bt4rf 1 ISA

210 SA[9] bottom out 5v bt4rf 1 ISA

215 SA[8] bottom out 5v bt4rpf 1 ISA

220 SA[7] bottom out 5v bt4rpf 1 ISA

225 SA[6] bottom out 5v bt4rpf 1 ISA

230 SA[5] bottom out 5v bt4rpf 1 ISA

235 SA[4] bottom out 5v bt4rpf 1 ISA

240 SA[3] bottom out 5v bt4rpf 1 ISA

245 SA[2] bottom out 5v bt4rpf 1 ISA

250 SA[1] bottom out 5v bt4rpf 1 ISA

255 SA[0] bottom out 5v bt4rpf 1 ISA

310 IORD_N bottom out 5v bt4rpf 1 ISA

315 IOWR_N bottom out 5v bt4rpf 1 ISA

320 S1CS_N bottom out 5v bt4rpf 1 ISA

325 S2CS_N bottom out 5v bt4rpf 1 ISA

330 PRN1CS_N bottom out 5v bt4rpf 1 ISA

340 ROMCS_N bottom out 5v bt4rpf 1 ISA

345 RTCCS_N bottom out 5v bt4rpf 1 ISA

350 RstISA bottom out 5v bt4rpf 1 ISA

355 ADEN bottom out 5v bt4rpf 1 ISA

370 IOCHRDY bottom in 5v ibufuf 1 ISA

375 PDRQ bottom in 5v ibufdf 1 ISA

380 PRDACK_N bottom out 5v bt4rpf 1 ISA

335 PRN2CS_N bottom out 5v bt4rpf 1 ISA

385 Pint bottom in 5v ibufdf 1 ISA

390 S1Int bottom in 5v ibufdf 1 ISA

slot
number

pin
number signal name side io type 5v/3v

I/O Cell
type Jtag group
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395 S1RxRdy_N bottom in 5v ibufnf 1 ISA

400 S1TxRdy_N bottom in 5v ibufnf 1 ISA

405 S2Int bottom in 5v ibufdf 1 ISA

410 S2RxRdy_N bottom in 5v ibufnf 1 ISA

415 S2TxRdy_N bottom in 5v ibufnf 1 ISA

420 KbDout_N bottom out 5v bt6rf 1 ISA

425 KbDin_N bottom in 5v schmitcnf 1 ISA

430 KbCkout_N bottom out 5v bt6rf 1 ISA

435 KbCkin_N bottom in 5v schmitcnf 1 ISA

440 MDout_N bottom out 5v bt6rf 1 ISA

445 MDin_N bottom in 5v schmitcnf 1 ISA

450 MCkout_N bottom out 5v bt6rf 1 ISA

455 MCkin_N bottom in 5v schmitcnf 1 ISA

460 IICDout_N bottom out 5v bt6rf 1 ISA

465 IICDin_N bottom in 5v schmitcnf 1 ISA

470 SCLO_N bottom out 5v bt6rf 1 ISA

655 VSS right pwr VSS 0 PCI

650 C_BEn[7] right bidi 5v bdepcif 1 PCI

660 C_BEn[6] right bidi 5v bdepcif 1 PCI

670 VDD right pwr VDD 0 PCI

665 C_BEn[5] right bidi 5v bdepcif 1 PCI

675 C_BEn[4] right bidi 5v bdepcif 1 PCI

490 VSS bottom pwr VSS 0 PCI

485 Par64 bottom bidi 5v bdepcif 1 PCI

495 AD[63] bottom bidi 5v bdepcif 1 PCI

1025 Gnt2_N right out 5v bt4rpf 1 PCI

500 VDD bottom pwr VDD 0 PCI

510 AD[62] bottom bidi 5v bdepcif 1 PCI

515 AD[61] bottom bidi 5v bdepcif 1 PCI

985 Gnt1_N right out 5v bt4rpf 1 PCI

520 VSS bottom pwr VSS 0 PCI

525 AD[60] bottom bidi 5v bdepcif 1 PCI

530 AD[59] bottom bidi 5v bdepcif 1 PCI

1005 Req2_N right in 5v ibufuf 1 PCI

540 VDD bottom pwr VDD 0 PCI

535 AD[58] bottom bidi 5v bdepcif 1 PCI

605 AD[57] right bidi 5v bdepcif 1 PCI

545 !PCIClkBuf bottom clkbuf clkc16i 0 PCI

slot
number

pin
number signal name side io type 5v/3v

I/O Cell
type Jtag group
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610 AD[56] right bidi 5v bdepcif 1 PCI

625 AD[55] right bidi 5v bdepcif 1 PCI

620 Req3_N right in 5v ibufuf 1 PCI

600 VDD right pwr VDD 0 PCI

630 AD[54] right bidi 5v bdepcif 1 PCI

640 AD[53] right bidi 5v bdepcif 1 PCI

645 Gnt3_N right out 5v bt4rpf 1 PCI

615 VSS right pwr VSS 0 PCI

780 AD[52] right bidi 5v bdepcif 1 PCI

790 AD[51] right bidi 5v bdepcif 1 PCI

685 Req4_N right in 5v ibufuf 1 PCI

695 VDD right pwr VDD 0 PCI

800 AD[50] right bidi 5v bdepcif 1 PCI

810 AD[49] right bidi 5v bdepcif 1 PCI

705 Gnt4_N right out 5v bt4rpf 1 PCI

715 VSS right pwr VSS 0 PCI

820 AD[48] right bidi 5v bdepcif 1 PCI

830 AD[47] right bidi 5v bdepcif 1 PCI

725 Req5_N right in 5v ibufuf 1 PCI

735 VDD right pwr VDD 0 PCI

840 AD[46] right bidi 5v bdepcif 1 PCI

850 AD[45] right bidi 5v bdepcif 1 PCI

745 Gnt5_N right out 5v bt4rpf 1 PCI

755 VSS right pwr VSS 0 PCI

860 AD[44] right bidi 5v bdepcif 1 PCI

870 AD[43] right bidi 5v bdepcif 1 PCI

765 IntA_N right in 5v ibufuf 1 PCI

775 VDD right pwr VDD 0 PCI

880 AD[42] right bidi 5v bdepcif 1 PCI

890 AD[41] right bidi 5v bdepcif 1 PCI

785 IntB_N right in 5v ibufuf 1 PCI

795 VSS right pwr VSS 0 PCI

900 AD[40] right bidi 5v bdepcif 1 PCI

910 AD[39] right bidi 5v bdepcif 1 PCI

805 IntC_N right in 5v ibufuf 1 PCI

815 VDD right pwr VDD 0 PCI

920 AD[38] right bidi 5v bdepcif 1 PCI

930 AD[37] right bidi 5v bdepcif 1 PCI

slot
number

pin
number signal name side io type 5v/3v

I/O Cell
type Jtag group
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825 IntD_N right in 5v ibufuf 1 PCI

835 VSS right pwr VSS 0 PCI

940 AD[36] right bidi 5v bdepcif 1 PCI

950 AD[35] right bidi 5v bdepcif 1 PCI

845 IntE_N right in 5v ibufuf 1 PCI

855 VDD right pwr VDD 0 PCI

960 AD[34] right bidi 5v bdepcif 1 PCI

970 AD[33] right bidi 5v bdepcif 1 PCI

865 PCIRst_N right out 5v bt6rpf 1 PCI

875 VSS right pwr VSS 0 PCI

980 AD[32] right bidi 5v bdepcif 1 PCI

680 Req64_N right bidi 5v bdepcif 1 PCI

885 IntF_N right in 5v ibufuf 1 PCI

895 VDD right pwr VDD 0 PCI

690 Ack64_N right bidi 5v bdepcif 1 PCI

990 AD[0] right bidi 5v bdepcif 1 PCI

905 IntG_N right in 5v ibufuf 1 PCI

915 VSS right pwr VSS 0 PCI

1000 AD[1] right bidi 5v bdepcif 1 PCI

1010 AD[2] right bidi 5v bdepcif 1 PCI

925 IntH_N right in 5v ibufuf 1 PCI

935 VDD right pwr VDD 0 PCI

1020 AD[3] right bidi 5v bdepcif 1 PCI

1030 AD[4] right bidi 5v bdepcif 1 PCI

945 IdSel right in 5v ibuff 1 PCI

955 VSS right pwr VSS 0 PCI

1040 AD[5] right bidi 5v bdepcif 1 PCI

1045 AD[6] right bidi 5v bdepcif 1 PCI

965 Req1_N right in 5v ibufuf 1 PCI

975 VDD right pwr VDD 0 PCI

1055 AD[7] right bidi 5v bdepcif 1 PCI

700 C_BEn[0] right bidi 5v bdepcif 1 PCI

995 VSS right pwr VSS 0 PCI

1060 AD[8] right bidi 5v bdepcif 1 PCI

1070 AD[9] top bidi 5v bdepcif 1 PCI

1015 VDD right pwr VDD 0 PCI

1075 AD[10] top bidi 5v bdepcif 1 PCI

1085 AD[11] top bidi 5v bdepcif 1 PCI

slot
number

pin
number signal name side io type 5v/3v

I/O Cell
type Jtag group
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1035 VSS right pwr VSS 0 PCI

1095 AD[12] top bidi 5v bdepcif 1 PCI

1105 AD[13] top bidi 5v bdepcif 1 PCI

1050 VDD right pwr VDD 0 PCI

1110 AD[14] top bidi 5v bdepcif 1 PCI

1120 AD[15] top bidi 5v bdepcif 1 PCI

1065 VSS right pwr VSS 0 PCI

710 C_BEn[1] right bidi 5v bdepcif 1 PCI

1125 PAR top bidi 5v bdepcif 1 PCI

1080 VDD top pwr VDD 0 PCI

1135 SERR_N top bidi 5v bdepcif 1 PCI

1090 VSS top pwr VSS 0 PCI

1140 PERR_N top bidi 5v bdepcif 1 PCI

1100 VDD top pwr VDD 0 PCI

720 STOP_N right bidi 5v bdepcif 1 PCI

1150 DEVSEL_N top bidi 5v bdepcif 1 PCI

1115 VSS top pwr VSS 0 PCI

730 TRDY_N right bidi 5v bdepcif 1 PCI

740 IRDY_N right bidi 5v bdepcif 1 PCI

1130 VDD top pwr VDD 0 PCI

750 FRAME_N right bidi 5v bdepcif 1 PCI

760 C_BEn[2] right bidi 5v bdepcif 1 PCI

1145 VSS top pwr VSS 0 PCI

1155 AD[16] top bidi 5v bdepcif 1 PCI

1165 AD[17] top bidi 5v bdepcif 1 PCI

1160 VDD top pwr VDD 0 PCI

1170 AD[18] top bidi 5v bdepcif 1 PCI

1180 AD[19] top bidi 5v bdepcif 1 PCI

1175 VSS top pwr VSS 0 PCI

1185 AD[20] top bidi 5v bdepcif 1 PCI

1195 AD[21] top bidi 5v bdepcif 1 PCI

1190 VDD top pwr VDD 0 PCI

1200 AD[22] top bidi 5v bdepcif 1 PCI

1210 AD[23] top bidi 5v bdepcif 1 PCI

1205 VSS top pwr VSS 0 PCI

770 C_BEn[3] right bidi 5v bdepcif 1 PCI

1215 AD[24] top bidi 5v bdepcif 1 PCI

1220 VDD top pwr VDD 0 PCI

slot
number

pin
number signal name side io type 5v/3v

I/O Cell
type Jtag group
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1225 AD[25] top bidi 5v bdepcif 1 PCI

1230 AD[26] top bidi 5v bdepcif 1 PCI

1240 VSS top pwr VSS 0 PCI

1245 AD[27] top bidi 5v bdepcif 1 PCI

1250 AD[28] top bidi 5v bdepcif 1 PCI

1255 VDD top pwr VDD 0 PCI

1260 AD[29] top bidi 5v bdepcif 1 PCI

1265 AD[30] top bidi 5v bdepcif 1 PCI

1270 AD[31] top bidi 5v bdepcif 1 PCI

1275 VSS top pwr VSS 0 PCI

1285 VDD top pwr VDD 0 Video

1290 VGenClk top in 5v ibufdf 1 Video

1295 VSS top pwr VSS 0 Video

1300 Hsync1 top out 5v bt4rpf 1 Video

1305 Hsync2 top out 5v bt4rpf 1 Video

1310 CBlank top out 5v bt4rpf 1 Video

1315 CoreVDD top pwr VDD2 0 CorePwr

1325 Field top out 5v bt4rpf 1 Video

1330 VBlank top out 5v bt4rpf 1 Video

1335 HBlank top out 5v bt4rpf 1 Video

1340 GBELok top out 5v bt4rpf 1 Video

1320 CoreVSS top pwr VSS2 0 CorePwr

1345 D1OutF[0] top out 5v bt4rpf 1 Video

1350 D1OutF[1] top out 5v bt4rpf 1 Video

1355 D1OutF[2] top out 5v bt4rpf 1 Video

1360 D1OutF[3] top out 5v bt4rpf 1 Video

1365 D1OutF[4] top out 5v bt4rpf 1 Video

1370 D1OutF[5] top out 5v bt4rpf 1 Video

1375 D1OutF[6] top out 5v bt4rpf 1 Video

1380 D1OutF[7] top out 5v bt4rpf 1 Video

1385 D1OutF[8] top out 5v bt4rpf 1 Video

1390 D1OutF[9] top out 5v bt4rpf 1 Video

1395 VDD top pwr VDD 0 Video

1400 D1_ClkEF top out 5v bt4rpf 1 Video

1405 D1OutE[0] top out 5v bt4rpf 1 Video

1410 D1OutE[1] top out 5v bt4rpf 1 Video

1415 D1OutE[2] top out 5v bt4rpf 1 Video

1420 D1OutE[3] top out 5v bt4rpf 1 Video

slot
number

pin
number signal name side io type 5v/3v

I/O Cell
type Jtag group
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1425 D1OutE[4] top out 5v bt4rpf 1 Video

1430 D1OutE[5] top out 5v bt4rpf 1 Video

1435 D1OutE[6] top out 5v bt4rpf 1 Video

1440 D1OutE[7] top out 5v bt4rpf 1 Video

1445 D1OutE[8] top out 5v bt4rpf 1 Video

1450 D1OutE[9] top out 5v bt4rpf 1 Video

1455 VSS top pwr VSS 0 Video

1460 D1_ClkD top in 5v ibufdf 1 Video

1465 SelC_DN top out 5v bt4rpf 1 Video

1470 D1InCD[0] top in 5v ibufdf 1 Video

1475 D1InCD[1] top in 5v ibufdf 1 Video

1480 D1InCD[2] top in 5v ibufdf 1 Video

1485 D1InCD[3] top in 5v ibufdf 1 Video

1490 D1InCD[4] top in 5v ibufdf 1 Video

1495 CoreVDD top pwr VDD2 0 CorePWR

1505 D1InCD[5] top in 5v ibufdf 1 Video

1510 D1InCD[6] top in 5v ibufdf 1 Video

1515 D1InCD[7] top in 5v ibufdf 1 Video

1500 CoreVSS top PWR VSS2 0 CorePWR

1520 D1InCD[8] top in 5v ibufdf 1 Video

1525 D1InCD[9] top in 5v ibufdf 1 Video

1530 D1_ClkC top in 5v ibufdf 1 Video

1535 VDD top pwr VDD 1 Video

1540 D1_ClkB top in 5v ibufdf 1 Video

1545 SelA_BN top out 5v bt4rpf 1 Video

1550 D1InAB[0] top in 5v ibufdf 1 Video

1555 D1InAB[1] top in 5v ibufdf 1 Video

1560 D1InAB[2] top in 5v ibufdf 1 Video

1565 D1InAB[3] top in 5v ibufdf 1 Video

1570 D1InAB[4] top in 5v ibufdf 1 Video

1575 D1InAB[5] top in 5v ibufdf 1 Video

1580 D1InAB[6] top in 5v ibufdf 1 Video

1585 D1InAB[7] top in 5v ibufdf 1 Video

1590 D1InAB[8] top in 5v ibufdf 1 Video

1595 D1InAB[9] top in 5v ibufdf 1 Video

1605 VSS top PWR VSS 0 Video

480 bottom PwrCut 0 Cut

1280 top PwrCut 0 Cut

slot
number

pin
number signal name side io type 5v/3v

I/O Cell
type Jtag group
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1615 left blank 0 SystemPLL

1620 SyRefClk left in 3v ddrv 0 SystemPLL

1625 SyPLLVDD left pwr pllvdd 0 SystemPLL

1630 SyPLLAGND left pwr pllagn 0 SystemPLL

1635 SyPLLlp2 left bidi 3v plllp2 0 SystemPLL

1640 SyPLLVSS left pwr pllvss 0 SystemPLL

1645 left blank 0 SystemPLL

1650 left pwr PwrCut 0 Cut

1655 VDD left pwr VDD 0

1660 !ClkBuf133 left clkc16i 0

1665 VSS left pwr VSS 0

1670 left PwrCut 0 Cut

1675 VDD left pwr VDD 0

1680 !ClkBuf66 left clkc16i 0

1685 VSS left pwr VSS 0

1690 left PwrCut 0 Cut

1695 CoreVDD left pwr VDD2 0 CorePwr

1705 VDD left pwr VDD 0 Crime

1715 CrmAD[0] left bidi 3v bd8c 1 Crime

1710 VSS left pwr VSS 0 Crime

1700 CoreVSS left pwr VSS2 0 CorePwr

1720 CrmAD[1] left BIDI 3v bd8c 1 Crime

1725 VDD left pwr VDD 0 Crime

1735 CrmAD[2] left BIDI 3v bd8c 1 Crime

1730 VSS left pwr VSS 0 Crime

1740 CrmAD[3] left BIDI 3v bd8c 1 Crime

1745 VDD left pwr VDD 0 Crime

1755 CrmAD[4] left BIDI 3v bd8c 1 Crime

1750 VSS left pwr VSS 0 Crime

1760 CrmAD[5] left BIDI 3v bd8c 1 Crime

1765 VDD left pwr VDD 0 Crime

1775 CrmAD[6] left BIDI 3v bd8c 1 Crime

1770 VSS left pwr VSS 0 Crime

1780 CrmAD[7] left BIDI 3v bd8c 1 Crime

1785 VDD left pwr VDD 0 Crime

1795 CrmAD[8] left BIDI 3v bd8c 1 Crime

1790 VSS left pwr VSS 0 Crime

1800 CrmAD[9] left BIDI 3v bd8c 1 Crime

slot
number

pin
number signal name side io type 5v/3v

I/O Cell
type Jtag group
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1805 VDD left pwr VDD 0 Crime

1815 CrmAD[10] left BIDI 3v bd8c 1 Crime

1810 VSS left pwr VSS 0 Crime

1820 CrmAD[11] left BIDI 3v bd8c 1 Crime

1825 VDD left pwr VDD 0 Crime

1835 CrmAD[12] left BIDI 3v bd8c 1 Crime

1830 VSS left pwr VSS 0 Crime

1840 CrmAD[13] left BIDI 3v bd8c 1 Crime

1845 VDD left pwr VDD 0 Crime

1855 CrmAD[14] left BIDI 3v bd8c 1 Crime

1850 VSS left pwr VSS 0 Crime

1860 CrmAD[15] left BIDI 3v bd8c 1 Crime

1865 VDD left pwr VDD 0 Crime

1875 CrmAD[16] left BIDI 3v bd8c 1 Crime

1870 VSS left pwr VSS 0 Crime

1880 CrmAD[17] left BIDI 3v bd8c 1 Crime

1885 VDD left pwr VDD 0 Crime

1895 CrmAD[18] left BIDI 3v bd8c 1 Crime

1890 VSS left pwr VSS 0 Crime

1900 CrmAD[19] left BIDI 3v bd8c 1 Crime

1905 VDD left pwr VDD 0 Crime

1915 CrmAD[20] left BIDI 3v bd8c 1 Crime

1910 VSS left pwr VSS 0 Crime

1920 CrmAD[21] left BIDI 3v bd8c 1 Crime

1925 VDD left pwr VDD 0 Crime

1935 CrmAD[22] left BIDI 3v bd8c 1 Crime

1930 VSS left pwr VSS 0 Crime

1940 CrmAD[23] left BIDI 3v bd8c 1 Crime

1945 VDD left pwr VDD 0 Crime

1950 CrmAD[24] left BIDI 3v bd8c 1 Crime

1955 VSS left pwr VSS 0 Crime

1960 left PwrCut 0 Cut

1965 VDD left pwr VDD 0

1970 !ClkBuf33 left clkc16i 0

1975 VSS left pwr VSS 0

1980 left PwrCut 0 Cut

1985 VDD left pwr VDD 0 Crime

1995 CrmAD[25] left BIDI 3v bd8c 1 Crime

slot
number

pin
number signal name side io type 5v/3v

I/O Cell
type Jtag group
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1990 VSS left pwr VSS 0 Crime

2000 CrmAD[26] left BIDI 3v bd8c 1 Crime

2005 VDD left pwr VDD 0 Crime

2015 CrmAD[27] left BIDI 3v bd8c 1 Crime

2010 VSS left pwr VSS 0 Crime

2020 CrmAD[28] left BIDI 3v bd8c 1 Crime

2025 VDD left pwr VDD 0 Crime

2035 CrmAD[29] left BIDI 3v bd8c 1 Crime

2030 VSS left pwr VSS 0 Crime

2040 CrmAD[30] left BIDI 3v bd8c 1 Crime

2045 VDD left pwr VDD 0 Crime

2050 CoreVDD left pwr VDD2 0 CorePwr

2065 CrmAD[31] left BIDI 3v bd8c 1 Crime

2060 VSS left pwr VSS 0 Crime

2055 CoreVSS left pwr VSS2 0 CorePwr

2070 Tin left in 3v ibuf 1 Crime

2075 VDD left pwr VDD 0 Crime

2085 Tout left out 3v bt8 1 Crime

2080 VSS left pwr VSS 0 Crime

2090 Pack left out 3v bt8 1 Crime

2095 VDD left pwr VDD 0 Crime

2100 Mack left in 3v ibuf 1 Crime

2105 SysReset left in 3v ibuf 1 Crime

2110 left PwrCut 0 Cut

2135 JTDI left in 5v ibufdf 0 Test

2140 JTDO left out 5v bt4rpf 0 Test

2145 JTCK left in 5v ibufdf 0 Test

2150 VSS left pwr VSS 0 Test

2155 JTMS left in 5v ibufdf 0 Test

2160 JTRST_N left in 5v ibufdf 0 Test

2165 IOoff_N left in 5v ibufuf 0 Test

2170 TDClk left in 5v ibufdf 0 Test

2175 TClkSelB left in 5v ibufdf 0 Test

2180 TClkSelA left in 5v ibufdf 0 Test

2185 VDD left pwr VDD 0 Test

2115 PromClrEn_N left in 5v ibufuf 1 Test

2120 CMITrig left out 5v bt4rpf 1 Test

2125 SerNumDat left bidi 5v bd4crpf 1 Test

slot
number

pin
number signal name side io type 5v/3v
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2130 TE left in 5v ibufdf 0 Test

2190 IDDTN left in iddtn 0 Test

2195 PMONtest left in 0 Test

2200 PMONout left out 0 Test

1610 CrnrPwr
Cut

0 Cut

50 !TxClkBuf bottom clkbuf clkc16i 0 Ethernet

55 VSS bottom pwr VSS 0 Ethernet

60 !RxClkBuf bottom clkbuf clkc16i 0 Ethernet

65 VDD bottom pwr VDD 0 Ethernet

550 VSS bottom pwr VSS 0 PCI

555 CrnrPwr
Cut

0 Cut

560 right blank 0 PCIPLL

565 PCIRefClk right in 3v ddrv 0 PCIPLL

570 PCIPLLVDD right pwr pllvdd 0 PCIPLL

575 PCIPLLAGND right pwr pllagn 0 PCIPLL

580 PCIPLLlp2 right in plllp2 0 PCIPLL

585 PCIPLLVSS right pwr pllvss 0 PCIPLL

590 right blank 0 PCIPLL

595 right PwrCut 0 Cut

635 VDD right pwr VDD 0 PCI

1600 D1_ClkA top in 5v ibufdf 1 Video

1321 ExtLokH top in 5v ibuff 1 Video

1322 ExtLokV top in 5v ibuff 1 Video

1323 ExtLokF top in 5v ibuff 1 Video

1324 ExtLokClk top in 5v ibuff 1 Video

1681 !ClkBuf66 left clkc16i 0

1971 !ClkBuf33 left clkc16i 0

1691 SysClkSync left in 3v ibufn 1 SystemPLL

347 GPCS_N bottom out 5v bt4rpf 1 ISA

382 DMATC bottom out 5v bt4rpf 1 ISA

417 RTCIrq_N bottom in 5v schmitcnf 1 ISA

471 SCLI_N bottom in 5v schmitcnf 1 ISA

2166 PCIPllOut left out 5v bt4rpf 0 Test

2167 SysPllOut left out 5v bt4rpf 0 Test

2168 PllCntClr left in 5v ibufnuf 0 Test

2126 VDNSW left in 5v schmitcf 1 Test

2127 VUPSW left in 5v schmitcf 1 Test

slot
number

pin
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2128 spare1 left in 5v schmitcf 1 Test

2129 spare2 left in 5v schmitcf 0 Test

slot
number

pin
number signal name side io type 5v/3v
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type Jtag group


